
HAL Id: hal-01888864
https://inria.hal.science/hal-01888864

Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring value prediction with the EVES predictor
André Seznec

To cite this version:
André Seznec. Exploring value prediction with the EVES predictor. CVP-1 2018 - 1st Championship
Value Prediction, Jun 2018, Los Angeles, United States. pp.1-6. �hal-01888864�

https://inria.hal.science/hal-01888864
https://hal.archives-ouvertes.fr


Exploring value prediction with the EVES predictor ∗

André Seznec
INRIA/IRISA

Outline

In this study we explore the performance limits of value
prediction for small value predictors (8KB and 32KB) in
the context of a processor assuming a large instruction win-
dow (256-entry ROB), a perfect branch predictor, fetching
16 instructions per cycle, an unlimited number of functional
units, but a large value misprediction penalty with a com-
plete pipeline flush at commit on a value misprediction

This evaluation framework emphasizes two major diffi-
culties that an effective hardware implementation value pre-
diction will face. First the prediction of a value should be
used only when the potential performance benefit on a cor-
rect prediction outweighs the potential performance loss on
a misprediction. Second, value prediction has to be used
in the context of an out-of-order execution processor with
a large instruction window. In many cases the result of an
instruction has to be predicted while one or several occur-
rences of the same instruction are still progressing specula-
tively in the pipeline. Many value predictors (FCM predic-
tors [7], stride predictors [3] ) are using the result(s) of one
or more previous occurrence(s) of the instruction to predict
the result of the current occurrence. In this case, a predic-
tion cannot be used in the pipeline unless no instruction oc-
currence is still speculative or all the occurrences present in
the pipeline have been predicted with high confidence.

Our proposition EVES, for Enhanced VTAGE Enhanced
Stride, combines two predictor components which do not
use on the result of the last occurrence of the instruction
to compute the prediction. We use an enhanced version of
the VTAGE predictor [5], E-VTAGE. On VTAGE, the pre-
dicted value is the value directly read at prediction time on
the predictor tables. Second, we propose a enhanced ver-
sion of the stride predictor, E-Stride. E-Stride computes
the prediction from the last committed occurrence of the in-
struction and the number of speculative inflight occurrences
of the instruction in the pipeline.

The prediction flowing out from E-Stride or E-VTAGE
is used only when its confidence is high. The major con-
tribution of this study is the algorithm to assign confidence
to predictions depending on the expected benefit/loss of a

∗This work was partially supported by an Intel research grant

prediction. For the predictor components, the predictor en-
try allocation and victim selection is also guided by this
expected benefit/loss. The confidence/priority assignment
algorithms use probabilistic counters defined by Riley et
al. [6].

On the distributed traces, the EVES predictors with
respectively 8KB, 32KB and unlimited storage budgets
achieve respectively 4.026 IPC, 4.202 IPC and 4.408 IPC
(geometric mean), i.e., respectively 25.3 %, 30.8 % and
37.3 % improvement over the 3.211 IPC achieved without
value prediction. Most of this benefit is brought by the 48-
entry E-Stride predictor with 16.1 % speedup.

1 The Enhanced Stride Predictor

The stride predictor [3] computes the predicted value as
the result of the addition of the last result of the instruc-
tion and a stride. The stride is dynamically computed and
updated at validation time. The stride is read on the pre-
dictor table while the last value is read either on the pre-
dictor table or more often when there is at least an inflight
occurrence of the instruction in the pipeline from the spec-
ulative instruction window. The prediction is only used
in the pipeline when both the stride and the last value are
high confidence. That is if any of the inflight occurrences
present in the pipeline was not high confidence then one
can not use the prediction: when the stride becomes high
confident for instruction I, one cannot begin using the hard-
ware value predictions when before all the occurrences of
instruction I have disappeared from the instruction window.
On short loops, this might never happens unless the pipeline
is flushed. Notice that even on a realistic framework imple-
menting branch prediction or memory order violation dis-
ambiguation, complete flushes of the pipeline might not be
that frequent since these incidents are handled after execu-
tion stage, not commit stage.

Dealing with speculative occurrences In order to avoid
the above mentioned issue, we introduce a modified ver-
sion of the stride prediction algorithm. The predicted value
for instruction I is computed as the Last Committed Value
added with (Inflight + 1)*Stride where Inflight is the

1



Inflight

Val
Stride

Val	+	(Inflight+1)	*Stride

Speculative	
w
indow

Val/Stride
table

Update	at	commit

PC

Confidence

Figure 1. Predicting with E-Stride predictor

number of speculative occurrences of instruction I. As soon
as the stride associated with instruction I reaches high con-
fidence, the prediction can be used even if other (not pre-
dicted) occurrences of the same instruction are still present
in the pipeline. This is illustrated in Figure 1. The same al-
gorithm was suggested to use value prediction for predicting
branches [1].

A limited storage budget E-stride predictor In the pres-
ence of VTAGE, there is no interest in using the stride pre-
dictor to predict sequences of constant values; therefore en-
tries with null strides are systematic targets for replacement
in E-Stride. A 3-way skewed-associative 48-entry E-Stride
predictor was found to reach performance very close to the
one of an unlimited size E-stride predictor on the distributed
traces. Moreover the width of the stride can be reduced to
20 bits.

Confidence management and entry allocation Not all
predictions are equal. Predicting the result of a load miss-
ing the LLC cache is more likely to lead to a performance
benefit than predicting the result of a single cycle ALU op-
eration.

To manage confidence 5-bit probabilistic counters [6] are
used. A prediction is forwarded to the pipeline only if the
confidence counter reaches 7.

We carefully define the probabilities of incrementing the
confidence counter depending on the instruction type, the
instruction behavior and the stride value. In our submis-
sion, the probability of incrementing the counter on a load
is 1 on a miss on the LLC, 3

4 on a hit on the LLC, 5
16 on

a hit on the L2 cache, 9
64 on a hit on the L1 cache. For a

slow ALU or a floating point operation, probability 1
32 is

used. For single cycle ALU instructions, probability 1
128 is

used. Finally we remarked that small strides (e.g. 1) does
not bring the same benefit as large ones; therefore for small
strides, the confidence counter is incremented with a lower
probability.

The probability of inserting an entry on a miss on the
predictor is also adjusted to the potential performance bene-
fit/loss expected from predicting the instruction. This prob-
ability varies from 1 for a load missing on the LLC to 1

16 for
a load hitting in the store queue and to 1

64 for a single cycle
ALU instruction.

Abruptly resetting the confidence counter on a mispre-
diction often leads to successions of warming periods with
no benefits from stride predictions followed by a period of
useful predictions. Therefore we opted for a decrease of the
confidence counter by 4. With a 5-bit counter and a high
confidence threshold of 7, in most cases the use of the pre-
diction can restart immediately after a misprediction.

On an entry allocation, the selection of the target is
also guided by the potential benefit/target from predicting
this target entry. Each entry is protected by a 2-bit useful
counter. This probabilistic counter is incremented on a cor-
rect prediction as the confidence counter, reset on a mispre-
diction, and smoothly aged on tries to steal the entry.

Avoiding some slowdowns Several traces were encoun-
tering slowdowns with the E-Stride predictor. In order to
avoid/decrease this phenomenon, we implemented a sim-
ple safety net. The ratio of misprediction associated with
E-stride on the ratio of instructions is monitored and main-
tained under 1

1024 through a 16-bit counter (SafeStride in
the code).

2 Enhanced VTAGE

VTAGE was introduced in [5] and is directly derived
from the indirect branch predictor ITTAGE [8].

VTAGE uses the PC and the branch history to predict the
instruction result. VTAGE uses several tables for storing
predictions. Each table is indexed by a different number of
bits of the global branch history, hashed with the PC of the
instruction. The different lengths form a geometric series
[8]. The tables are backed up by a base predictor – a tag-
less Last Value Predictor [2]? which is accessed using the
instruction address only. In VTAGE, an entry of a tagged
component consists of a partial tag, a usefulness counter u
used by the replacement policy, a full 64-bit value val, and
a confidence counter c. At prediction time, all components
are searched in parallel to check for a tag match. The match-
ing component accessed with the longest history provides
the prediction to the pipeline.

2



We describe below the VTAGE features that we modify
in E-VTAGE.

Enhancements over VTAGE

Tags and associativity on the PC indexed component A
difference between value prediction on VTAGE and indirect
branch prediction on ITTAGE is usage. An indirect branch
predictor must deliver a prediction otherwise the processor
stops. The value predictor has to deliver a prediction on
every access. In practice, even when it delivers a value, the
predicted value is used in the pipeline only if it has high
confidence.

The first modification we make over the initial VTAGE
proposition is related to this property. On E-VTAGE, we
implement tags on all the components; moreover we add
associativity to this component (2-way skewed associative).

Reducing the data volume Since only high confidence
predictions are used, many values stored in the predictor are
never used as predictions in the pipeline. As a consequence,
storing 64 bits of data value in each VTAGE entry is a waste
of storage space. The second modification we make over
the initial VTAGE is to initially store only a hash of the
value in the E-VTAGE entry. When the confidence of this
entry reaches a level close to high confidence, we replace
this hash by a pointer to a table where we store effective
64-bit values, i.e. E-VTAGE predicts a pointer in the value
table (Figure 2).

For instance, on the 32KB predictor, each entry features
a 11 bit hash-or-pointer field instead of a 64-bit value field
and we use a 3-way skewed associative 1536-entry 55-bit
value array. In case of a high confidence prediction, the
64-bit value is reconstructed with the index (9-bits) and the
55-bit value. This allows us to implement a more than 6K-
entry E-VTAGE in a 32KB budget instead of a 3K-entry
VTAGE if each entry had featured a complete 64-bit value.

Sharing the E-VTAGE storage space We assume a
banked interleaved E-VTAGE. The overall storage is shared
among all the logical tables of E-VTAGE. The weird num-
bers of banks in the submitted predictors are due to the fixed
storage budget constraints imposed by the championship
rules.

Careful management of confidence As already men-
tioned for E-Stride, one should only use the predicted value
when a performance benefit can be expected in average.
Such a benefit depends on the potential performance ben-
efit on a correct prediction, on the potential performance
loss on a misprediction and the probability of misprediction.
Clearly the tradeoff is dependent on the specific instruction.

Hit	or	miss

Values

Validity

Hash/pointer
confidence

tag

Increasing	history	length

Figure 2. The E-VTAGE predictor

For the submitted E-VTAGE, we use the probabilistic 3-
bit confidence counters as in the initial VTAGE proposition
[5].

We carefully defined the updating policy of confidence
counters on correct predictions and mispredictions depend-
ing on the instruction type, on the provider component, but
also on the actual value. In practice, the average benefit of
predicting a null value (or a small value) is lower than the
average benefit of predicting a large value.

If the provider component is the index based component
then the potential benefit is higher than if it is the provider
is a tagged component. Therefore the probability of incre-
menting the confidence counter varies in a large range from
1 for a large value prediction hitting on the index based ta-
ble and missing the LLC, to 1

256 for a simple ALU operation
with null result and a hit on an history indexed component.
This set of probabilities was also slightly adapted to the pre-
dictor sizes (see the predictor codes).

The algorithm for updating the confidence counter on a
misprediction must also be carefully optimized. If the pre-
diction is high confidence then the counter is not directly
reset, but just decremented by 2 otherwise it is reset. This
provides some hysteresis, thus allowing the use of the pre-
diction quite rapidly after an ”accidental” misprediction.

Allocations on misses and mispredictions TAGE and
ITTAGE [8] rely on (quasi)-systematic allocation of new
entries after a misprediction. On a limited storage budget
E-VTAGE predictor, such a strategy would lead to a huge
majority of allocations of entries that do not reach high con-
fidence before being evicted.

Therefore on misses, we only allocate a new entry on
E-VTAGE with a probability depending on the instruction
type, its latency and its actual result. For instance, on the
32 KB predictor, this probability varies from 1

2 for a large

3



range value load missing on the LLC to 1
2048 for a single

cycle ALU on a null value.
The choice of a victim for replacement is based on a 2-

bit useful field u as on TAGE. u is reset on mispredictions,
but also through a resetting algorithm inspired from the one
implemented for TAGE. The u incrementing algorithm is
also designed to favor the entries that are likely to result in
high benefit predictions (probabilities 1

32 to 1, see code).

Dealing with bursts of mispredictions To avoid burst of
mispredictions, E-VTAGE predictions are not used if an E-
VTAGE misprediction has occurred in the last 128 instruc-
tions. This does not really increase performance, but re-
duces the number of mispredictions.

3 Predictors budgets and characteristics of
the submitted predictors

3.1 The 8KB EVES predictor
The E-VTAGE predictor necessitates 60274 bits:

• a 3-way skewed associative data value table with a to-
tal of 384 entries. Each entry is composed of a 57-bit
value and a 2-bit useful counter: 22656 bits

• a 47 -bank interleaved VTAGE array with 32 entries
on each bank. Each entry consists of a 9 bit hash-or-
pointer, a 11-bit tag, a 2-bit useful counter and a 3-bit
confidence counter, i.e., 25 bits per entry : 37600 bits

• A 10-bit counter TICK to manage the resetting of the
useful counters and a 8-bit counter to date the last mis-
prediction.

A 30-bit global path history is used for E-VTAGE, i.e. the
addresses of 30 taken branches are taken into account.

The E-stride predictor is 3-way skewed associative. It
features a total of 48 entries. Each entry is composed of
a 64-bit last value, a 2-bit useful counter, a stride limited
to 20 bits, a 14-bit tag, a 5-bit confidence counter, and a 1
bit NotFirstOcc indicating that the stride has been set for
the entry since its allocation or the last misprediction. Each
entry features a total of 106 bits, i.e. a total of 5088 bits for
the 48 entries and 16 bits for the SafeStride counter, i.e., a
total of 5104 bits.

The 8KB EVES predictor necessitates a total storage
budget of 65378 bits.

3.2 The 32 KB EVES predictor
The E-VTAGE predictor necessitates 256914 bits:

• A 3-way associative data value table with a total of
1536 entries. Each entry is composed of a 55-bit value
and a 2-bit useful counter: 87552 bits.

• A 49-bank interleaved VTAGE array with 128 entries
on each bank. Each entry consists of a 11-bit hash-or-
pointer, a 11-bit tag, a 2-bit useful counter and a 3-bit
confidence counter, i.e., 27 bits per entry : 169344 bits.

• A 10-bit counter TICK to manage the resetting of the
useful counters and a 8-bit counter to date the last mis-
prediction.

A 127-bit global path history is used for E-VTAGE.
The E-stride predictor is the same as the one for the 8KB

configuration, i.e., 5104 bits.
The 64KB EVES predictor necessitates a total storage

budget of 262108 bits.

3.3 The unlimited size EVES predictor
We use quasi-illimited size predictor components with

millions of entries and a 511-bit global path history for E-
VTAGE.

4 Performance analysis of the EVES predic-
tor

On the distributed traces, the EVES predictors with 8KB,
32KB and unlimited storage budgets achieve respectively
4.026 IPC, 4.202 IPC and 4.408 IPC (geometric mean),
i.e., respectively 25.3%, 30.8% and 37.3 % improvement
over the 3.211 IPC achieved without value prediction.

E-Stride versus E-VTAGE We also simulated indepen-
dently E-VTAGE and E-Stride.

The 48-entry E-Stride predictor achieves 16.1 % perfor-
mance improvement by itself. This is particularly impres-
sive for such a small structure (less than a 1 Kbytes !!).

The E-VTAGE components from the 8KB and 32KB
EVES achieve 7.0% and 11.2 % performance improvement
respectively.

In practice, E-VTAGE and E-Stride do not predict the
same instructions. Interestingly, E-VTAGE is able to pre-
dict some instructions with stride behavior and short se-
quences that E-Stride does not capture. An early (and more
complex version) of E-Stride was capturing these instruc-
tions, but was necessitating regular behavior (i.e., loops
with constant number of iterations). In practice, the ben-
efits of E-VTAGE and E-Stride are slightly more than mul-
tiplicative (1.112*1.161= 1.291, slightly less than 1.308).

E-Stride and E-VTAGE do not perform well on the same
set of traces. For instance, on the 32 KB predictor, among
the 135 traces, E-Stride achieves more than 10 % IPC im-
provement on 41 traces, E-VTAGE achieves the same on
40 traces, but only 19 traces belong to both sets. EVES
achieves more than 10 % improvement on 71 traces, more
than 20 % on 54 traces and more than 100 % on 15 traces
with a peak at 1090 % on compute int 45.

4



In practice, the E-Stride component is sometimes able
to predict the results of loads that miss the L2 cache and
sometimes the LLC cache. The coverage of the 48-entry
E-Stride component is extremely dependent on the traces
varying from 0 to up to 56.4 % with an arithmetic mean of
only 3.4 %.

The coverage of the E-VTAGE component is much
higher (18.7 % in average for the 32 KB predictor, 45.3 %
for the unlimited size predictor) with several traces experi-
encing coverage higher than 60 % (up to 77 %). However
this higher coverage does not translate in the same perfor-
mance benefit per used prediction as on the E-Stride pre-
dictor, since the E-VTAGE predicts much less high reward
values (i.e, LLC misses or L2 misses ) than the E-Stride
predictor.

Using the number of inflight occurrences on the E-Stride
predictor Relying on the number of inflight occurrences
to compute the prediction rather than on the last (poten-
tially) predicted value allows to increase the number of pre-
dictions used in the pipeline on the stride predictor. Our
simulation showed that this improves the performance by
about 2 %.

Impact of confidence updating policy and entry alloca-
tion policy To illustrate the benefit of using differentiated
probabilities, we run the exact same configuration as EVES,
but with fixed confidence update probability and fixed entry
allocation probability ( 1

32 ). This resulted in a performance
of 3.710 IPC instead of 4.202 IPC on the 32 KB predictor.

Should we predict only loads? We run simulations with
predicting only loads. This reduces the performance im-
provement by 2.7 % for the unlimited configuration, by
1.3% for the 32 KB configuration and 1.5 % for the 8KB
configuration. This confirms that most of benefit from value
prediction can be obtained from predicting only load results
as pointed out in [9].

5 A few remarks on the ChampionShip
framework

The reader should not assume that since the simulation
framework is an idealistic framework, the potential benefits
of value prediction are systematically overestimated in this
study.

We would like to point out two features that lead to un-
derestimate the potential benefits of value prediction by the
Championship framework.

First the framework assumes that after an instruction
triggering a value misprediction, no instruction is fetched
and speculatively executed. The instructions that follow the
mispredicted instruction are delayed till the commit of the
mispredicted instruction. On an effective hardware imple-
mentation, some of these instructions would have already

been executed at the commit of the mispredicted instruction;
particularly load instructions missing the memory hierarchy
could have already triggered the fetch of the data from the
main memory or the LLC. Thus the simulation framework
overestimates the penalty on some mispredictions.

Second, the framework is not providing the precise Op-
Code of the instructions. With the EOLE architecture [4],
it has been shown that a large portion of instruction results
could be computed in the front-end from computed or pre-
dicted registers; thus increasing considerably the number of
registers that can be already computed/predicted before en-
tering the execution core. For instance, assuming the 32
KB EVES predictor, 40 % of the register results could have
been computed/predicted against 22 % predicted with the
EVES predictor.

6 Summary

EVES combines two predictors E-VTAGE and E-Stride
addressing two different instruction behaviors. The E-Stride
predictor has no need for the speculative result of the last
occurrence of the instruction, but can rely on the last com-
mitted value and the number of inflight instances of the in-
struction in the speculative window. E-VTAGE is a stor-
age effective VTAGE predictor which stores full 64-bit val-
ues only when they become very likely to be used in the
pipeline.

For these two predictor components, we have developed
an efficient approach for managing the prediction uses in the
pipeline and and for allocation/eviction of predictor entries.
We differentiate the probabilities of updating confidence
counters and useful counters and the probabilities of predic-
tor insertions depending on instruction type, instruction la-
tency and instruction result value. On an effective hardware
implementation, these probabilities will have to be carefully
designed, depending on the management of mispredictions
(at execution or at commit), the effective characteristics of
the pipeline (execution width, . . . ), the branch predictor be-
havior, the criticality of the instruction, the memory level
parallelism, . . . .

Despites the limited information (instruction type, actual
latency, actual value) that was available from the simulation
framework, the submitted EVES predictors demonstrate a
large potential performance impact of value prediction with
relatively simple prediction algorithms and limited storage
budget.

This study has been focused on limited size predictors.
Therefore we have only explored the limits of value pre-
diction with very large storage budgets with EVES. Other
prediction schemes could be considered to supplement E-
Stride and E-VTAGE such as predicting load addresses [9]
or Finite Context Methods [7].

5



References

[1] Timothy H. Heil, Zak Smith, and James E. Smith. Im-
proving branch predictors by correlating on data values.
In MICRO, 1999.

[2] M.H. Lipasti and J.P. Shen. Exceeding the dataflow
limit via value prediction. In Proceedings of the Annual
International Symposium on Microarchitecture, pages
226–237. IEEE Computer Society, 1996.

[3] A. Mendelson and F. Gabbay. Speculative execution
based on value prediction. Technical Report TR1080,
Technion-Israel Institute of Technology, 1997.

[4] Arthur Perais and André Seznec. EOLE: Paving the
Way for an Effective Implementation of Value Predic-
tion. In International Symposium on Computer Archi-
tecture, volume 42, pages 481 – 492, Minneapolis, MN,
United States, June 2014. ACM/IEEE.

[5] Arthur Perais and André Seznec. Practical data value
speculation for future high-end processors. In Inter-
national Symposium on High Performance Computer
Architecture, pages 428 – 439, Orlando, FL, United
States, February 2014. IEEE.

[6] N. Riley and C. B. Zilles. Probabilistic counter updates
for predictor hysteresis and stratification. In Proceed-
ings of the International Symposium on High Perfor-
mance Computer Architecture, pages 110–120, 2006.

[7] Y. Sazeides and J.E. Smith. The predictability of
data values. In Proceedings of the Annual Interna-
tional Symposium on Microarchitecture, pages 248–
258. IEEE, 1997.

[8] A. Seznec and P. Michaud. A case for (partially) tagged
geometric history length branch prediction. Journal of
Instruction Level Parallelism, 8:1–23, 2006.

[9] Rami Sheikh, Harold W. Cain, and Raguram
Damodaran. Load value prediction via path-based ad-
dress prediction: avoiding mispredictions due to con-
flicting stores. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 2017, Cambridge, MA, USA, October
14-18, 2017, pages 423–435, 2017.

6


