J. Sjölund, D. Forsberg, M. Andersson, and H. Knutsson, Generating patient specific pseudo-CT of the head from MR using atlas-based regression, Phys Med Biol, vol.60, issue.2, p.825, 2015.

J. A. Dowling, J. Sun, P. Pichler, D. Rivest-hénault, S. Ghose et al., Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences, Int J Radiat Oncol Biol Phys, vol.93, issue.5, pp.1144-1153, 2015.

H. Arabi, N. Koutsouvelis, M. Rouzaud, R. Miralbell, and H. Zaidi, Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning, Phys Med Biol, vol.61, issue.17, pp.6531-6552, 2016.

N. Burgos, F. Guerreiro, J. Mcclelland, B. Presles, M. Modat et al., Iterative framework for the joint segmentation and CT synthesis of MR images: application to MRI-only radiotherapy treatment planning, Phys Med Biol, vol.62, issue.11, pp.4237-4253, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01556656

X. Han, MR-based synthetic CT generation using a deep convolutional neural network method, Med Phys, vol.44, issue.4, pp.1408-1419, 2017.

C. Rasch, R. Steenbakkers, and M. Van-herk, Target definition in prostate, head, and neck, Semin Radiat Oncol, vol.15, issue.3, pp.136-145, 2005.

T. Nyholm and J. Jonsson, Counterpoint: Opportunities and challenges of a magnetic resonance imaging-only radiotherapy work flow, Semin Radiat Oncol, vol.24, issue.3, pp.175-180, 2014.

A. M. Owrangi, P. B. Greer, and C. K. Glide-hurst, MRI-only treatment planning: benefits and challenges, Phys Med Biol, vol.63, issue.5, pp.5-6, 2018.

E. Johnstone, J. J. Wyatt, A. M. Henry, S. C. Short, D. Sebag-montefiore et al., Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging-only radiation therapy, Int J Radiat Oncol Biol Phys, vol.100, issue.1, pp.199-217, 2018.

J. M. Edmund and T. Nyholm, A review of substitute CT generation for MRI-only radiation therapy, Radiat Oncol, vol.12, issue.1, p.28, 2017.

A. Mehranian, H. Arabi, and H. Zaidi, Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities, Med Phys, vol.43, issue.3, pp.1130-1155, 2016.

A. L. Chin, A. Lin, S. Anamalayil, and B. K. Teo, Feasibility and limitations of bulk density assignment in MRI for head and neck IMRT treatment planning, J Appl Clin Med Phys, vol.15, issue.5, pp.100-111, 2014.

V. Keereman, Y. Fierens, T. Broux, Y. De-deene, M. Lonneux et al., MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences, J Nucl Med, vol.51, issue.5, pp.812-818, 2010.

J. M. Edmund, H. M. Kjer, K. Van-leemput, R. H. Hansen, J. A. Andersen et al., A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times, Phys Med Biol, vol.59, issue.23, p.7501, 2014.

F. Wiesinger, M. Bylund, J. Yang, S. Kaushik, D. Shanbhag et al., Zero TE-based pseudo-CT image conversion in the head and its application in PET/MR attenuation correction and MR-guided radiation therapy planning, Magn Reson Med, 2018.

C. M. Rank, C. Tremmel, N. Hunemohr, A. M. Nagel, O. Jakel et al., MRI-based treatment plan simulation and adaptation for ion radiotherapy using a classification-based approach, Radiat Oncol, vol.8, p.51, 2013.

H. Arabi and H. Zaidi, One registration multi-atlas-based pseudo-CT generation for attenuation correction in PET/MRI, Eur J Nucl Med Mol Imaging, vol.43, issue.11, pp.2021-2035, 2016.

N. Burgos, M. Cardoso, K. Thielemans, M. Modat, J. Schott et al., Attenuation correction synthesis for hybrid PET-MR scanners: Application to brain studies, IEEE Trans Med Imaging, vol.33, issue.12, pp.2332-2341, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01827217

T. Huynh, Y. Gao, J. Kang, L. Wang, P. Zhang et al., Estimating CT image from MRI data using structured random forest and auto-context model, IEEE Trans Med Imaging, vol.35, issue.1, pp.174-183, 2016.
DOI : 10.1109/tmi.2015.2461533

URL : http://europepmc.org/articles/pmc4703527?pdf=render

A. P. Leynes, J. Yang, F. Wiesinger, S. S. Kaushik, D. D. Shanbhag et al., Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI, J Nucl Med, vol.59, issue.5, pp.852-858, 2018.

N. Tyagi, S. Fontenla, J. Zhang, M. Cloutier, M. Kadbi et al., Dosimetric and workflow evaluation of first commercial synthetic CT software for clinical use in pelvis, Phys Med Biol, vol.62, issue.8, pp.2961-2975, 2017.

F. Guerreiro, N. Burgos, A. Dunlop, K. Wong, I. Petkar et al., Evaluation of a multi-atlas CT synthesis approach for MRI-only radiotherapy treatment planning, Phys Med, vol.35, pp.7-17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01827195

J. A. Dowling, J. Lambert, J. Parker, O. Salvado, J. Fripp et al., An Atlas-Based Electron Density Mapping Method for Magnetic Resonance Imaging (MRI)-Alone Treatment Planning and Adaptive MRI-Based Prostate Radiation Therapy, Int J Radiat Oncol Biol Phys, vol.83, issue.1, pp.5-11, 2012.
DOI : 10.1016/j.ijrobp.2011.11.056

E. Persson, C. Gustafsson, F. Nordstrom, M. Sohlin, A. Gunnlaugsson et al., MROPERA: A multicenter/multivendor validation of magnetic resonance imaging-only prostate treatment planning using synthetic computed tomography images, Int J Radiat Oncol Biol Phys, vol.99, issue.3, pp.692-700, 2017.

C. Siversson, F. Nordstrom, T. Nilsson, T. Nyholm, J. Jonsson et al., Technical Note: MRI only prostate radiotherapy planning using the statistical decomposition algorithm, Med Phys, vol.42, issue.10, pp.6090-6097, 2015.
DOI : 10.1118/1.4931417

T. Nyholm, S. Svensson, S. Andersson, J. Jonsson, M. Sohlin et al., MR and CT data with multi observer delineations of organs in the pelvic area-part of the Gold Atlas project, Med Phys, 2018.

J. Kim, K. Garbarino, L. Schultz, K. Levin, B. Movsas et al., Dosimetric evaluation of synthetic CT relative to bulk density assignment-based magnetic resonance-only approaches for prostate radiotherapy, Radiat Oncol, vol.10, issue.1, p.239, 2015.

J. Uh, T. E. Merchant, Y. Li, X. Li, and C. Hua, MRI-based treatment planning with pseudo CT generated through atlas registration, Med Phys, vol.41, issue.5, pp.51711-051718, 2014.
DOI : 10.1118/1.4873315

URL : http://europepmc.org/articles/pmc5148041?pdf=render

J. M. Wolterink, A. M. Dinkla, M. H. Savenije, P. R. Seevinck, C. A. Van-den-berg et al., Deep MR to CT synthesis using unpaired data. International Workshop on Simulation and Synthesis in Medical Imaging, pp.14-23, 2017.
DOI : 10.1007/978-3-319-68127-6_2

URL : http://arxiv.org/pdf/1708.01155

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. Setio, F. Ciompi et al., A survey on deep learning in medical image analysis, Med Image Anal, vol.42, pp.60-88, 2017.

H. Emami, M. Dong, S. P. Nejad-davarani, and C. Glide-hurst, Generating Synthetic CT s from Magnetic Resonance Images using Generative Adversarial Networks, Med Phys, 2018.
DOI : 10.1002/mp.13047

S. S. Chandra, J. A. Dowling, K. Shen, P. Raniga, J. P. Pluim et al., Patient specific prostate segmentation in 3-D magnetic resonance images, IEEE Trans Med Imaging, vol.31, issue.10, pp.1955-1964, 2012.
DOI : 10.1109/tmi.2012.2211377

X. Artaechevarria, A. Munoz-barrutia, and C. Ortiz-de-solorzano, Combination strategies in multiatlas image segmentation: application to brain MR data, IEEE Trans Med Imaging, vol.28, issue.8, pp.1266-1277, 2009.
DOI : 10.1109/tmi.2009.2014372

A. Akbarzadeh, D. Gutierrez, A. Baskin, M. R. Ay, A. Ahmadian et al., Evaluation of whole-body MR to CT deformable image registration, J Appl Clin Med Phys, vol.14, issue.4, pp.238-253, 2013.
DOI : 10.1120/jacmp.v14i4.4163

URL : https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1120/jacmp.v14i4.4163

P. Kovesi, Phase congruency: a low-level image invariant, Psychological research, vol.64, issue.2, pp.136-148, 2000.
DOI : 10.1007/s004260000024

O. Ronneberger, P. Fischer, T. Brox, and U. , Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention ConferenceMICCAI 2015, pp.234-241, 2015.
DOI : 10.1007/978-3-319-24574-4_28

URL : http://arxiv.org/pdf/1505.04597

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition. ARXIV, 2014.

J. G. Sled, A. P. Zijdenbos, and A. C. Evans, A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Trans Med Imaging, vol.17, issue.1, pp.87-97, 1998.

J. H. Jonsson, A. Johansson, K. Soderstrom, T. Asklund, and T. Nyholm, Treatment planning of intracranial targets on MRI derived substitute CT data, Radiother Oncol, vol.108, issue.1, pp.118-122, 2013.

A. U. Pathmanathan, N. J. Van-as, L. G. Kerkmeijer, J. Christodouleas, C. A. Lawton et al., Magnetic Resonance Imaging-Guided Adaptive Radiation Therapy: A "Game Changer" for Prostate Treatment?, Int J Radiat Oncol Biol Phys, vol.100, issue.2, pp.361-373, 2018.

J. H. Jonsson, M. M. Akhtari, M. G. Karlsson, A. Johansson, T. Asklund et al., Accuracy of inverse treatment planning on substitute CT images derived from MR data for brain lesions, Radiother Oncol, vol.10, issue.1, p.13, 2015.

Y. Yang, M. Cao, T. Kaprealian, K. Sheng, Y. Gao et al., Accuracy of UTE-MRI-based patient setup for brain cancer radiation therapy, Med Phys, vol.43, issue.1, pp.262-267, 2016.

S. Hsu, Y. Cao, T. S. Lawrence, C. Tsien, M. Feng et al., Quantitative characterizations of ultrashort echo (UTE) images for supporting air-bone separation in the head, Phys Med Biol, vol.60, issue.7, p.2869, 2015.