T. Akerstrom, K. Vedel, J. Needham, P. Hojman, V. Furuholt et al., A mathematical model of sulphite chemical aggression of limestones with high permeability. Part I. Modeling and qualitative analysis, Biochemistry and Biophysics Reports Alì G, vol.69, pp.109-122, 2007.

P. M. Altrock, L. L. Liu, and F. Michor, The mathematics of cancer: integrating quantitative models, Nature Reviews Cancer, vol.15, issue.12, pp.730-745, 2015.
DOI : 10.1038/nrc4029

D. Ambrosi, Infiltration through deformable porous media, ZAMM Zeitschrift für Angewandte Mathematik und Mechanik Journal of Applied Mathematics and Mechanics, vol.82, issue.2, pp.115-124, 2002.
DOI : 10.1002/1521-4001(200202)82:2<115::aid-zamm115>3.0.co;2-4

D. Ambrosi, R. Lancellotta, and L. Preziosi, Mathematical models for soil consolidation problems : a state of the art report, of Modeling and Mechanics of Granular and Porous Materials pp, pp.159-180, 2002.

F. André and L. M. Mir, DNA electrotransfer: its principles and an updated review of its therapeutic applications, Gene therapy, vol.11, issue.1, pp.33-42, 2004.

S. Astanin and L. Preziosi, Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition, and Therapy, Birkhäuser Boston, chap Multiphase Models of Tumour Growth, pp.1-31, 2008.

Y. H. Bae, R. J. Mrsny, and K. Park, Cancer targeted drug delivery, 2013.

S. I. Barry and G. K. Aldis, Unsteady-Flow Induced Deformation of Porous Materials, International Journal of Non-Linear Mechanics, vol.26, issue.5, pp.687-699, 1991.
DOI : 10.1016/0020-7462(91)90020-t

S. I. Barry and G. N. Mercer, Flow and deformation in poroelasticity. I. Unusual exact solutions, Mathematical and Computer Modelling, vol.30, issue.9, pp.23-29, 1999.

P. J. Basser, Interstitial pressure, volume, and flow during infusion into brain tissue, Microvascular research, vol.44, issue.2, pp.143-165, 1992.
DOI : 10.1016/0026-2862(92)90077-3

URL : http://stbb.nichd.nih.gov/pdf/Infusion_Interstitial_Pressure.pdf

R. C. Batra, Linear constitutive relations in isotropic finite elasticity, Journal of Elasticity The Physical and Mathematical Science of Solids, vol.51, issue.3, pp.243-245, 1998.
DOI : 10.1016/s0020-7462(00)00057-3

L. T. Baxter and R. K. Jain, Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection, 1989.
DOI : 10.1016/0026-2862(91)90003-t

J. Bear and Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media, Journal of applied physics, vol.12, issue.2, p.155, 1941.

A. Bottaro and T. Ansaldi, On the infusion of a therapeutic agent into a solid tumor modeled as a poroelastic medium, Journal of biomechanical engineering, vol.134, issue.8, p.501, 2012.

Y. Boucher, L. T. Baxter, and R. K. Jain, Interstitial Pressure Gradients in Tissue-isolated and Subcutaneous Tumors: Implications for Therapy, Cancer research, vol.50, issue.15, pp.4478-4484, 1990.

R. M. Bowen, Incompressible porous media models by use of the theory of mixtures, International Journal of Engineering Science, vol.18, issue.9, pp.1129-1148, 1980.

C. Brekken and C. De-lange-davies, Hyaluronidase reduces the interstitial fluid pressure in solid tumours in a non-linear concentration-dependent manner, Cancer letters, vol.131, issue.1, pp.65-70, 1998.

B. A. Buhren, H. Schrumpf, N. P. Hoff, E. Bölke, S. Hilton et al., Hyaluronidase: from clinical applications to molecular and cellular mechanisms, European journal of medical research, vol.21, issue.1, p.5, 2016.

M. F. Bureau, S. Naimi, R. T. Ibad, and J. Seguin, Intramuscular plasmid DNA electrotransfer: biodistribution and degradation, Biochimica et Biophysica Acta, 2004.

D. Chapelle and P. Moireau, General coupling of porous flows and hyperelastic formulations. from thermodynamics principles to energy balance and compatible time schemes, European Journal of Mechanics-B/Fluids, vol.46, pp.82-96, 2014.
URL : https://hal.archives-ouvertes.fr/inria-00520612

M. Chaplain, L. Graziano, and L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development, Mathematical medicine and biology : a journal of the IMA, vol.23, issue.3, pp.197-229, 2006.

Z. Chen, G. Huan, and Y. Ma, Computational methods for multiphase flows in porous media, Computational Science & Engineering, Society for Industrial and Applied Mathematics (SIAM), 2006.

I. K. Choi, R. Strauss, M. Richter, C. O. Yun, and A. Lieber, Strategies to increase drug penetration in solid tumors, Frontiers in oncology, vol.3, p.193, 2013.

G. G. Cleveland, D. C. Chang, C. F. Hazlewood, and H. E. Rorschach, Nuclear magnetic resonance measurement of skeletal muscle: anisotrophy of the diffusion coefficient of the intracellular water, Biophysical journal, vol.16, issue.9, pp.1043-1053, 1976.

B. M. Damon, A. Buck, and Z. Ding, Diffusion-tensor mri-based skeletal muscle fiber tracking. Imaging in medicine Delingette H (1998) Toward realistic soft-tissue modeling in medical simulation, Proceedings of the IEEE Deville M, 2011.

L. Eikenes, Ø. S. Bruland, C. Brekken, and D. Cdl, Collagenase increases the transcapillary pressure gradient and improves the uptake and distribution of monoclonal antibodies in human osteosarcoma xenografts, Cancer research, vol.64, issue.14, pp.4768-4773, 2004.

L. Eikenes, M. Tari, I. Tufto, Ø. S. Bruland, and C. De-lange-davies, Hyaluronidase induces a transcapillary pressure gradient and improves the distribution and uptake of liposomal doxorubicin (Caelyx) in human osteosarcoma xenografts, British journal of cancer, vol.93, issue.1, pp.81-88, 2005.

L. Eikenes, I. Tufto, E. A. Schnell, A. Bjørkøy, and C. De-lange-davies, Effect of collagenase and hyaluronidase on free and anomalous diffusion in multicellular spheroids and xenografts, Anticancer research, vol.30, issue.2, pp.359-368, 2010.

J. M. Escoffre, J. Teissie, and M. P. Rols, Gene transfer: how can the biological barriers be overcome?, The Journal of membrane biology, vol.236, issue.1, pp.61-74, 2010.

X. Feng, Z. Ge, and Y. Li, Multiphysics Finite Element Methods for a Poroelasticity Model, 2014.

C. Frantz, K. M. Stewart, and V. M. Weaver, The extracellular matrix at a glance, Journal of cell science, vol.123, pp.4195-4200, 2010.

Y. C. Fung, Biomechanics: mechanical properties of living tissues, 1981.

L. Fusi, A. Farina, and D. Ambrosi, Mathematical Modeling of a Solid-Liquid Mixture with, Mass Exchange Between Constituents. Mathematics and Mechanics of Solids, vol.11, issue.6, pp.575-595, 2006.

S. Ganesh, M. Gonzalez-edick, D. Gibbons, M. Van-roey, and K. Jooss, Intratumoral coadministration of hyaluronidase enzyme and oncolytic adenoviruses enhances virus potency in metastatic tumor models, Clinical cancer research : an official journal of the American Association for Cancer Research, vol.14, issue.12, pp.3933-3941, 2008.

K. S. Girish and K. Kemparaju, The magic glue hyaluronan and its eraser hyaluronidase: a biological overview, Life sciences, vol.80, issue.21, pp.1921-1943, 2007.

C. Giverso, M. Scianna, A. Grillo, H. Niekisch, C. Rivera et al., Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex, bruno Boley 90th Anniversary Issue Happel MFK, vol.68, pp.2800-2805, 2014.

F. Hecht, New development in FreeFem++, Journal of numerical mathematics, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01476313

R. K. Jain and L. T. Baxter, Mechanisms of Heterogeneous Distribution of Monoclonal Antibodies and Other Macromolecules in Tumors: Significance of Elevated Interstitial Pressure, Cancer research, vol.48, pp.7022-7032, 1988.

L. Juhlin, Reconstitution of dermal connective tissue barrier after testicular or bacterial hyaluronidase, Acta Pharmacologica et Toxicologica, vol.12, issue.1, pp.96-108, 1956.

R. Juliano, Challenges to macromolecular drug delivery, Biochemical Society transactions, vol.35, pp.41-43, 2007.
DOI : 10.1042/bst0350041

N. Kohno, T. Ohnuma, and P. Truog, Effects of hyaluronidase on doxorubicin penetration into squamous carcinoma multicellular tumor spheroids and its cell lethality, Journal of cancer research and clinical oncology, vol.120, issue.5, pp.293-297, 1994.
DOI : 10.1007/bf01236386

G. E. Lang, D. Vella, S. L. Waters, and A. Goriely, Mathematical modelling of blood-brain barrier failure and oedema. Mathematical medicine and biology : a journal of the IMA, 2016.
DOI : 10.1093/imammb/dqw009

M. Leguèbe, M. Notarangelo, M. Twarogowska, R. Natalini, and C. Poignard, Mathematical model for transport of dna plasmids from the external medium up to the nucleus by electroporation, Mathematical Biosciences, vol.285, pp.1-13, 2017.

G. Lemon, J. R. King, H. M. Byrne, O. E. Jensen, and K. M. Shakesheff, Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory, Journal of Mathematical Biology, vol.52, issue.5, pp.571-594, 2006.
DOI : 10.1007/s00285-005-0363-1

S. F. Levinson, Ultrasound propagation in anisotropic soft tissues: the application of linear elastic theory, Journal of biomechanics, vol.20, issue.3, pp.251-260, 1987.

V. B. Lokeshwar and M. G. Selzer, Hyalurondiase: Both a tumor promoter and suppressor, Seminars in Cancer Biology, vol.18, issue.4, pp.281-287, 2008.
DOI : 10.1016/j.semcancer.2008.03.008

URL : http://europepmc.org/articles/pmc2580740?pdf=render

M. Magzoub, S. Jin, and A. S. Verkman, Enhanced macromolecule diffusion deep in tumors after enzymatic digestion of extracellular matrix collagen and its associated proteoglycan decorin, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.22, issue.1, pp.276-284, 2008.

C. O. Mcatee, J. J. Barycki, and M. A. Simpson, Chapter one-emerging roles for hyaluronidase in cancer metastasis and therapy, Hyaluronan Signaling and Turnover, vol.123, pp.1-34, 2014.

A. I. Minchinton and I. F. Tannock, Fluid transport and mechanical properties of articular cartilage: a review, Nature Reviews Cancer Mow VC, vol.17, issue.5, pp.377-394, 1984.

M. A. Murad and A. Loula, Improved accuracy in finite element analysis of Biot's consolidation problem, Computer Methods in Applied Mechanics and Engineering, vol.95, issue.3, pp.359-382, 1992.

M. A. Murad and A. Loula, On stability and convergence of finite element approximations of Biot's consolidation problem, International Journal for Numerical Methods in Engineering, vol.37, issue.4, pp.645-667, 1994.

H. Namazi, V. V. Kulish, A. Wong, and S. Nazeri, Mathematical Based Calculation of Drug Penetration Depth in Solid Tumors, BioMed research international, vol.8437, p.247, 2016.

P. A. Netti, L. T. Baxter, Y. Boucher, R. Skalak, and R. K. Jain, Macro-and microscopic fluid transport in living tissues: Application to solid tumors, AIChE Journal, vol.43, issue.3, pp.818-834, 1997.
DOI : 10.1002/aic.690430327

P. A. Netti, D. A. Berk, M. A. Swartz, A. J. Grodzinsky, and R. K. Jain, Role of extracellular matrix assembly in interstitial transport in solid tumors, Cancer research, vol.60, issue.9, pp.2497-2503, 2000.

P. J. Phillips and M. F. Wheeler, Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach, Computational Geosciences, 2009.

K. Pietras, A. Östman, M. Sjöquist, E. Buchdunger, R. K. Reed et al., Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors, Cancer research, vol.61, issue.7, pp.2929-2934, 2001.

L. Preziosi and A. Tosin, Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications, Journal of Mathematical Biology, vol.58, issue.4-5, pp.625-656, 2008.
DOI : 10.1007/s00285-008-0218-7

F. A. Radu, I. S. Pop, A. Muntean, and I. Berre, Simulation of reactive flow in porous media with variable porosity as appears when modelling concrete carbonation, 11th World Congress on Computational Mechanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid Dynamics (ECFD VI), 2007.

D. Royer, J. L. Gennisson, T. Deffieux, and M. Tanter, On the elasticity of transverse isotropic soft tissues (L), The Journal of the Acoustical Society of America, vol.129, issue.5, pp.2757-2762, 2011.

R. Sacco, P. Causin, C. Lelli, and M. T. Raimondi, A poroelastic mixture model of mechanobiological processes in biomass growth: theory and application to tissue engineering, Meccanica, vol.52, issue.14, pp.3273-3297, 2017.

J. D. Schertzer, D. R. Plant, and G. S. Lynch, Optimizing plasmid-based gene transfer for investigating skeletal muscle structure and function, Molecular Therapy, vol.13, issue.4, 2006.
DOI : 10.1016/j.ymthe.2005.09.019

URL : https://doi.org/10.1016/j.ymthe.2005.09.019

E. Signori, K. Wells, V. Fazio, and D. Wells, Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase-increased expression with reduced muscle damage, Gene Therapy, vol.8, pp.1264-1270, 2001.

M. Soltani and P. Chen, Effect of tumor shape and size on drug delivery to solid tumors, Journal of biological engineering Spiegelman M, vol.247, issue.1, pp.17-38, 1993.

M. Spiegelman, Flow in deformable porous media. Part 2 Numerical analysis-the relationship between shock waves and solitary waves, Journal of Fluid Mechanics, vol.247, issue.1, pp.39-63, 1993.

B. St-croix, S. Man, and R. S. Kerbel, Reversal of intrinsic and acquired forms of drug resistance by hyaluronidase treatment of solid tumors, Cancer letters, vol.131, issue.1, pp.35-44, 1998.

K. H. Støverud, M. Darcis, R. Helmig, and S. M. Hassanizadeh, Modeling Concentration Distribution and Deformation During Convection-Enhanced Drug Delivery into Brain Tissue, Transport in Porous Media, vol.92, issue.1, pp.119-143, 2011.

R. M. Sutherland, H. A. Eddy, B. Bareham, K. Reich, and D. Vanantwerp, Resistance to adriamycin in multicellular spheroids, International journal of radiation oncology, vol.5, issue.8, pp.1225-1230, 1979.
DOI : 10.1016/0360-3016(79)90643-6

M. A. Swartz and M. E. Fleury, Interstitial flow and its effects in soft tissues, Annual review of biomedical engineering, vol.9, pp.229-256, 2007.
DOI : 10.1146/annurev.bioeng.9.060906.151850

O. Trédan, C. M. Galmarini, K. Patel, and I. F. Tannock, Drug resistance and the solid tumor microenvironment, Journal of the National Cancer Institute, vol.99, pp.1441-1454, 2007.

S. R. Ward and R. L. Lieber, Density and hydration of fresh and fixed human skeletal muscle, Journal of biomechanics, vol.38, issue.11, pp.2317-2320, 2005.
DOI : 10.1016/j.jbiomech.2004.10.001

C. J. Whatcott, H. Han, R. G. Posner, G. Hostetter, V. Hoff et al., Targeting the tumor microenvironment in cancer: why hyaluronidase deserves a second look, Cancer discovery, vol.1, issue.4, pp.291-296, 2011.

J. A. Wolff, R. W. Malone, P. Williams, W. Chong, G. Acsadi et al., Direct gene transfer into mouse muscle in vivo, Science, vol.4949, pp.1465-1468, 1990.
DOI : 10.1126/science.1690918

L. Wu and J. Ding, Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly (D, L-lactide-co-glycolide) scaffolds for tissue engineering, Journal of Biomedical Materials Research Part A, 2005.

W. Yao, Y. Li, and G. Ding, Interstitial fluid flow: the mechanical environment of cells and foundation of meridians. Evidence-based complementary and alternative medicine : eCAM, vol.853, p.516, 2012.

A. M. Zöllner, O. J. Abilez, M. Böl, and E. Kuhl, Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis, PloS one, vol.7, issue.10, p.661, 2012.