M. Ludin, A. Weeden, J. Houchins, S. Thompson, C. Peck et al., LittleFe: The high performance computing education appliance, Proc. of the International Conference on Cluster Computing, 2013.

S. Holt, A. Meaux, J. Roth, and D. Toth, Making the One Cluster Per Student Method of Teaching Parallel Computing Financially Practical, Journal of Computing Sciences in Colleges, vol.33, issue.4, pp.106-113, 2018.

R. Brown, J. Adams, S. Matthews, and E. Shoop, Teaching Parallel and Distributed Computing with MPI on Raspberry Pi Clusters, Proc. of the 49th ACM Technical Symposium on Computer Science Education, pp.1054-1054, 2018.

A. M. Pfalzgraf and J. A. Driscoll, A low-cost computer cluster for high-performance computing education, Proc. of the International Conference on Electro/Information Technology, pp.362-366, 2014.

K. Doucet and J. Zhang, Learning Cluster Computing by Creating a Raspberry Pi Cluster, Proc. of the SouthEast Conference, pp.191-194, 2017.

O. Abuzaghleh, K. Goldschmidt, Y. Elleithy, and J. Lee, Implementing an Affordable High-performance Computing for Teaching-oriented Computer Science Curriculum, ACM Transactions on Computing Education, vol.13, issue.1, pp.1-3, 2013.

C. Ivica, J. T. Riley, and C. Shubert, StarHPC-Teaching parallel programming within elastic compute cloud, Proc. if the 31st International Conference on Information Technology Interfaces, pp.353-356, 2009.

P. Marshall, M. Oberg, N. Rini, T. Voran, and M. Woitaszek, Virtual Clusters for Hands-on Linux Cluster Construction Education, Proc. of the 11th LCI International Conference on High-Performance Clustered Computing, 2010.

N. A. Robison and T. J. Hacker, Comparison of VM Deployment Methods for HPC Education, Proc. of the 1st Annual Conference on Research in Information Technology, pp.43-48, 2012.

D. Johnson, S. Mason, and B. Hartpence, Designing, Constructing and Implementing a Low-Cost Virtualization Cluster for Education, Proc. of International Multi-Conference on Society, Cybernetics and Informatics, 2013.

S. Hunold and A. Carpen-amarie, Reproducible MPI Benchmarking Is Still Not As Easy As You Think, IEEE Transactions on Parallel and Distributed Systems, vol.27, issue.12, pp.3617-3630, 2016.

A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, There Goes the Neighborhood: Performance Degradation Due to Nearby Jobs, Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, p.12, 2013.

Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree et al., Analyzing and Mitigating the Impact of Manufacturing Variability in Power-constrained Supercomputing, Proc. of the International Conference for High Performance Computing, Networking, Storage and Analysis, p.12, 2015.

O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt et al., Diagnosing Performance Variations in HPC Applications Using Machine Learning, Proc. of International Supercomputing Conference, pp.355-373, 2017.

E. Luque, R. Suppi, and J. Sorribes, A Quantitative Approach for Teaching Parallel Computing, Proc. of the 23rd SIGCSE Technical Symposium on Computer Science Education, pp.286-298, 1992.

J. Hartman and D. Sanders, Teaching parallel processing using free resources, Proc. 26th IEEE Frontiers in Education Conference, vol.3, pp.1483-1486, 1996.

A. N. Pears, Using the DiST Simulator to Teach Parallel Computing Concepts, Proc. of the 1st International Forum on Parallel Computing Curricula, 1995.

G. Zarza, D. Lugones, D. Franco, and E. Luque, An Innovative Teaching Strategy to Understand High-Performance Systems through Performance Evaluation, Proc. of International Comference on Computational Science, 2012.

A. Degomme, A. Legrand, G. Markomanolis, M. Quinson, M. Stillwell et al., Simulating MPI applications: the SMPI approach, IEEE Transactions on Parallel and Distributed Systems, vol.28, pp.2387-2400, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01415484

H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, Versatile, Scalable, and Accurate Simulation of Distributed Applications and Platforms, Journal of Parallel and Distributed Computing, vol.74, issue.10, pp.2899-2917, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01017319

, The SimGrid Project, 2018.

B. Lester, The Art of Parallel Programming, 1993.

, Riverbed Modeler, 2018.

P. Velho, L. Mello, H. Schnorr, A. Casanova, and . Legrand, On the Validity of Flow-level TCP Network Models for Grid and Cloud Simulations, ACM Transactions on Modeling and Computer Simulation, vol.23, issue.4, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00872476

A. Kozinov and E. Shtanyuk, Learning Parallel Computations with ParaLab, Proc. of the 1st Ural Workshop on Parallel, Distributed, and Cloud Computing for Young Scientists, pp.11-20, 2015.

V. Gergel and A. Labutina, ParaLab System for Investigating the Parallel Algorithms, Proc. of the Russia-Taiwan Symposium on Methods and Tools of Parallel Processing, pp.95-104, 2010.

L. Bobelin, A. Legrand, D. A. Márquez, P. Navarro, M. Quinson et al., Scalable Multi-Purpose Network Representation for Large Scale Distributed System Simulation, Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp.220-227, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00650233

A. Faraj, X. Yuan, and D. Lowenthal, STAR-MPI: self tuned adaptive routines for MPI collective operations, Proc. of the 20th ACM Intl. Conf. on Supercomputing, pp.199-208, 2006.

R. Thakur, R. Rabenseifner, and W. Gropp, Optimization of Collective Communication Operations in MPICH, International Journal of High Performance Computing Applications, vol.19, issue.1, pp.49-66, 2005.

D. Panda, K. Tomko, K. Schulz, and M. A. , The MVAPICH Project: Evolution and Sustainability of an Open Source Production Quality MPI Library for HPC, Proc. of the Workshop on Sustainable Software for Science: Practice and Experiences, 2013.

T. Cornebize, Capacity Planning of Supercomputers: Simulating MPI Applications at Scale
URL : https://hal.archives-ouvertes.fr/hal-01544827

, SMPI Integration Testing of MPI Proxy applications, 2018.

&. Smpi-courseware, , 2018.

, Grid'5000 Testbed, 2018.

, The WRENCH Project, 2018.