J. Buolamwini and T. Gebru, Gender shades: Intersectional accuracy disparities in commercial gender classification, Conference on Fairness, pp.77-91, 2018.

S. Zafeiriou, C. Zhang, and Z. Zhang, A survey on face detection in the wild: past, present and future, Computer Vision and Image Understanding, vol.138, pp.1-24, 2015.

A. Dantcheva, P. Elia, and A. Ross, What else does your biometric data reveal? a survey on soft biometrics, IEEE Transactions on Information Forensics and Security, pp.1-26, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01247885

R. Ranjan, S. Sankaranarayanan, C. D. Castillo, and R. Chellappa, An all-in-one convolutional neural network for face analysis, Automatic Face & Gesture Recognition (FG 2017, pp.17-24, 2017.

A. Dehghan, E. G. Ortiz, G. Shu, and S. Z. Masood, Dager: Deep age, gender and emotion recognition using convolutional neural network, 2017.

Y. Wang and M. Kosinski, Deep neural networks are more accurate than humans at detecting sexual orientation from facial images, Journal of personality and social psychology, vol.114, issue.2, p.246, 2018.

X. Wu and X. Zhang, Automated inference on criminality using face images, pp.4038-4052, 2016.

A. Dantcheva, F. Bremond, and P. Bilinski, Show me your face and i will tell you your height, weight and body mass index, International Coference on Pattern Recognition (ICPR), 2018.
URL : https://hal.archives-ouvertes.fr/hal-01799574

A. Dantcheva and J. Dugelay, Female facial aesthetics based on soft biometrics and photo-quality, IEEE International Conference on Multimedia and Expo (ICME), 2011.

B. F. Klare, M. J. Burge, J. C. Klontz, R. W. Bruegge, and A. K. Jain, Face recognition performance: Role of demographic information, IEEE Transactions on Information Forensics and Security, vol.7, issue.6, pp.1789-1801, 2012.

M. Ngan, M. Ngan, and P. Grother, Face recognition vendor test (FRVT) performance of automated gender classification algorithms. US Department of Commerce, 2015.

G. Farinella and J. L. Dugelay, Demographic classification: Do gender and ethnicity affect each other?, Informatics, Electronics & Vision (ICIEV), 2012 International Conference on, pp.383-390, 2012.

C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, Fairness through awareness, Proceedings of the 3rd innovations in theoretical computer science conference, pp.214-226, 2012.

C. Garvie, A. B. Frankle, and J. , The perpetual line-up: Unregulated police face recognition in america, 2016.

Y. D. Cheng, A. J. O'toole, and H. Abdi, Classifying adults' and children's faces by sex: Computational investigations of subcategorical feature encoding, Cognitive science, vol.25, issue.5, pp.819-838, 2001.

A. Dantcheva and F. Bremond, Gender estimation based on smile-dynamics, IEEE Transactions on Information Forensics and Security, vol.12, issue.3, pp.719-729, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01412408

P. Bilinski, A. Dantcheva, and F. Brémond, Can a smile reveal your gender?, 2016 International Conference of the, pp.1-6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01387134

R. Ranjan, C. D. Castillo, and R. Chellappa, L2-constrained softmax loss for discriminative face verification, 2017.

H. J. Ryu, H. Adam, and M. Mitchell, Inclusivefacenet: Improving face attribute detection with race and gender diversity, Workshop on Fairness, Accountability, and Transparency in Machine Learning (FAT/ML), 2018.

C. Dwork, N. Immorlica, A. T. Kalai, and M. D. Leiserson, Decoupled classifiers for group-fair and efficient machine learning, Conference on Fairness, pp.119-133, 2018.

H. Han and A. K. Jain, Age, gender and race estimation from unconstrained face images, Dept. Comput. Sci. Eng, 2014.

B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney et al., Pushing the frontiers of unconstrained face detection and recognition: Iarpa janus benchmark a, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.1931-1939, 2015.

G. Levi and T. Hassner, Age and gender classification using convolutional neural networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.34-42, 2015.
DOI : 10.1109/cvprw.2015.7301352

S. Escalera, M. Torres-torres, B. Martinez, X. Baró, H. Jair-escalante et al., Chalearn looking at people and faces of the world: Face analysis workshop and challenge, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.1-8, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01381152

Z. Zhang, Y. Song, and H. Qi, Age progression / regression by conditional adversarial autoencoder, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
DOI : 10.1109/cvpr.2017.463

URL : http://arxiv.org/pdf/1702.08423

F. Schroff, D. Kalenichenko, and J. Philbin, Facenet: A unified embedding for face recognition and clustering, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.815-823, 2015.
DOI : 10.1109/cvpr.2015.7298682

URL : http://arxiv.org/pdf/1503.03832

D. Yi, Z. Lei, S. Liao, and S. Z. Li, Learning face representation from scratch, 2014.

Y. Fang, Z. Ma, Z. Zhang, X. Y. Zhang, and X. Bai, Dynamic multi-task learning with convolutional neural network
DOI : 10.24963/ijcai.2017/231

URL : https://www.ijcai.org/proceedings/2017/0231.pdf

X. Yin and X. Liu, Multi-task convolutional neural network for pose-invariant face recognition, IEEE Transactions on Image Processing, 2017.
DOI : 10.1109/tip.2017.2765830

URL : http://arxiv.org/pdf/1702.04710

G. B. Huang, M. Mattar, T. Berg, and E. Learned-miller, Labeled faces in the wild: A database forstudying face recognition in unconstrained environments, Workshop on faces in'Real-Life'Images: detection, alignment, and recognition, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00321923

Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, Ms-celeb-1m: A dataset and benchmark for large-scale face recognition, European Conference on Computer Vision, pp.87-102, 2016.
DOI : 10.1007/978-3-319-46487-9_6

URL : http://arxiv.org/pdf/1607.08221

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, Inception-v4, inception-resnet and the impact of residual connections on learning, 2017.

K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, Joint face detection and alignment using multitask cascaded convolutional networks, IEEE Signal Processing Letters, vol.23, issue.10, pp.1499-1503, 2016.
DOI : 10.1109/lsp.2016.2603342

URL : http://arxiv.org/pdf/1604.02878