G. Adomavicius and A. Tuzhilin, Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions, IEEE transactions on knowledge and data engineering, vol.17, issue.6, pp.734-749, 2005.

M. Akhmatnurov and D. I. Ignatov, Context-aware recommender system based on boolean matrix factorisation, CLA. pp, pp.99-110, 2015.

F. Alqadah, C. K. Reddy, J. Hu, and H. F. Alqadah, Biclustering neighborhood-based collaborative filtering method for top-n recommender systems, Knowledge and Information Systems, vol.44, issue.2, pp.475-491, 2015.

A. Ben-dor, B. Chor, R. Karp, and Z. Yakhini, Discovering local structure in gene expression data: the order-preserving submatrix problem, Journal of computational biology, vol.10, issue.3-4, pp.373-384, 2003.

P. Boucher-ryan and D. Bridge, Collaborative recommending using formal concept analysis, Knowledge-Based Systems, vol.19, issue.5, pp.309-315, 2006.

V. Codocedo, G. Bosc, M. Kaytoue, J. F. Boulicaut, and A. Napoli,

V. Codocedo and A. Napoli, Lattice-based biclustering using partition pattern structures, Proceedings of the Twenty-first European Conference on Artificial Intelligence, pp.213-218, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01095865

V. Codocedo-henríquez, ContributionsàContributionsà l'indexation etàet`età la récupération d'information utilisant l'analyse formelle de concepts, 2015.

B. Ganter and S. O. Kuznetsov, Pattern structures and their projections, International Conference on Conceptual Structures, pp.129-142, 2001.
DOI : 10.1007/3-540-44583-8_10

B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foundations, 1999.

D. I. Ignatov, A. Y. Kaminskaya, N. Konstantinova, A. Malyukov, and J. Poelmans, FCA-based recommender models and data analysis for crowdsourcing platform Witology, International Conference on Conceptual Structures, pp.287-292, 2014.
DOI : 10.1007/978-3-319-08389-6_24

D. I. Ignatov, S. O. Kuznetsov, and J. Poelmans, Concept-Based Biclustering for Internet Advertisement, 2012 IEEE 12th International Conference on Data Mining Workshops, pp.123-130, 2009.

D. I. Ignatov, J. Poelmans, and V. Zaharchuk, Recommender system based on algorithm of bicluster analysis RecBi, 2012.

D. I. Ignatov and B. W. Watson, Towards a unified taxonomy of biclustering methods, 2017.

M. Kaytoue, S. O. Kuznetsov, J. Macko, and A. Napoli, Biclustering meets triadic concept analysis, Annals of Mathematics and Artificial Intelligence, vol.70, issue.1-2, pp.55-79, 2014.
DOI : 10.1007/s10472-013-9379-1

URL : https://hal.archives-ouvertes.fr/hal-01101143

K. J. Kim and H. Ahn, Recommender systems using cluster-indexing collaborative filtering and social data analytics, International Journal of Production Research, vol.55, issue.17, pp.5037-5049, 2017.
DOI : 10.1080/00207543.2017.1287443

J. Lanir, T. Kuflik, E. Dim, A. J. Wecker, and O. Stock, The influence of a locationaware mobile guide on museum visitors' behavior, Interacting with Computers, vol.25, issue.6, pp.443-460, 2013.

S. C. Madeira and A. L. Oliveira, Biclustering algorithms for biological data analysis: a survey, IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), vol.1, issue.1, pp.24-45, 2004.
DOI : 10.1109/tcbb.2004.2

G. Pio, M. Ceci, D. Malerba, and D. D'elia, ComiRNet: a web-based system for the analysis of miRNA-gene regulatory networks, BMC Bioinformatics, vol.16, issue.9, p.7, 2015.

J. Wang and J. Han, BIDE: Efficient mining of frequent closed sequences, Proceedings. 20th International Conference on, pp.79-90, 2004.

X. Yan, J. Han, and R. Afshar, CloSpan: Mining: Closed sequential patterns in large datasets, Proceedings of the 2003 SIAM international conference on data mining, pp.166-177, 2003.
DOI : 10.1137/1.9781611972733.15