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Abstract

We consider a variant of the well-known, NP-complete problem of minimum cut
linear arrangement for directed acyclic graphs. In this variant, we are given a
directed acyclic graph and we are asked to find a topological ordering such that
the maximum number of cut edges at any point in this ordering is minimum. In
our variant, the vertices and edges have weights, and the aim is to minimize the
maximum weight of cut edges in addition to the weight of the last vertex before
the cut. There is a known, polynomial time algorithm [Liu, STAM J. Algebra.
Discr., 1987] for the cases where the input graph is a rooted tree. We focus
on the instances where the input graph is a directed series-parallel graph, and
propose a polynomial time algorithm, thus expanding the class of graphs for
which a polynomial time algorithm is known. Directed acyclic graphs are used
to model scientific applications where the vertices correspond to the tasks of a
given application and the edges represent the dependencies between the tasks.
In such models, the problem we address reads as minimizing the peak memory
requirement in an execution of the application. Our work, combined with Liu’s
work on rooted trees addresses this practical problem in two important classes
of applications.

Keywords: series-parallel graphs, scheduling, peak memory minimization.

1. Introduction

A layout or a linear arrangement of a graph G is a total ordering of the
vertices of G. In layout problems, the aim is to optimize a certain objective
function. There are a number of very well-known layout problems which are
surveyed by Diaz et al. [5, 21]. Among those problems CUTWIDTH or the
minimum cut linear arrangement (MCLA) is of immediate interest. Consider a
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graph on n vertices and a layout. Consider a cut at ¢, where the first ¢ vertices
in the layout are on the left part and the remaining vertices are on the right
part. The number of edges whose end points straddle the cut at ¢ is called
the width of the cut. The CuTWIDTH problem asks for a layout in which the
maximum width of a cut at positions 1 to n — 1 is the minimum. This paper
addresses a variant of the CUTWIDTH problem in which the vertices and edges
have weights, and the aim is to minimize the maximum value of a cut at position
1 for i = 1,...,n, where the value of a cut at i is now defined as the sum of
the weight of the vertex v at position ¢, of the weights of all edges whose one
end point is either v or ordered before v and whose other end point is v or
ordered after v. We address this problem for the well-known class of series-
parallel graphs (a formal definition is given in Section 2 for completeness), and
propose a polynomial time algorithm.

The CuTWIDTH problem is NP-complete both in undirected graphs [10] and
directed graphs [28], and solved efficiently for graphs with small treewidth [26]
and small cutwidth [25]—see the survey and its addendum [5, 21] for a more
thorough view of the known results. Leighton and Rao [15] discuss approxima-
tion algorithms for the CUTWIDTH problem, which can be improved by using
the heuristics by Arora et al. [1]. Yannakakis [29] presents a polynomial time
algorithm for the CUTWIDTH problem on trees (general trees) without weights;
the weighted version remains NP-complete [19]. A historical source of interest in
the CUTWIDTH problem for graphs with unit weight edges (no vertex weights)
is the pebble game of Sethi and Ullman [24], which is PSPACE complete [11],
and polynomial time solvable for rooted trees [23].

The variant of the CUTWIDTH problem studied in this paper is first ad-
dressed by Liu [18] for the class of rooted trees. Liu discusses how the problem
at hand corresponds to minimizing the peak memory in the context of a certain
sparse direct solver [17]. For the sake of fidelity to Liu’s original work, we use
the term “peak memory” for defining the objective in our layout problem. Our
main contribution in this paper is thus to expand the family of graph classes for
which peak-memory problem can be solved in polynomial time.

Our results are of theoretical nature, yet we have been motivated by the
practical problem of reducing the memory consumption of applications which
are modeled as task graphs [22]. In these graphs, vertices represent tasks and
edges represent the dependencies between tasks. Each task consumes one or
more input file/data, and produces one or more output file/data. To be exe-
cuted, a task also requires an execution file/data. As the size of the data to
be processed increases, minimizing the peak memory of an application arises as
an important objective, as the memory traffic is often the bottleneck. Consider
the execution of a task graph on a single compute resource, i.e., a single proces-
sor and a single memory hierarchy. An execution of the application is defined
by a traversal of the graph, that is, a schedule of the vertices which respects
the dependencies (or topological order). The peak memory of a traversal is the
maximum amount of memory needed to store application files/data at any given
time throughout the application execution. The graphs with vertex and edges
weights, and the definition of the value of a cut given above express the objec-



tive of minimizing the peak memory as a graph layout problem. Peak memory
minimization problem has been addressed for applications whose task graphs
are rooted trees [13, 14, 16, 18]. This work aspires to be helpful in scheduling
applications whose task graphs are series parallel [3, 9, 20], as theoretical under-
standing of the underlying layout problem is needed to reduce the peak memory
in a parallel execution environment (see for example a previous study [8]).

This paper is organized as follows. We present the problem formally in
Section 2. We then describe the existing optimal algorithm for trees in Section 3,
since this algorithm forms the basis of our proposed algorithms. In the same
section, we present the principle of our algorithms on a subclass of SP-graphs.
Then, Section 4 presents the proposed algorithm for general SP-graphs as well
as the new notion on min-cut optimality needed to prove its correctness. Some
of the arguments in our proofs are very lengthy and involved. For the sake of
readability, the most demanding proofs are detailed in Appendix.

2. Peak memory minimization: Model and objective

We define the problem in general directed acyclic graphs (DAGs) with ver-
tex and edge weights modeling applications. In this model, a DAG G =
(V, E,wy,w.) contains a vertex for each task of the application and a directed
edge (p, q) between two vertices if the task corresponding to the vertex ¢ needs
a data produced by the task corresponding to the vertex p. Each task in the
graph may have several input data, some execution data (or program), and sev-
eral output data. We denote by we(p,q) > 0 the weight of edge (p,q) which
represents the size of the data produced by task p for task ¢, and by w,(p) > 0
the weight of a vertex p which is the size of the execution data of task p.

During the execution of a task (vertex) p, the memory must contain its
input data, the execution data, and its output data. The memory needed for
executing p is thus:

D welrp) | +walp)+ [ Y welp,a)

(r.p)EE (p,9)EE

After p has been processed, its input and execution data are discarded, while
its output data are kept in memory until they are consumed at the end of the
execution of the corresponding tasks. For example, in the graph depicted in
Figure 1la, if task A is processed first, 8 units of memory are needed for its
processing, but only 4 remains in the memory after its completion. If task C is
processed right after task A, 7 units of memory are needed during its processing
(4 to store the data produced by A for B, and 3 for the execution and output
data of C).

While processing the task graph, memory consumption changes as data are
created and deleted. Our objective is to minimize the peak memory, i.e., the
maximum amount of memory used in the graph traversal.

More formally, we define a schedule of the graph as a total order (layout)
7 on the vertices, denoted with <., such that p <, ¢ means that vertex p is



ordered before vertex q. The precedence constraints of the task graphs impose
that this is a topological order: we have p <, ¢ for any edge (p,q) € E. We
use the notation max™ (resp. min™) to express the maximum (resp. minimum)
according to the order m: min™ G is, for instance, the first vertex scheduled by
m. When considering a subset X of vertices, we denote by w[X] the order 7
restricted to this subset. A schedule is also represented as a list of vertices:
m = (1,2,3) denotes that 1 <, 2 <, 3.

We define u(p, 7) as the memory required during the execution of a vertex
p € V under the schedule 7 as

pp,m) =wa(p)+ D {welg,r): (¢,7) € B},

q<p<xT

Note that the edges (g, r) such that ¢ <, p <, r correspond to the data that have

been created but not yet consumed while p is being processed. The objective is

to find a schedule 7 for a graph G that minimizes the peak memory, defined as
p(m) = max u(p, )

Given a directed graph G = (V, E, w,, w.), we define the reverse graph G =
(V, E,w,,w.) where the orientation of all edges is changed: E = {(j,1), (i,7) €
E}. Note that vertex and edge weights are kept unchanged. Given a schedule
7 of G, we may build the reverse schedule 7 such that ¢ <z p whenever p <, q.
It is straightforward to check that both schedules have the same peak memory
on their respective graph: pg(m) = pa (7).

In this paper, we concentrate on series-parallel graphs, which are defined as
follows (see for example [7] for more information).

Definition 1. A two-terminal series-parallel graph, or SP-graph, G with ter-
minals s and t is recursively defined to be either:

Base case: A graph with two vertices s and t, and an edge (s,t).

Series composition: The series composition of two SP-graphs Gy with ter-
minals s1,t1 and G with terminals so,ts formed by identifying s = s1,
t =ty and t; = so, and denoted by (G1,G3);

Parallel composition: The parallel composition of two SP-graphs G1 with
terminals s1,t1 and G with terminals so,ty formed by identifying s =
$1 =82 and t = t1 = ta, and denoted by {G1,G2}.

The vertices s and t are called source and target of the graph.

When the graph is defined this way, the dependencies are from the source
vertices to the target vertices. Series-parallel graphs can be recognized and
decomposed into a tree of series and parallel combinations in linear time [27].

While solving the peak memory minimization problem for SP-graphs, we will
need a solution for a sub-family of SP-graphs, which are called parallel-chains
and are defined below. A sample parallel-chain graph is shown in Fig. 2.



task being processed | A B C D E

memory 8 |4 (8|1 |4 3|7 |37

2

(b) Memory profile for the traversal (A, B,C, D, E)

segments | (hill,valley) values
(4,B) (8,1)
(C,D,E) (7.2)

(c) Segments for the traversal (A, B,C, D, E)

segments | (hill,valley) values

(F) (9,1)
: (S) (8,5)
(a) Tree with vertex and edge
weights. (d) Segments for the traversal (F,G)

Figure 1: Sample in-tree and decomposition of its schedule in segments.

Definition 2. A chain is a two-terminal series-parallel graph obtained without
using any parallel composition. A parallel-chain graph is a two-terminal series-
parallel graph obtained by the unique parallel composition of a number of chains.

3. Solving the peak memory problem on trees and parallel-chain
graphs

We first recall Liu’s algorithm [18] for solving the peak memory minimiza-
tion problem on rooted trees. We then propose its adaptation for parallel-chain
graphs; this new algorithm is used later (in Section 4) as a building block for
solving the peak memory problem on series-parallel graphs. The algorithm pro-
posed by Liu applies to in-trees, that is trees whose dependencies are directed
towards the root (contrarily to out-trees, where dependencies are directed to-
wards leaves). Note that if T is an in-tree and 7 is the schedule of T' computed
by Liu’s algorithm, then 7 is also a peak memory minimizing schedule of the
out-tree T.

8.1. Liu’s algorithm for trees

Liu [18] proposes an algorithm to find an optimal tree traversal for peak
memory minimization. Liu’s original work concerns a different model where
there is no edge weights (there are only vertex weights). We present here its
immediate adaptation to our model.

Liu’s algorithm is shown in Algorithm 1. To compute an optimal traversal
for a tree rooted at vertex k, it recursively computes an optimal traversal for
the subtrees rooted at the children of k, then merges theses optimal traversals,
and finally appends k to the end. Merging the traversals of the children is
the sophisticated part of the algorithm. There is no reason to schedule the
subtrees one after the other; an optimal schedule may switch from one subtree
to another. Liu makes the observation that in an optimal traversal the switching
points between the subtrees’ processing have to be local minima in the memory




Algorithm 1 Liu-TREE-SCHEDULE(T)

Require: T = (V, E, w,,w,.): tree with vertex- and edge-weights.
Ensure: m: Schedule with the minimum peak memory pu(m)
» Base case
if V = {u} then
return (u)

» General case
Let r be the root of T and T, T5, ..., T} its subtrees
for i =1 to k do
m; < LIU-TREE-SCHEDULE(T;)
Compute the hill-valleys segments s¢, ..., s} of T; in schedule m; as in Def-
inition 3
Sort all segments of all subtrees in non-increasing (hill — valley) value
Based on this segment ordering, order the vertices in each segment consecu-
tively, followed by the root r, to build 7. Within each segment s/, vertices
are ordered according to ;.

profile: while processing one subtree T;, there is no reason to switch to 77 if one
can reduce the memory needed for T; by processing one more task in 7;. This
leads to slicing the traversal into atomic parts, called segments. The end-points
of segments (which are some particular local minima in the memory profile) are
called walleys, while the peak memory vertices of each segment are called hills.
The segments and their hill/valley values are formally defined as follows.

Definition 3. Let G be an in-trees and w be a traversal of G. The first segments
of ™ consists in nodes u <, vy and the ith segments of ® (for i > 2) contains
nodes u such that v;_1 <, u <, v; with:

o MY is the peak memory of the whole traversal;

o M is the minimum amount of memory occurring after the step when Mlh

is (last) attained, for i > 1;
o MY is (last) attained on v;, fori>1;
o M (fori>2) is the peak memory after v;.

The sequence of hill-valley ends when the last vertex is reached. The seg-
ments consist of the vertices comprised between two valleys. For example, for
the tree depicted in Figure la, consider the traversal (A, B,C, D, E) of the sub-
tree rooted in E. The memory occupation during and after the processing of
the tasks and the segments that are deduced from this memory profile are il-
lustrated in Figure lc. Similarly, the segments of the traversal (F,G) of the
subtree rooted in G are detailed on Figure 1d.

To merge the traversals of the subtrees, the first step is to compute all hill-
valley segments. Then the lists of segments are merged using the following crite-
rion: if several segments are available (one for each subtree in the beginning), it
is always beneficial to start with the segment with the maximum (hill — valley)
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Figure 2: Sample parallel-chain graph. This graph’s decomposition is used for Lemma 1. If
the dashed edges are minimum in the corresponding chains, an optimal traversal can be found
by first ordering the vertices in the set S and then the vertices in the set T

difference. Intuitively, the residual memory will only increase when processing
segments, so it seems better to start with (i) segments with larger peak memory
(hill) to avoid large memory consumption later, and (ii) segments with smaller
residual memory (valley) to ensure an increase of memory as small as possible.
The tradeoff between both criteria is obtained using the difference (hill —valley).

In the example of Figure 1, when merging the traversals from the subtrees
rooted at E and G at the vertex H, we start by comparing the first segments of
each subtree: segment (F) is selected because it has a larger (hill — valley) value
of 9 — 1 = 8. This segment is ordered, and then removed from the segments
list, and we proceed by comparing segments (A, B) and (G): (A, B) has larger
(hill — valley) value of 8 — 1 =7, so it is selected. By iterating this process, we
end up with the following ordering: (F), (4, B), (C, D, E), (G). The last step is
to add the root H of the subtree to the traversal.

Liu proves that Algorithm 1 is correct and its worst-case runtime complexity
is O(n?). We note that even if this algorithm is designed for in-trees, we can
compute an optimal schedule of an out-tree by reversing all edges to obtain an
in-tree, applying this algorithm, and then reversing the obtained schedule.

8.2. Algorithm for parallel-chain graphs

The main idea (summarized in Fig. 2) is to remove one edge from each chain,
so as to disconnect the graph into one out-tree (the part S in the figure) and
one in-tree (the part T in the figure). Then, we can reuse Liu’s algorithm to
compute an optimal traversal for these two trees. The following lemma states
that if the removed edges are of minimal weight in each chain, it is possible to
first schedule all the vertices that are before this minimal cut, and then all the
vertices after the cut, without increasing the peak memory.

Lemma 1. Let G be a parallel-chain graph. For each chain C; of this graph,
let ein = (u™in pMin) pe an edge of C; with the minimum weight. Let S be the
set of ancestors of the ul™™’s, including them. Let T be the set of successors
of the v™"’s, including them. Let m be a schedule of G and v be the schedule

obtained from m by scheduling all vertices of S before vertices of T, formally
5 = (r[S],w[T)). Then, pu(v) < ().



This intuitive result can be proved by using Theorem 2, Corollary 1 and
Theorem 1 given below. We do not formalize the proof, since the objective of
this section is to give an intuition on the algorithm for general SP-graphs.

Thanks to this result, we know that there exists an optimal schedule which
ordered first vertices from S, and then vertices from 7. Assume for a moment
that the weight of all e edges is zero (we(e™") = 0). Then, it is as if the
graph was disconnected, and we have two separate trees to schedule. T is an
in-tree, and Liu’s algorithm can compute an optimal schedule 7 for it. S is
an out-tree, so that S is an in-tree: if  is the optimal schedule computed by
Liu’s algorithm for S, 4 is optimal for S. Then, (¥,7) is an optimal schedule
of the whole graph. This approach can be generalized to parallel-chain graphs
with non-zero weights on the minimal edges, as stated in Algorithm 2. For such
graph, the weight of the minimal edges is subtracted from all edges of a chain,
and is added to the weight of all vertex of the chain (except the terminals).
By setting C' = >, we(e™™), it is easy to verify that for any schedule 7, the
memory footprint during the execution of a node or after its execution in the
modified graph is the same memory as in the original graph minus C. Thus, any
optimal schedule for the modified graph is an optimal schedule for the original
graph. We will prove that this algorithm computes an optimal schedule of all
parallel-chain graphs (Theorem 8).

Algorithm 2 PARALLEL-CHAINS-SCHEDULE(T)

Require: PC = (V,E,w,,w.): parallel-chain graph with vertex- and edge-
weights.
Ensure: 7: Schedule with minimal peak memory p(7)
Let C1,...,Cy be the chains of PC
for i =1to qgdo
Let el = (yMin yMin) he the edge of minimum weight in C;
Remove the edge e™® from the graph
Update the weight of each other edge e of C;: we(e) + we(e) — we(eP™)
Update the weight of each vertex u in C; (except s and t): wy(u)
wy (u) + we(e™)
Consider the two trees T°%, T obtained after the removal of en, ...
Let T°% be the in-tree obtained by reversing all edges in 7%
71  L1U-TREE-SCHEDULE(T°"!)
7y < LIU-TREE-SCHEDULE(T™)

return (77, m)

)

4. Solving the peak memory problem for series-parallel graphs

This section contains the proposed polynomial time algorithm to compute a
peak memory minimizing schedule of series-parallel graphs. Let us first give a
verbal overview of the final algorithm. As is common, the algorithm relies on
the recursive structure of the series-parallel graphs. To solve the peak memory



problem for a series-parallel graph G which is a composition of G; and Go,
we first recursively solve the peak memory problem on G; and G,. If G is
a series composition of G; and Ga, it is straightforward to obtain a schedule
for G by concatenating those for G; and G3. If G is a parallel composition of
G1 and G, we first create a chain (according to the optimal schedules found)
for G; and G5. By identifying the terminal vertices in G; and Gs, we obtain
a parallel-chain graph on which the peak memory problem is solved using the
algorithm proposed in Section 3.2. This results in a peak memory minimizing
schedule for the initial graph G. The algorithm is simple and intuitive as it
follows the recursive definition of series-parallel graphs. However, the the proof
of optimality of the algorithm is complex and involved. This is not surprising as
it was also the case for Liu’s algorithm on trees [18], which extended an already
involved algorithm [29].

The formal algorithm (Section 4.4) is an adaptation of Liu’s algorithm for
vertex weighted trees. In order to facilitate this adaptation, we define a new
graph model (presented in Section 4.1) in which we have only vertex weights.
This model is simpler, yet expressive enough to capture the peak memory objec-
tive. We then define a new relation on schedules and a new objective function
(Sections 4.2 and 4.3) in this modem that are needed to obtain the proof of its
optimality (which is presented in Section 4.5). Some of the detailed proofs are
delegated to the Appendix.

4.1. A simpler model with only vertex weights

We introduce here a new graph model, called the cumulative weight model,
which has only vertex weights (no edge weights). We prove that this model can
emulate the peak-memory minimization problem. Formally, let G = (V, E,w),
where w : V — Z is a weight function on the vertices. For a given set U C V
of vertices, w(U) denotes the sum of weights of vertices in U, i.e., w(U) =
> wer w(v). The vertex-weight function w should satisfy w(G) = 0. Let 7 be a
schedule and for each vertex v € V, consider the cumulative sum of the weighs
of all vertices scheduled before v:

Swo,m)=w{ueV, u<v}). (1)

We define the cutwidth p(m) of a schedule 7 as the maximum of all these
sums:

p(m) = maxw({q €V, ¢ <x p}) = maxX(p,7) . (2)

Figure 3 presents a simple SP graph in the cumulative weight model as well
as three schedules 7 with cutwidth 3 (which is minimal), and v and A with
cutwidth 6.

Note that the cutwidth as defined in the cumulative weight model is a
straightforward adaptation of the CUTWIDTH problem (or minimum cut lin-
ear arrangement) as presented in the introduction: from a graph with only
edge weights w., for each edge (i,j) we simply set w(i) = we(i,j) and
w(j) = —we(i, j) to obtain the same problem with the cumulative weight model.



(c) Schedule v

(a). Simple SP graph in the cumulat.ive S TATE[B[C]F[D|GH
welght.model. Note that w(G) = 0 as im- SN 2151632020
posed in the model.

(d) Schedule A

Figure 3: Simple SP-graph in the cumulative weight model and two possible schedules.

Thus, the algorithm presented below for SP-graphs in the cumulative weight
model also solves the classical CUTWIDTH problem on SP-graphs with edge
weights. We now exhibit a similar reduction from the peak memory problem
presented in Section 2.

4.1.1. Minimizing the cutwidth allows to minimize the peak memory

Below (Theorem 1), we show that by minimizing the cutwidth in the cumu-
lative weight model, one can minimize the peak memory in the original model.
For this purpose we need some definitions. Given an instance G = (V, E, w,,, w,)
of the peak memory problem, we construct an instance of the cumulative weight
problem, with a (directed) bipartite graph Gg = (Vg, Ep,w) as follows. For
each vertex p € V, we introduce a pair of vertices psiort, Pstop € VB such that
(Pstarts Pstop) € Ep. The vertex pgere represents the beginning of the com-
putation corresponding to the task p, while pg,, represents the end of this
computation. For each edge (p,q) € E, we add an edge (Pstop, Gstart) € Ep. For
each vertex p, we set

w(pstart) = wn(p) + Z we(p> T) ) (3>

(p,r)EE

to represent the allocation of temporary and output data in the memory at the
beginning of the task p, and

w(pstop) = _wn(p) - Z we(qvp) ’ (4)

(¢,p)EE

to represent the deallocation of temporary and input data from the memory at
the end of the task p. Note that with these definitions w(Gp) = 0. Let mp
be a schedule of Gp. It is easy to see that a schedule can be constructed for
G using the order of “stop” vertices in wp. Given mp, let m be a schedule of
G such that p <; ¢ whenever pstop <y, Gstop. Observe that > (vsiop,75) =

dow< ve,y We(,y), that is the cumulative weight of vst,, corresponds to the
weight of the edges (in G) which are cut by an imaginary line just after v under

10



the schedule 7. We now show how minimizing the cutwidth in G minimizes
the peak memory in G.

Theorem 1. Let wp be a schedule of Gp whose cutwidth p(ng) is minimum
for Gg and 7 be the corresponding schedule of G. Then, u(w) is the minimum
peak memory for G.

PROOF — We provide the outline of the proof by using lemmas proved in
Appendix A. By Lemma A.4, we can assume without loss of generality that
Dstart and Pgtop are consecutive for all p in wp. This implies that p(m) = p(7p)
by Lemma A.3. Suppose for the sake of contradiction that p(7) is not minimum.
In other words, there is a schedule v of G where p(y) < p(w). Then, we can
construct yp for G from 7y by replacing each vertex p with pser+ and pgtop. By
Lemma A.3 again, () = p(vp) and hence p(vg) < p(7g), a contradiction. O

4.1.2. Reverse graph in the cumulative weight model

We now show a few useful results in the proposed cumulative weight model
that uses the reverse graph. Remember that in our final algorithm, we will
disconnect a parallel composition into both an in-tree and an out-tree, and that
we will apply Liu’s algorithm on the reverse of the in-tree. Thus, it is important
that to determine the cutwidth of the reverse graph, as done in the following
two lemmas.

We first recall and extend the notion of reverse graph from Section 2 to
the vertex-weighted model. Given a graph G = (V, E,w), its reverse graph
G = (V, E, @) has the same set of vertices as G, however all edges are reversed
E ={(q,p) : (p,q) € E} and all vertex weights take the opposite sign of their
value in G: @(p) = —w(p) for any p € V. The reverse of a schedule 7 is defined
as in Section 2: ¢ <z p whenever p <, ¢, for any pair of vertices p, q.

The first result links the cumulative sums up to some vertex p in both 7 and

T
Lemma 2. For any verter p € G, we have

E(p,m) — X(p, 7) = w(p), (5)
where X(p, w) and X(p,7) are defined over G and G, respectively.

PROOF — Notice that {¢ <z p} = {¢ >, p} due to the definition above. Recall
that w(G) = 0, and thus @(G) = —w(G) = 0. Then,

X(p,7) = @({q<zp}) =o({q>xp})
= (@) - w({g < p})
= —w({g<sp})
= w({g <z p}) =Z(p,m) —w(p).

11



The second result shows that a schedule 7w has the same cutwidth as its
reverse T.

Lemma 3. For any schedule © of G, p(7) = p(7).

PROOF — Let p* be a vertex such that p(7) = 3(p*, 7) and ¢ be its predecessor
under 7. Then,

p(m) > X(g,7) = X(p*,7) —w(p®) holds by the definitions (1) and (1)
= %(p*,7) by Equation (5)
= p(7).

By noting that the roles of 7 and 7 can be changed in the above lines, we obtain
p(7) > p(m) and hence the equality p(7) = p(7). O

4.2. A new relation on schedules

We present here a relation on schedules, denoted by <. In order to prove
the optimality of our algorithm, we first prove that it produces a schedule which
is minimal for <, and that this implies cutwidth optimality. The < relation is
stronger than cutwidth comparison and includes all the assumptions needed for
the induction. This reasoning is largely implies by Liu’s proof for trees [1§],
and the new relation itself is the translation of the partial orders on subtree
schedules that he introduced.

4.2.1. Definition of the relation on schedules

Given a directed graph G, two vertices p and ¢ of G, and two schedules 7
and v of G, we say that the schedule 7 at p dominates the schedule v at ¢ (and
we write p .~ ¢) if and only if

Cl. X(p,m) < X(q,7), and
C2. min{X(s,7):5>,p} < min{X(r,v):7>,q}.

Note that the second condition (C2) is equivalent to stating that for any
r >, g, there exists s >, p such that (s, 7) < X(r,7).
Now, we define the relation < on the set of schedules for G as follows.

Definition 4 (Relation <). Let m and v be two schedules of G. We say that
m 2 for G, if for each p € G, there is a vertex q¢ € G such that p . —. q.

In the sample graph presented in Fig. 3, we have 7 < v and w < X since for
each vertex p, p ,—. E and p . —, E. We also have v < A and A <~ since

forpe {A,B,C,E,F}, p.,—, Bandp,—, E,
forpe {D,G,H}, p.,—~,Gandp ,—, G.

This example illustrates that the < relation is not anti-symmetric, therefore it
is not a partial order (in Liu’s case [18], the relation is partial order). We prove
that < is reflexive and transitive, and thus is a preorder.
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Lemma 4. The relation < is a preorder (reflexive and transitive).

PROOF — We need to show that the relation < is both reflexive and transitive.
Let «, 8, and 6 be schedules of G.

(i) Reflexivity. Since p ,—,, p for each p € V, o =< «, and thus, =< is reflexive.

(ii) Transitivity. Assume that « < 8 and § < 0. Take any p € G. Let v and
q be such that p ,—5 v and v g—4 ¢. We claim that p ,—, ¢, as well.
There are two conditions we should examine.

1) (C1). This follows as X(p, @) <¥(v, 8) and X(v, 8) <X(q,0), due to the
first conditions of p ,—5 v and v 37— q.

2) (C2). Take any vertex r >y g. Then, there exists s >, p and w >g v
such that X(s,a) < 3(w, B) < 3(r,0), as a consequence of the second
conditions of p ,— 5 v and v 5= q.

4.2.2. Minimality for the < relation implies cutwidth optimality

In the example of Fig. 3, we noticed that 7 < v and 7 < A while 7 has a
smaller cutwidth than both v and A. This is actually a major property of the
= relation: it implies a comparison on the cutwidth, not only for the schedules
being compared but also for their reverse schedule, as expressed by the following
lemma and its corollary.

Lemma 5. If 7 <« then p(n) < p(v) and p(7) < p(¥).

PROOF — Assume that m < «. Then for any p € V, there exists ¢ € V such
that p ,—, ¢, and thus, %(p,m) < ¥(g,7). Then, by definition, p() < p(7).
Moreover, thanks to Lemma 3, we have p(¥) = p(y) > p(7) = p(7). O

Corollary 1. If m is minimal for < on G, then m and 7 have the minimum
cutwidths (on G and G respectively).

4.3. Min-cut optimality
We are now ready to present the central notion needed to provide an optimal

algorithm for series-parallel graphs, namely the min-cut optimality. We show
that a min-cut optimal schedule is also cutwidth optimal.
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4.8.1. Definition of min-cut optimality

Min-cut optimality is based on the classical notion of cut in a graph: a cut
(S,T) of G is defined as a bisection of its vertices into two nonempty sets .S and
T. We say that a cut is topological if there exists no edge (p,q) € E such that
p €T and g € S (or equivalently, for any edge (p,q) € E, we have either p € S
or ¢ € T'). The width of a topological cut (S,T) is defined as ¢(S,T) = w(S).

Consider a topological cut (S,T) and a schedule 7. If in 7 all vertices of S
appear before all vertices of T, that is, for p € S and ¢ € T, we have p <, q,
then we say that 7 is in compliance with (S,T). In this case, we have

e(S,T) = X(p*, ), where p* = max™ S. (6)

We say that a topological cut (S, T) is minimum, or a min-w-cut, if its width
is minimum, that is,

c(S,T) = min{c(S’, T") where (S’,T") is a topological cut}.

We define by G[S] the subgraph of G which contains only the vertices in S
and the edges between these vertices. Similarly, for any schedule 7 of G, 7[S]
is the schedule induced by 7 on G[S].

Definition 5 (Min-cut optimality). Let (S,T) be a minimum topological
cut. A schedule 7 is cut-optimal with (S,T), if m is in compliance with (S,T),
7S] is minimal for < on G[S], and =[T] is minimal for < on G[T). Further-
more, 7 is called min-cut optimal if m is cut-optimal with some min-w-cut of

G.
We now state a simple lemma which will be useful in the following.

Lemma 6. Let  be a schedule of G. Let (S,T) be any minimum topological
cut of G. Then,
(8, T) < X(p,m),

for any p <, max™ G.

PROOF — Take any p <, max™ G. Then suppose for the sake of contradiction
that X(p,7) < ¢(S,T). Consider the topological cut (SP,T?), where SP =
{v < p}. Then, by (6), we have ¢(S?,T?P) = w(SP) = X(p,7) < ¢(S,T), which
contradicts that ¢(S,T) is minimum. O

4.3.2. Properties of min-cut optimality

We present two important properties of min-w-cuts. The first property,
shown in the next theorem, is that transforming a schedule so that it is in
compliance with a min-w-cut will not make it larger in the sense of the =<
relation (and thus, thanks to Lemma 5, will not increase its cutwidth). It
generalizes Lemma 1, which was limited to parallel-chain graphs and expressed
in the original graph model.
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Theorem 2. Let G be an acyclic graph with a single source vertex and a single
sink vertex, and v be a schedule of G. Let (S,T) be a min-w-cut of G, and
7w = (y[SL,¥[T]). Then, m <7 and T =2 7.

PROOF — Since (5,7 is a topological cut of G, 7 is a schedule of G. Note that
~ may not be in compliance with (S, T).

The proof relies on the two following properties: for each p € G, p ,—, p
(which proves that m < v according to the definition of this relation) and p ~—~
p (which proves 7 < ¥). We ounly provide the proof of the first property, as the
second one can be proved using the very same arguments.

Let sT be the last scheduled vertex of S in «y. Similarly, let ¢~ be the first
scheduled vertex of T" in 7. Formally,

st =max?$, ¢t~ =min"T.

Note that st is also the last scheduled vertex of S in 7 (and ¢~ the first scheduled
vertex of T in ) and X(sT,7) = ¢(S,T).

To prove that p ,—, p for p € G, we investigate X(p, 7) and ¥X(p,v). First,
for any p € V, we consider s, (respectively ¢,), the last scheduled vertex of S
(resp. of T') that does not come after p in :

sp=max’{s €S, s<,p}, t,=max"{teT, t<,p}

Note that s, is always defined since G' has a single source vertex. However, t,
may not be defined, as the set {t € T, t <, p} may be empty, which occurs
when p € S and p comes before ¢~ in +; in this case p = s,,. If ¢, is defined, we
have:

(p,y) = Blsp,v[S]) + Xty v[T])
= X(sp, 7[S]) + X(tp, 7[T])
= X(sp,m) + X(tp, ) — B(sT,m)
= X(sp,m) 4+ X(tp, m) — (S, T). (7)
As a result,
X(p, ) if ¢, is not defined,
(p, ) = { Z(Z,,ﬂ') + X(sp,m) —c(S,T) otherwise. (8)

We are now ready to show p ,—. p, for any p € V. We verify the two
conditions defining this statement given in Section 4.2.1 for any p € V, as
follows.

1. The first condition to verify is Cl: X(p,m) < X(p,7y). When ¢, is not
defined, this condition directly derives from Equation (8). Consider now
that ¢, is defined. We consider two cases depending on which side of the
cut p lies:
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(a) (p € S). Then, s, = p. This implies
E(pa 7) - E(pa 7T) + Z(tp77r) - C(Sv T)

Note that ¢, <, p <y max"G = max" G, since p € S. Since
X(tp,m) > ¢(S,T) by Lemma 6 applied on 7, the condition C1 is
met.

(b) (p€T). Then, t, = p. This implies
E(p7 ’7) = 2(27, ﬂ—) + E(SP77T) - C(Sa T)

Note that s, <, max” G = max™ G, since s, € S. Since X(sp, m) >
¢(S,T) by Lemma 6, the condition C1 is met.

2. The second condition to verify (C2) is
min{3(s,7) : s > p} < min{X(r,7y) : r >, p}

(or equivalently, for any r >, p, there exists s >, p such that ¥(s,7) <
Y(r,v)). First, note that the last vertex is the same in both schedules:
Tend = max” G = max” G and thus X(repqg, 7) = X(Tend, v). Now, consider
any >~ p such that r <, max” G. We consider the two following cases:

a) pisin S. Then, X(sT,7) = ¢(S,T) < X(r,v) and st >, p.

b) pisin T. Let t, = max"{t € T, t <, r}. Note that ¢, is well defined,
since r >, p. We also have t, >, p. Then, by Equation (7),

X(ryy) = X(sp, ) + Z(tr, ) — (S, T).

Since X(sp,m) > ¢(S,T) by Lemma 6, we have X(¢,,7)

< X(r7).
Notice that ¢, >, p since ¢, >, p, and, both p € T'and ¢, € T

O

The second property of min-w-cuts explains the relevance of min-cut opti-
mality. It states that, for a schedule 7, being min-cut optimal implies optimality
for the < relation both for 7 and its reverse 7.

Theorem 3. Let G be a directed acyclic graph with a single source vertexr and
a single sink vertex, and m be a min-cut optimal schedule of G. Then, 7 is
minimal for < on G and 7 is minimal for < on G.

PROOF — Consider a directed acyclic graph G with single source and sink
vertices, and a min-cut optimal schedule m. Since 7 is min-cut optimal, m
is cut-optimal with some min-w-cut (S,7). Take any schedule A of G, and
consider the schedule v = (A[S], A\[T]), which is in compliance with (S,T). We
have v < A and ¥ < X\ by Theorem 2. Here, we only show m < ~ for G (which
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induces # <)), as with similar arguments one can also show 7 =< % (which

induces T < \).

By the definition of a min-cut optimal schedule, 7[S] (respectively =[T]) is
minimal for < on S (resp. on T'), thus 7[S] < F[S] and #[T] <X v[T]. We show
that for any vertex p € V, there is a vertex ¢ € V such that p ,—, ¢. We
consider a vertex p € V' and distinguish two cases depending where p lies:

L. (p € S). Let g be such that ¥(g,7[S]) = p(v[S]). We show p ,—, ¢ by
examining the two conditions.

(a) (Cl: X(p,7) < X(q,7)). Since 7[S] < 7[S], by Corollary 1 we have
p(m[S]) < p(v[S])- Hence,

(p,m) < p(x[S]) < p(7v[S]) = X(g,7).

(b) (C2: min{X(s,m):5>,p} < min{X(r,7v):7>,q}). Let t be the sink
vertex. Note that X(t,m) < X(t,v) and t >, p. Take any r >, ¢
and r <, t. For st = max™{s € S}, we have X(s*,7) = ¢(5,T) <
Y (r,7). Notice that sT >, p,as p € S.

2. (p € T). Let q be such that p 7= 7

q; such a q exists, because

7[T] 2 ~[T]. We show p ,—., ¢ by examining the two conditions:

(a) (C1: X(p,m) < X(q,7)). It holds that

E(p,m) =

IN

S(p, w[T) + (s, 7[S]) (9)
(g, 7[T)) + X(s™, 7[S]) (10)
S(q,Y[T]) + B(sT,~[5]) = %(g,7). (11)

Equations (9) and (11) come from the fact that = and +y are in compli-
ance with (S, T). Equation (10) is derived from (9) and p A7) 1) €

(b) (C2: min{X(s,m):s>,p} < min{X(r,v):7>,q}). Take any r >, q.
Then, there exists s >, p such that (s, 7[T]) < X(r,v[T]). Then,

(s, m) =

IN

S(s, 7[T]) + (st 7[S))
2 (r,y[T]) + X(sT, 7[S])
S(r,y(T]) + 3(sT,9S]) = S(r, ).

O

Note that the previous two theorems only apply to directed graphs with a
single source and a single sink, and thus in particular to series-parallel graphs.
However, it is easy to transform any directed graph so that it obeys these
conditions: simply add two zero-weight artificial vertices, one for the source
and one for the sink, connect all sources of the original graph to the new source,
and connect the new sink to all original sinks.
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4.4. Algorithm for general series-parallel graphs

We present here our main contribution, which is a recursive algorithm, called
SP-SCHEDULE, that computes a min-cut optimal schedule for a series-parallel
graph G in the cumulative weight model. As presented before, this means that
the computed schedule is cut-optimal with some min-w-cut (S,7T) and implies
that it also minimizes the cutwidth. The algorithm also outputs this (S, T) cut.

This algorithm relies on an algorithm to compute a min-cut optimal schedule
of a parallel-chain graph, PC-SCHEDULE which is presented below. This algo-
rithm for parallel-chain graphs is similar to Algorithm 2, but applies to our new
cumulative weight model. Likewise, this latter algorithm relies on an algorithm
for trees, TREE-SCHEDULE, which is the translation of Liu’s algorithm for the
cumulative weight model.

Algorithm 3 SP-SCHEDULE(G)

Require: G = (V, E,w): series-parallel graph.
Ensure: 7: schedule and (S,T"): min-w-cut
» Base case
if |[E| =1 then
(8,T) « ({u}, {u})
return [(v,w), (S,T)]

» G is series or parallel comb. of G; = (V, E1,w) and Gy = (Va, Fa2,w)
[71, (S1,T1)] + SP-SCHEDULE(G})
[m2, (S2,T3)] + SP-SCHEDULE(G>)

» Series Composition

if G = (G1,Gs) then
(S8, T) « argmin {(S1,T1 U Va), (V1 U Sz, Ts)}
return [(7y,ma), (S, T)]

» Parallel Composition
if G = {G17G2} then
G + LINEARIZE(G1, 1)
Go +— LINEARIZE(Ga, 73)
(S, T) — (Sl USy, Ty U Tg)
7 < PC-SCHEDULE(G; U Gy, (S, T))
return [, (S,T)]

The base case of the algorithm considers a series-parallel graph with a single
edge, and outputs the unique schedule along with the unique topological cut.

In the general case, G is a series or parallel composition of two smaller series-
parallel graphs G; and G5. We first recursively compute schedules m; and o
that are cut-optimal with topological cuts (S1,77) and (S2,T») for G; and Gs.

If G is a series composition, the final schedule is obtained through a sim-
ple concatenation of 7wy and mws. This schedule of G is cut-optimal with both
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topological cuts induced by (S1,71) and (S2,T»2) on G. Thus, we select the one
with lower cutwidth as it is a min-w-cut of G. Therefore, 7 is a min-cut-optimal
schedule of G.

In case of parallel composition, we transform each subgraphs G; and G5 into
a chain using LINEARIZE, based on schedules m; and 73, respectively: G4 (resp.
G’g) is a chain with the same vertices as G; (resp. Gz) such that its unique
topological order is m; (resp. m2). The graph obtained by replacing G; and
G, by G; and G5 is a parallel-chain graph with two chains. We consider the
topological-cut (S, T') obtained by unifying the min-w-cuts of G; and Gs: as we
will prove later, it is a min-w-cut of the parallel-chain graph, but also of the
original graph. We then call the routine PC-SCHEDULE which finds a schedule
7 that is cut-optimal with this particular topological cut (S, T).

Algorithm 4 PC-SCHEDULE(G, (S,T))

Require: G = (V, E,w): parallel-chain directed graph.
Require: (S,7): Min-w-cut of G.
Ensure: 7: Schedule

& + TREE-SCHEDULE(G]S])

T < TREE-SCHEDULE(G[T])

return (o, 7)

Algorithm 4 presents PC-SCHEDULE, which computes a schedule 7 that is
cut-optimal with the given min-w-cut (S, T) for a given parallel-chain graph G.
The algorithm simply divides the parallel-chain graph into two trees according
to (S,T). These trees have a special property: a subtree rooted at every vertex
but the root itself has a non-negative total weight. This property follows from
the fact that (S,T) is a min-w-cut of G. The algorithm then schedules the two
trees independently using TREE-SCHEDULE routine, which is a translation of
Liu’s optimal algorithm for trees for the cumulative weight model, and can be
found as Algorithm D.1 in Appendix D.

4.5. Correctness of the algorithm

We prove here that SP-SCHEDULE computes a schedule which minimizes the
cutwidth (and therefore, thanks to Theorem 1, it also minimizes peak memory).
This result is expressed in Theorem 4.

Theorem 4 (Main Theorem). For any series-parallel graph, SP-SCHEDULE
computes a schedule w such that the cutwidth of 7 is optimal.

Theorem 4 is easily proved below once the following theorem is proved.

Theorem 5. For any series-parallel graph, SP-SCHEDULE computes a schedule
m and a min-w-cut (S,T) such that © is min-cut optimal with (S,T).

The proof of Theorem 5 is decomposed into several steps, following the
different cases in the algorithm. These steps are formalized through the following
three theorems.
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The first step deals with the series composition. The following theorem states
that concatenating two min-cut optimal schedules for the subgraphs leads to a
min-cut optimal schedule of their series composition. This case seems straight-
forward, at least when considering cutwidth minimization: concatenating two
schedules with minimal cutwidth on both subgraphs clearly gives a schedule with
minimal cutwidth on the whole graph. However, this theorem is stronger and
deserves more care as we need to prove min-cut optimality, that is minimality
with respect to the < relation.

Theorem 6. Let G; and G2 be two series-parallel directed graphs. Let w1 and
mo each be a min-cut-optimal schedule of G1 and G2, respectively. Then, m =
(m1,m2) is a min-cut-optimal schedule of their series composition G = (G1, Ga).

PROOF — The statement follows as a corollary of Lemma B.1 in Appendix B.
O

The second step deals with the parallel composition. If we have a min-w-
cut of a series-parallel directed graph and an optimal schedule of each part of
this directed graph, then there is an optimal schedule of the whole graph which
induces theses two schedules. This theorem is used to compare the schedule
returned by SP-SCHEDULE with an optimal one and show that it is indeed
optimal itself.

Theorem 7. Let Gy and Gs be two series-parallel directed graphs, and G =
{G1, G2} be their parallel composition. Let (S,T) be a min-w-cut of G, and
m and wo be schedules that are cut-optimal with the topological cuts induced
by (S,T) on Gy and Ga, respectively. For each schedule v in compliance with
(S,T) of G, there is a schedule 7 in compliance with (S,T) of G such that

(i) 7 induces w1 and To,
(i) 7[S] 2 4[] and [T] 2 ~[T].
PROOF — See Appendix C. a

The final step is to prove that the PC-SCHEDULE algorithm used to process
parallel-chain graphs produces a min-cut optimal schedule compatible with the
provided cut.

Theorem 8. For any parallel-chain graph G and any min-w-cut (S,T) of G,
PC-SCHEDULE computes a schedule 7 that is cut-optimal with (S,T).

PROOF — See Appendix D. a

We are now ready to prove the main theorem by proving Theorem 5.
PROOF — (Proof of Theorem 5) The proof is by induction on the number of
edges of G. In the base case, G has a single edge, that connects the source to
the sinks. There is a unique schedule of G, which is also cut-optimal with the
unique topological cut.
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We now assume that the theorem holds for any series-parallel graph with
fewer than k edges, where k > 1, and consider a series-parallel graph G with
exactly k edges. G is made by the (series or parallel) composition of two series-
parallel graphs GG; and G3. Both subgraphs have fewer than k edges, thus by
induction hypothesis, the recursive calls to SP-SCHEDULE produce two min-cut-
optimal schedules 7 and 7o together with their respective min-w-cuts (S1,71)
and (Sa,T3). We now distinguish between the two possible compositions.

Series composition. Theorem 6 shows that the schedule m = (71, m2) computed
by SP-SCHEDULE is a min-cut-optimal schedule of G. Besides a min-w-cut of
G can simply be found by selecting one of the min-w-cut of G; and G5 with
minimal cutwidth.

Parallel composition. Now, we consider that G = {G1,G2}. The algorithm
first compute the cut (S,7) such that S = 57 U Sy and T' = T7 UTy. We first
prove that (S,T) is a min-w-cut of G. For the sake of contradiction assume
the contrary. It means that there exists a topological cut (S*,T*) such that
e(S*,T*) < c(S,T). Let (S5, Ty) and (S5, T5) be the topological cuts induced
by (§*,7*) on G; and Ga, respectively. Then,

(ST, T7) + (S5, T3) = (5", T7)
e(S,T)
= C(Sl,T1)+C(SQ,T2).

N

This implies ¢(ST,T}) < ¢(S1,T1) or ¢(S3,Ty) < ¢(S2,T»), which is a contra-
diction as (S1,771) and (S2,T%) both are min-w-cuts.

In the case of a parallel composition, the algorithm computes the chain
graph G4 (respectively Gg) by sequencing the vertices of G (resp. Gs) in the
order of m; (resp. m2) and calls PC-SCHEDULE on the parallel-chain graph G
made by the parallel composition of G, and G and the cut (S,T). Thanks
to Theorem 8, we know that PC-SCHEDULE outputs a schedule 7 cut-optimal
with (S,T). Thus, for any schedule v of G in compliance with (S,T), we have

7[S] 2 4[S], and «[T] = ~[T]. (12)

We now show that 7 is cut-optimal with (S,T) for G as well, that is, the
previous inequalities also holds for any schedule v of G in compliance with
(S,T). We consider such a schedule . Theorem 7 proves that there exists a
schedule 7* that (i) induces m; and 7, (ii) 7* is in compliance with (S, T), and
(iii)

m[S] 2 4[S], and 7*[T] = [T]. (13)
As 7* induces m and mp, 7 is a valid schedule of G, we may thus apply
Equation (12) to v = n*. Combining it with Equation (13), we get

7S] =[S 2 4[], and x[T] X 7 [T] = 4[T].

As < is transitive, we have 7[S] < [S] and 7[T] < v[T]. O
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PROOF — Proof of the Main Theorem 4 SP-SCHEDULE computes a schedule
7 and a min-w-cut such that 7 is min-cut optimal with the found cut (see
Theorem 5). Theorem 3 implies that 7 is also minimal for the < relation, which
in turn means that 7 minimizes the cutwidth p(7) due to Corollary 1. ad

Algorithm complexity

The PC-SCHEDULE algorithm calls twice Liu’s algorithm for trees, whose
worst-case complexity for an input of size n is a O(n?). Except for the recursive
calls, this is the most costly step of the SP-SCHEDULE. Since there are at
most O(n) recursive calls, the overall worst-case complexity of SP-SCHEDULE
is O(n?).

5. Conclusion

In this paper, we have proposed an algorithm to schedule a series-parallel
task graph with the minimum peak memory. To prove the correctness of the
algorithm, we have introduced a new and simpler model, based on a vertex-
weighted graph. We have shown how to simulate task graphs with weights on
vertices and edges using the new model. The proof of the proposed algorithm
is complex, and consists in an extension of Liu’s work on trees [18].

The use of the proposed algorithm is limited to task graphs structured as
series-parallel computations, which constitutes an important class of scientific
computing applications. However, this algorithm may be applied to general
graphs, if we first transform them into series-parallel graphs, for example using
the SP-ization process [12], which is also suggested in the literature [2]. This
will lead to suboptimal schedules, because some fictitious edges are added to a
graph when it is turned into a series-parallel graph. Future research directions
include looking for optimal schedules for other regular graph structures that
appear in scientific computing (such as 2D or 3D meshes) structures, which
could be approached using existing work on unweighted 2D grids by Diaz et
al. [4, 6].
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Appendix

The appendix is composed of four parts. Appendix A contains lemmas used
in the proof of Theorem 1 in which we proved that minimizing the cutwidth
in the cumulative weight model minimizes the peak memory in the original
model. The sections Appendix B, C, and D contain lemmas used in showing
the correctness of SP-SCHEDULE algorithm. These three sections give the proof
of Theorems 6, 7, and 8, respectively. The last section Appendix D also contains
the adaptation of Liu’s algorithm to the cumulative weight model.

A. Problem transformation

Lemmas A.1-A.4 are used in the proof of Theorem 1 and assume the same
notation. In particular, the peak memory minimization problem is given by
a graph G = (V, E,w,,w,.), and the corresponding cutwidth instance has the
bipartite graph Gg = (Vp, Ep,w).

Lemma A.1. Let mp be a schedule of Gg. There exists a vertex p € G such

that the cutwidth of wp is reached on psiart, i.€., p(7p) = L(Dstart, TB)-

PROOF — For the sake of contradiction, assume that p(wg) > X(pstart, 75) for
every p € (G. Consider a vertex g of G such that the cutwidth of 7wp is reached

OLl Gstop, Le., p(ﬂ') = E(QStop,'/TB)~

By construction (4), w(vsip) < 0, for any vertex v. We consider pstart,
the last “start” vertex scheduled before gsiop in T Pstare = Max™ {Vsiart <np
Gstop})- Nnote that there exists such a psiar Since ggor is scheduled before
Gstop- Then,

E(Qstopa 7TB> = Z(pstart, 7TB) + Z w(vstop) S Z(pstarty 7TB)~
Dstart <m g Ustop < g Istop

Then, we have

P(WB) = E(Qstopa 7TB) < E(pstartaﬂ'B)a
which contradicts that p(wg) > X(pstart, TB)- O

Lemma A.2. Let w be a schedule of G. Then, for any p € G,
/J/(pa 7T) = w(psta'rt) + Z (w(vstart) + W(vstop))~
v<gp

PROOF — For this proof, we extend the definition of the edge weights in such
a way that w.(q,r) = 0 if there is no edge (¢,7) in E. With this extension, we
may write

w(vstart) = wn(v) + Z we(”/’"),

v<,T

W(Vstop) = —wn(v)— Z we(q,v).

q<rv
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Now, consider any vertex p € G. We have

ppm) = wap)+ Y welg,r)

q<xp<nT
= wn(p) + Z we(pa ’/‘) + Z we(Q:’r)
P<nxT q<zp<xT
= W(pstart) + Z we(% T) + Z we(‘]a T) - Z we(‘]v T')
q<zp<nT q<x7<nxp q<77<nxp
= W(pstart) + Z Z we(‘]v T) + Z we(‘]a T) - Z we(Qa T)
q<zp \p<xT q<xT<xp q<xT<xp
= w(psta'rt) + Z Z we(cbr) - Z Z we(q7r)
q<zp q<xT r<zpq<xr
= W(pstart) + Z (w(vstart) - wn(v)) - Z (_W(Ustop) - wn(v))
v<xp v<xp
= w(pstart) + Z (w(vstm’t) — Wnp (U) + W(vstop) + wy, (U))
v<gp
= w(pstart) + Z (w(vstart) + w(vstop))~
v<xp

O

Lemma A.3. Let g be a schedule of Gp such that psiare and psiop are con-
secutive in g, for each p € G. Consider the schedule m of G such that p <, q
whenever Pstop S?TB qstop - Then, /”'(77-) = p(ﬂ-B)'

PROOF — AS Dgtqrt and pgrop are consecutive in mg, for each p € G, we have
E(psta7't7 7TB) - W(pstar't) + Z (w(vstart) + w(vstop))
v<gp

and, due to Lemma A.2, X(pstart, 75) = p(p, ), for any p € G. We consider the
vertex p which reaches the cutwidth of 7, as defined by Lemma A.1: p(7p) =
E(pst(wt*v 7TB)~ Then,

p(ﬂ—B) = Z(pstart; 71—B) = :U'(p’ 7T) < /u‘(ﬂ—) (Al)
Let ¢ € G be such that u(m) = p(g, 7). Then,

:U’(’/T) = M(q,ﬂ) = E(qstm‘t; '/TB) S P(WB)- (AQ)
By combining Equations A.1 and A.2, we have p(7) = p(np). O

Lemma A.4. Let g be a schedule of Gg. There exists a schedule 'y of Gp
such that (i) psiare and psiop are consecutive in 'y, for each p € G, and (ii)

p(rp) < p(7B).
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PROOF — Let p € G be such that psier+ and psop are not consecutive in 7.
We construct a schedule 75 from 7, where pgqr¢ is placed right before psiop.
We show that 7% has a cutwidth that is smaller than or equal to that of 7p.

Let ¢ € G be such that p(7) = X(qstart, ™), which exists due to
Lemma A.1. We investigate the following two cases of ¢:

® (siart 18 scheduled before pgiqr in mp. Then, moving psie+ forward does
not influence the cutwidth.

® (siqrt 1S scheduled after pgiqr in 7g.

We first show that X(gsiar, 75%) < E(gstart, 78) as follows. If gepare >ny
Dstop, then X(gsiart, 5) = X(Gstart, 75). Otherwise, since w(pstop) < 0,
we have E(QStart» ’/T%) = E(QStm‘t; '/TB) + W(pstop) < Z(QStarta 7TB)~ ThUS, we
have P(Wg) = E(QStartu 77%) < Z(QStarty 7TB) < p(ﬂ—B)~

We repeat this process until pstare, Pstop vertices are scheduled consecutively,
which does not degrade the cutwidth. O

B. Series composition (used for Theorem 6)

Lemma B.1. Let Gy = (V1, Eq) and Go = (Va, E3) be two series-parallel di-
rected graphs. Let (S1,T1) and (S2,T2) be min-w-cuts, and m and 72 be sched-
ules cut-optimal with (S1,T1) and (S2,T») for G1 and Ga, respectively. Let
7 = (w1, m) be the schedule of the series composition G = (G1, Gs) inducing m
and . Then,

(i) 7 is cut-optimal with both (S1,TiUVa) and (V1USe, Ts),
(i1) (S,T) is a min-w-cut of G, where

(S,T) = argmin {(S1,T1 U Va), (V1 U S, T5)}.

PROOF — We first concentrate on item (i) of the lemma. We only show
that 7 is cut-optimal with (57,77 U G3), as the other can be proven similarly.
Let (S,T) = (S1,T1 U G2). We need to show 7[S] and 7[T] both are minimal
for <. First consider 7[S]. Since m is cut-optimal with (S7,Ty) for G1, 71[S1]
is minimal for < on G;. Then, 7[S] is minimal for < on G.

Now consider 7 = «[T]. For any schedule x of G[T], we need to show 7 < k.
Take any schedule x of G[T]. We show that there is a vertex ¢ € T for each
vertex p € T such that p .—,. q.

Take any p € T. We consider two scenarios of p € T7 and p € Go, separately.

a) (p € Tl). Let m; = 7[T1] = m[T1] and k1 = k[T1]. Notice that m is
min-cut-optimal for G1. Then, m[T1], and equivalently 71, is minimal for
=< by definition. Then, 7y < k1. Then, there is a vertex ¢* € T} such that
P 5, —, ¢ Note that ¢* € T1 C T, and we show p .—, ¢*, as follows.
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1) (Cl: X(p,7) < X(¢*, k). B(p,7) =X(p,11) < X(q*, k1) = Z(q*, K).

2) (C2: min{X(s,7):8>,p} < min{3(r,k):r>,¢*}). We examine a vertex
r >, ¢*, in relation to the vertex t° = max” T = max” T, which is the
single sink vertex of G.

Case 1. (r € Tl). Since p ,,—,, ¢, there is a vertex s € T1 and s >, p
such that 3(s, 1) < 3(r,k1). Then, s >, p and

3(s,7)=X(s,71) < X(r, k1) = X(r, k).

Case 2. (T € G, r<,§t°). Consider s € G5 such that X(s,m)=¢(Ss, T).
Then, (s, m2) < X(r, k2), where k2 = £[G2], due to Lemma 6.
Then, s >, p and

(s,7) = X(s,m2)+w(Ty)
< X(r ko) +w(Ty) = 2(r, k).

Case 3. (r = t"). Consider s = t°. Then, s >, p, and

Y(s,7) =Xt 1) = X(t° k) = X(r, k).

b) (p € Gg). Let 5 = 7[G2] = 7y and k2 = k[G2]. Notice that mo is min-
cut-optimal for G5. Then, 75, and equivalently 75, is minimal for < on Gs,
due to Theorem 3. Then, 75 = ko. Then, there is a vertex ¢* € G5 such
that p _—, ¢*. Notice that X(v,7) = X(v,72) + w(T1) and X(v,x) =
Y(v, k) + w(Th), for any vertex v € Ga. Since both p € G5 and ¢* € G, and
Py, @ it holds p . —, ¢*, and ¢* € G2 C T

We now concentrate on item (ii) of the lemma. We recall that (S1,77)
and (S2,T>) are both min-w-cuts. Now, for the sake of contradiction, suppose
that none of (51,71 U G2) and (G U S2,T3) is a min-w-cut of G. Take any
min-w-cut (S*,T*) of G. Consider the vertex, say v, that is shared by G; and
G2. We analyze the cases of v € S* and v € T*, as follows.

a) (v € 5*). Let (53,T5) be the topological cut induced by (S*,T*) on Gs.
Then,

(S5, 15) = ¢(GLUS3, Ty) —w(Gh)
c(S*, T") — w(Gh)
< C(G1 U SQ,TQ) — W(Gl) = C(SQ,TQ).

This contradicts with the fact that (Sa,7%) is a min-w-cut of Gs.

26



b) (v e T*). Let (Si,T}) be the topological cut induced by (S*,T*) on Gj.
Then,
o(STTT) = (ST, 1T UGs)
c(S*,T")
< C(Sl,Tl U Gg) = C(Sl,Tl).
This contradicts with the fact that (S7,77) is a min-w-cut of Gy.

C. Compatible orders are sufficient (Theorem 7)

In this section, we prove Theorem 7 which allows to transform subgraphs
into chains using LINEARIZE before their parallel composition in Algorithm 3.
We first define the segmentation of a graph into blocks, which is a coarsening
of the graph following a topological order.

Definition C.1 (Segmentation into blocks). Let G be an directed acyclic
graph, and k be a schedule of G. We say Q. = {Q1,Q2,...} is a segmentation
into blocks on G for k, if Q. is a partition of the vertices of G, and for any
two vertices p € Q; and q € Qi, p <. q 1mplies j < k. Fach Q; € Q, 1is called
a block of Q.. We define the highest value H(Q;) of a block Q; € Q. as

H(Q;) = max %(gq, k).

Similar to that of Liu [18], we define the hill-valley segmentation of a schedule
of a directed acyclic graph, as follows.

Definition C.2 (Hill-valley segmentation). Let G be a directed acyclic
graph, and T be a schedule of G. The hill-valley segmentation P, = {Py, Py, ...}
is a particular block segmentation into blocks on G for T, which is defined as
follows. Let vg = min™ G and

hi =max™{h € G:X(h,7) = p(7)}.
Define v; and h;, recursively, as

v; = max’ {arg min X(v,T)},

v>rh;

and
h; = max”{arg max X(h,7)}.

h>rv;—1
Finally, define Py = {v :vg <, v <; v1}, and P; = {v : v;—1 < v < v;}, for
1> 1. We say that each P; € P, is a segment of P,.. The hill-value H; and the
valley-value V; of a segment P; € P, are defined as

Hi = Z(hi,’f), and Vl = E(Ui77').
Note that X(p,7) < Hy, for any p € P;.
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The following property, similar to that given by Liu [18, Lemma 5.1], of the
hill-valley segmentation is clear from the definition.

Lemma C.1. Let G be a directed acyclic graph, T be a schedule of G, and
P, ={P1, Ps,...,P.} be the hill-valley segmentation of G for 7. Then,

H >Hy>--->H, >V, >.--->Vy >V,

Hereafter, we assume that P, implies a hill-valley segmentation of G for a
schedule 7, implicitly. Similarly, Q, implies any arbitrary segmentation, unless
explicitly stated, of G into blocks for a schedule k.

Definition C.3 (Segment indicates block). Let G be a directed acyclic
graph, T and k be schedules of G. Let P; € P. be a segment and Q; € QO
be a block. We write P; — Q;, and read P; indicates Q;, if there is a vertex
q; € Qj such that h; ,—,, qj.

We now demonstrate some properties of the hill-valley segmentation. For
Propositions C.1-C.4, we assume G is any arbitrary directed acyclic, and 7 and
k are schedules of G.

Proposition C.1. Let P; € P, be a segment and Q; € Q. be a block. If
P, — Qj, then

(ii) Vi <min{X(r, k) : 7 > 7}, where ¢f = max” Q;.

PROOF — Assume P; — ;. Then, there is a ¢ € Q; such that h; .=, q;,
following the definition of dominance given in Section 4.2.1. We prove the two
results separately as follows.

(i) By the first condition (C1) of h; ,—, ¢, we conclude
H; = 3(hi,7) < (g5, 5) < H(Qy).
(ii) By the second condition (C2) of h; ,—, gj, we have

Vi = min{X(s,7):s>,h;}
< min{¥(r,k):r >, ¢} <min{E(r, k)7 >4 47}

Proposition C.2. Let P; € P; be a segment and Q; € Q,. be a block. Let Q}, €
Q.. be another block with k < j. If P, — Qi and P; 4 Q;, then H(Q;) < H;.
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PROOF — Suppose, for the sake of contradiction, that P; — Q, and P; /A Q;
but H(Q;) > H;. Since P; — Qy, there is ¢;, € Qi such that h; .—, ¢;. Then,

min{X(s,7):s>, hi} <min{%(r,k):r>,q;}
Consider gj € Q; such that X(q}, ) = H(Q;). Then, g; <, ¢, and thus,
min{X(s,7):s>, h;} < min{%(r, k) :r>.q;}. (C.1)
Since H; < H(Q;), as we have supposed for the sake of contradiction, we have
S(hi,7) = H; < H(Q;) = S(g7, ). (€2)
Then, Equations (C.1) and (C.2) together imply h; ,—, ¢j, which arises a

contradiction with P; /4 Q. a

Proposition C.3. Let 7 = k. For any segment P; € P, there is a block
Q; € Q. such that P; — Q.

PROOF — Take any P; € Pr. Since 7 < k, we have h; .—, ¢, for some ¢j € G.

For ¢j € Qj, this implies P; — Q;, by Definition C.3 ]

Definition C.4 (Monotonic segments-to-blocks function). A  function
g : Pr— Q, is called monotonic if

(i) P, — g(P;), for any P; € P., and
(i) Q; = g(P;) and Qi = g(Pi11) implies j < k.

Proposition C.4, together with Proposition C.3, proves that there is a mono-
tonic segments-to-blocks function g,_,,, whenever 7 < k.

Proposition C.4. Let 7 <X k. For any consecutive segments P;, P;11 € P, and
any block Q; € Q, with P; — Q;, there is a block Qi € Q. such that Pit1 — Qg
and j < k.

PROOF — We prove by contradiction. Suppose the contrary that, P11 4 Q
for any k > j. Take any Qp € Q such that P11 — Qy, which exists due to
Preposition C.3. Then we have, P, = Q;, Pit1 # Qj, Piy1 = Qp, and k < j.

(1) H;+1 < H;, due to Lemma C.1,
(2) H; < H(Qj;), due to Proposition C.1,
(3) H(Q;) < Hiy1, due to Proposition C.2.
Then, we obtain H;;; < H; 41, which arises a contradiction. O

Hereafter, we focus on a particular kind of directed acyclic graph, so called
half-series-parallel. We use half-series-parallel directed graphs and Lemma C.4
as building blocks of the proof of Theorem 7.
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Definition C.5 (Half-series-parallel directed graph). A directed acyclic
graph H is called half-series-parallel, if there is a series-parallel directed graph
G and a min-w-cut (S,T) of G such that H = G[T).

Lemma C.2. Let H be a half-series-parallel directed graph, and t° be the single
sink vertex of H. Let T be a schedule of H. Then, X(p,7) > 0, for any p €

H\ {t°}.

PROOF — Consider a series-parallel directed graph G, a min-w-cut (S,7T) of G
such that G[T] = H. Take any p € H \ {t°}. For the sake of contradiction,
suppose X(p, 7) < 0. Consider the set P = {v € T : v <, p}. Then, (SUP,T/P)
is topological and w(P) = X(p,7) < 0. Therefore, ¢(S U P,T/P) = w(S) +
w(P) < w(S) = ¢(S,T), which contradicts with the minimality of (S, T'). O

Lemma C.3. Let Hy and Hy be two half-series-parallel directed graphs, and H
be the half-series-parallel directed graph obtained from Hy and Hy by unifying
their unique sink vertexr. Let A be a schedule of H and p* € H. Consider
pf =max*p € H; : p <) p*}, fori=1,2. If pt and p} both are defined, then

X(p*, A) = E(p1, A[H1]) + Z(p3, A[Hz]).-
PROOF — Assume p} and p} are defined. Then,

(A =

€

{peH:p<\p'})
{peHi:p<ip'})+w{pe Ha:p<\p"})

= w({p€ Hi:p<am)pi}) tw{p € Ha:p <ym, p3})
= X(pi, A[Hi]) + X(p3, A[H2)).

I
€

Lemma C.4. Let Hy and Hy be two half-series-parallel directed graphs, and H
be the half-series-parallel directed graph obtained from Hy and Hy by unifying
their unique sink verter. Let T be a schedule of Hy minimal for <. For any
schedule X of H, there is a schedule n of H such that (i) n induces T, and (ii)
n=x A

Before proving Lemma C.4, we state and prove Propositions C.5-C.6, which
are used in the proof of Lemma C.4. For Propositions C.5-C.6, we use the
definitions in Lemma C.4. That is, H; and Hs are half-series-parallel directed
graphs, and H is the half-series-parallel directed graph obtained from H; and
Hs by unifying their sink vertex. Accordingly, A is a schedule of H and induces
k on Hy (k = A\[Hi]), and Q, is the segmentation of H; into blocks induced
by k. This particular segmentation is built such that for any p,q € H; with
p < q, where p € Q; and q € Qy, it holds that j = £ if and only if there is no
r € Ho with p <), r <) ¢. We assume 7 is a schedule of H; such that 7 < k, and
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Jr—r @ Pr — Q, is a monotonic segments-to-block function (see Definition C.4
and the discussion after it). We introduce a schedule i which is built upon g,
over A, as follows. We replace in A each block @); € Q with the segments of

g;—l)N(Qj) ={P; € Pr : gr—u(Pi) = Q;}.

By virtue of the monotonic character of g,_,,, we end up with a schedule 7 that
induces 7 by the above-mentioned replacement. Note that 7 is equivalent to A
on Hoy, i.e., n[Hz] = A[Hz]. Figure C.2 illustrates the construction of 7 and the
notations used in the following propositions. Then, there only remains to show
that 7 < A in order to prove Lemma C.4. To do so, we need Propositions C.5-
C.7, concerned with the schedule i of H that is built upon g._,, over schedule
Aof H.

Hy
H, H, q Hy
-~ | T T - original schedule A
— —
ler p)\ Ql
- B k= AH]
q
pT
S | s ] - segments of 7 replacing blocks of k
v P
o C| T \ |- final schedule n
—
P, P

Figure C.1: Illustration of a schedule n built upon gr_, over X\, and notations used in
Propositions C.5 and C.6.

Proposition C.5. Let P; € P, be a segment and Q; € Q, be a block such
that g (P;) = Q. Recall from above that T is minimal for < on Hy and
A is any schedule of H. Let k be the schedule induced by A on Hy, and n be
the schedule of H built upon g, over X\. For any p € P; and any q € Q;, if
2(p,7) < (g, k), then E(p,n) < X(g, A).

PROOF — Assume X(p,7) < %(q, k). Let p* = max*{w € Hy,w <, p}. Then,
we have two cases to consider.

1. (p* is not defined). Then, X(p,n) = X(p,7) < X(q, k) = X(g, \).
2. (p” is defined). Then, by the use of Lemma C.3, we have

S(p,n) = S(p,7)+ S nHz))
S E(Qvn) + Z(p)\v)‘[H2]) = Z(qv )‘)

Note that by construction of n, p
justifies the last equality.

max*w € Hy,w <) ¢} which
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Proposition C.6. Recall thatn and A are schedules of H where n is built upon
Gr—r OvEr \ using the same T and k as before. Let p € Hy and p* = max™Mw €
Ho,w <y p}. If p* is defined, then Y(p*,n) < X(p, \).

PROOF — Assume p* is defined. Let p” = max?{w € Hyj,w <, p*}. We
consider the following two cases, separately.

1. (p7 is not defined). Since H; is half-series-parallel, X(p, k) > 0, as sug-
gested by Lemma C.2. Then, by the use of Lemma C.3, we have

S(ptn) = St n[Ha))
< S(pMA[Ha)) + E(p, k) = Z(p, A).

2. (p7 is defined). Let P; € P, such that p” € P;, and notice that p™ = v;.
Similarly, let Q; € Q, such that p € Q;. Let Qr = gr-x(F;), and
gy = max” Q. By definition of p* and p”, we have k < j, and thus,
D >k q. Note that P; — Q. Then, due to Proposition C.1, we have

E(p7,7) = Vi <min{E(r, k) : 7 24 g7} < X(p, k).
Then, by Lemma C.3, we have

SN n) = Sp7,7)+ S n[Hs))
< S(p,k) + S, A[Ha)) = S(p, A).

O
H1 u H2 H1 HQ
. IS - original schedule A
— —
Qr  Q p
- . — k= \[H]
| [ - segments of 7 replacing blocks of k
pT
] C| (] [ \ |- final schedule n
—
b p

Figure C.2: Illustration of a schedule 7 built upon gr_s. over A, and notations used in
Proposition C.7.
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Proposition C.7. Recall that n and A are schedules of H where 1 is built upon
Jr—sx over X using the same T and k as before. For any p € Hs, we have

S(p,n) < B(p, A).

PROOF — Let p* = max*{w € Hy,w <, p} and p” = max"{w € Hy,w <, p}.
Note that when p” is not defined, then p” is not defined either. Then, we have
the following three cases to consider.

1. (Either p” or p” is not defined). Then,
E(p,n) = X(p, n[Hz]) = %(p, A[Hz]) = 5(p, ).

2. (p" is defined, but p7 is not). Since H; is half-series-parallel, ¥(p”, k) > 0,
as Lemma C.2 suggests. Thus, by the use of Lemma C.3, we have

E(p,m) = E(p,A[H2))
< X(p, A[Hz]) + 2(p™, k) = B(p, k).

3. (Both p” and p™ are defined). Let P, € P, such that p” € P;, and
notice that p” = v;. Similarly, let @; € Q. such that p® € @Q;. Let
Qr = gr—x(P;), and ¢ = max” Q. By definition of p* and p7, we
have j > k, and thus, p* >, ¢7. Note that P, = Q. Then, due to
Proposition C.1, we have

YT, 7) =V, <min{X(r, k) : r >, qn} < Z(p~, k).
Then, by Lemma C.3, we have

X(p,n) = X(p7,7)+ X(p,n[Hz))
< X%, k) + X(p, A\[H2]) = X(p, A).

Now, we are ready to prove Lemma C.4.
PROOF — (Proof of Lemma C.4) Recall that 7 is a schedule of H; which is
minimal for <, and A is an arbitrary schedule of H that induces x on H;. Since
7 is minimal for <, 7 < k. Then, let g,_,. be a monotonic segments-to-blocks
function, which exists due to Propositions C.3 and C.4. Let n be a schedule of
H built upon g,_,, over A.

With the above construction (i) is proved, as 7 induces 7 in Hj.

We now establish (ii) n < A. For this, we show that for each p € H, there is
q* € H such that p A q*. For any p, either p € Hy or p € Hs. We explore
these two cases separately.

a) (p € Hl). Let p € P; and Q;j = gr—x(P;). Since P; — @, there is a vertex
q; € Q; such that p .=, ¢;. Now, we show that it also holds p A
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1) (C1: X(p,n) < %(q}, ). Since p .—,, ¢, we have X(p,7) < ¥(q}, k).
Then, Proposition C.5 suggests that C1 is met.

2) (C2: min{X(s,n): s>, p} < min{X(r,\):7>xq;}). We show that for
each r >y ¢, there is a vertex s >, p such that ¥(s,n) < ¥(r,\). We
examine three cases: 7 € Q;, or r € Hy \ Qj, or r € Hs.

Case 1. (7" € Qj). Since p ,—, ¢j, there is a vertex s >, p such that
Y(s,7) < X(r, k). We consider two scenarios of s € P; and s ¢ P;.

i) (s € P;). Then, Proposition C.5 suggests
E(s,n) < XE(r,A),
and notice that s >, p, as s >, p.
ii) (s ¢ P;). Then, s >, v; >; p. Since X(v;,7) < X(s,7),

by the definition of v;, we have X(v;,7) < X(r,k). Then,
Proposition C.5 suggests

S(vi, ) < X(r, A),

and notice that v; >, p, as v; >, p.

Case 2. (r € H1\ Q;). Let r € Q) and r* = max*w € Hy,w <, r}.
Since 7 >,; ¢j and 7 € Q;, it holds k£ > j, and thus, r is defined

and 7 >y ¢;. Then, Proposition C.6 suggests
S(r*,n) < 2(r, \),
and notice that r* > P, as >y q;-
Case 3. (r € Hg). Then, Proposition C.7 suggests
X(r,n) < X(r, A),
and notice that r >, p, as r >, q;-‘.

b) (p € Hz). We show p ,—» P- The first condition (C1) directly holds due to
Proposition C.7. Considering the second condition (C2), we show, for any
r >\ p, there is s >, p, such that (s,7) < X(r,A). We explore the two
cases of r € Hy and r € H,, separately.

Case 1. (r € Hl). Let 7 = max™Mw € Hy,w <) r}. Since r >, p and
p € Hy, r* is defined and 7 >, p. Due to Proposition C.6, we have

2(r, ) < B(r,N),

and notice that r >y D, as ™ >y p.
Case 2. (7‘ € Hg). Proposition C.7 suggests

E(r,m) < 5(r, ),

and notice that r >, p, as r > p.
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We first recall Theorem 7, and show the proof as a consequence of
Lemma C.4.

Theorem C.1 (Restatement of Theorem 7). Let G and G be two series-
parallel directed graphs, and G = {G1,Ga} be their parallel composition. Let
(S,T) be a min-w-cut of G, and m and wy be schedules that are cut-optimal
with the topological cuts induced by (S,T) on G1 and G, respectively. For each
schedule 7 in compliance with (S,T) of G, there is a schedule 7 in compliance
with (S,T) of G such that

(i) 7 induces w1 and To,
(ii) 7[S] = 7[S] and [T} < 4[T].

PROOF — (Proof of Theorem 7) Take any schedule v in compliance with (S, T') of
G. Let (S1,T1) be topological cut induced by (S,T) on Gy. Consider \' = ~[T]
and 7f = m[T1]. Then, 7 is minimal for =, since m; is cut-optimal with
(S1,T1). Then, we have a schedule n* of G[T] inducing 7§ such that n* < A,
as suggested by Lemma C.4. Now, consider \* = 4[S] and 7; = 71[S1]. Then,
7¢ is minimal for =, since 7 is cut-optimal with (S1,771). Then, we have a
schedule 77 of G[S] inducing 7§ such that 7° < \*, as suggested by Lemma C.4.
We consider 7 = (n*,n'). We notice that (i) 7 induces m; and v[G2] on G; and
G, respectively. It also holds that (ii) 7[S] < 4[S] and #[T] < v[T].

Now, apply the procedure given above on 7 (instead of v) for 7 (instead of
m1. Then, we obtain 7 = (n®,7") that (i) induces #[G;] and 72 on G; and Ga,
respectively. It also holds that (ii) 7[S] < #[S] and =[T] < #[T].

As a result, (i) 7 induces m; and 7. Secondly, since < is transitive, it holds
that (ii) 7[S] < ¥[S] and =[T] =< ~[T]. O

D. PC-SCHEDULE is min-cut-optimal (Theorem 8)

PC-SCHEDULE, presented in Algorithm 4, relies on TREE-SCHEDULE to com-
pute schedules for trees that are minimal for <. This latter algorithm, which
we describe below, in turn relies on Liu’s algorithm for trees. However, Liu’s
algorithm uses another model, namely the generalized pebble game: each node
is provided with a number of pebbles which should be use to pebble it. As
usual in pebble games, the objective is to pebble the tree up to the root using
a minimal number of pebbles. In order to prove that his algorithm is optimal,
Liu’s relies on the notion of Pcost sequences. In the following, we prove that a
schedule minimal for Pcost sequences is also minimal for our relation <. The
proof of Theorem D.1 thus largely relies on notations and concepts borrowed
from [18]. We first introduce a restriction on the trees on which Tree-Schedule
may be applied.
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Definition D.1 (Liu-compatible tree). Let T be a directed in-tree and r be
its root vertex. We say T is Liu-compatible if w(T[v]) > 0 for each vertex
v €T —{r}, where T[v] is the subtree rooted at v.

Algorithm D.1 TREE-SCHEDULE(G, (S,T))

Require: G = (V, E,w): Liu-compatible vertex-weighted tree with root r
Ensure: m: A minimal schedule for <
for v € V do
if v = r then
T(v) — w(T —{r})
else
7(v) = w(T —{r}[v])
Call Algorithm 4.1 in [18] (“Pebble-Ordering”) on T', with “Combine” proce-
dure from Algorithm 6.1 (ibid.) to compute schedule 7
return w

Theorem D.1. For any Liu-compatible tree T, Algorithm D.1 computes a
schedule which is minimal for <.

PROOF — For this proof, we use the notations given in [18], and we assume
that the reader is familiar with its results. In this article, Liu considers for any
vertex v of a tree a non-negative value 7(v) which represents the number of
pebbles required to satisfy this node. We consider here the following pebbling
function as defined in Algorithm D.1, namely:

_ [ w(T]) veTl —A{r}
7(v) = { w(T—A{r}) v=r. (D.1)

Notice that 7(v) > 0 for each v € T, as T is Liu-compatible. Let PARENT(v)
represent the parent vertex of v, for a vertex v € T'—{r}. As in [18], we consider
for any schedule 7 of T the value peb,(v) which represents the “total number of
pebbles used during the pebbling of the vertex v” while following schedule 7.

We first prove that with the previous pebbling function, peb,(v) = X(v, ),
for each v € T — {r}. Takeany v € T —{r}. Let F, = {r € T : r <,
v <PARENT(r)}, that is, the set populated by the root vertices of the pruned
forest. Then,

pebr(v) =Y 7(r) = Y w(Tl]) = w({u <z v}) = E(v,m).

reF, reF,

We then consider the Pcost(m), the cost sequence of a schedule 7, as defined
in [18]. We prove that if Pcost(mw) < Pcost(y) then m =< ~, for two schedules 7
and v of T

Assume Pcost(m) < Pcost(y). Now, for each vertex p € T, we need to exhibit
a vertex ¢* € T such that p .—, ¢". Since r = max"T = max” T, we have
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7 . 7. Now, take any vertex p € T — {r}. Let p reside in the it" hill-valley
segment with respect to m. By definition of < in [18, Section 5.2], there exists j
such that H; < H;, and V; <V}, where (H;,V;) and (H;,V;) are the hill-valley
values for i and j*"* segments with respect to schedules 7 and +, respectively.
Consider a vertex ¢* € T — {r} so that ¢* resides in the ;" hill-valley segment
with respect to v, and peb,(¢*) = H;, where such ¢* exists due to Equation D.1.
Now, we show p .= ¢* as follows.

1) (C1: X(p,m) < X(g*,7v))- Recall that peb(p) = X(p, ) and peb,(¢*) =
%(q*,7). Then, we have:

Y (p, 7) = pebr(p) < H; < H; = peb,(¢*) = S(q*, 7).

2) (C2: min{X¥(s,m):s>,p} < min{E(r,7):7>,¢*}). Recall that peb,(v) =
(v, 7) and peby(v) = L(v,7), for each v € T — {r}. By definition of V; and
V;
min{X(s,m):s>,p} = V; < V; = min{X(r,v):r>,¢"}.

Thanks to [18, Theorem 6.4], we known that Algorithm 4.1 in [18] with
Combine procedure 6.1 (ibid.) computes a schedule 7 of T' so that Pcost(m) <
Pcost(7), for any schedule v of T'. As a corollary, 7 is minimal for < on 7. O

Theorem D.2 (Restatement of Theorem 8). For any parallel-chain graph
G and any min-w-cut (S,T) of G, PC-SCHEDULE computes a schedule m that
is cut-optimal with (S, T).

PROOF — (Proof of Theorem 8) Let G be a parallel-chain directed graph and
(S,T) be a min-w-cut of G. We first check that both G[S] and G[T] are Liu-
compatible trees.

We only show that G[T] is Liu-compatible, as the other can be proven sim-
ilarly. For the sake of contradiction, suppose that G[T] is not Liu-compatible.
Then, there is a vertex, say v, such that w(T'[v]) < 0. Counsider the topological
cut (S',7"), where S’ = SUT[v] and T/ = G — S’. Then, ¢(S",T") = w(S5’) =
w(S) + w(Tw]) < w(S) = ¢(S,T). This contradicts the fact that (S,T) is a
min-w-cut of G.

The first steps of PC-SCHEDULE as described in Algorithm 4 is to com-
pute schedules & and 7 for G[S] and G[T] using TREE-SCHEDULE. Thanks to
Theorem D.1, we know that these schedules are minimal for <.

Then, by definition, 7 = (o, 7) is cut-optimal with (S,T), as 7 is in compli-
ance with (S,T), & is minimal for < on G[S], and 7 is minimal for < on G[S)].
O
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