A. Ayala, X. Claeys, and L. Grigori, ALORA: Affine Low-Rank Approximations, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01762882

M. Bebendorf, Approximation of boundary element matrices, Numerische Mathematik, vol.86, issue.4, pp.565-589, 2000.
DOI : 10.1007/pl00005410

M. Bebendorf, Hierarchical Matrices, 2008.

S. Börm, Efficient Numerical Methods for Non-local Operators: H-2 matrix Compression, Algorithms and Analysis, 2010.

C. Boutsidis, M. Mahoney, and P. Drineas, An improved approximation algorithm for the column subset selection problem, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.968-977, 2009.
DOI : 10.1137/1.9781611973068.105

URL : https://epubs.siam.org/doi/pdf/10.1137/1.9781611973068.105

J. Chiu and L. Demanet, Sublinear randomized algorithms for skeleton decompositions, SIAM Journal on Matrix Analysis and Applications, vol.34, issue.3, pp.1361-1383, 2013.
DOI : 10.1137/110852310

URL : http://arxiv.org/pdf/1110.4193

A. Çivril and M. Magdon-ismail, Exponential inapproximability of selecting a maximum volume sub-matrix, Algorithmica, vol.65, issue.1, pp.159-176, 2013.

S. Dasgupta and Y. Freund, Random projection trees and low dimensional manifolds, Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing (STOC), pp.537-546, 2008.
DOI : 10.1145/1374376.1374452

URL : http://www.cs.ucsd.edu/~dasgupta/papers/rptree-stoc.pdf

J. Demmel, L. Grigori, M. Gu, and H. Xiang, Communication avoiding rank revealing QR factorization with column pivoting, SIAM J. Matrix Anal. Appl, 2015.
DOI : 10.21236/ada584728

URL : https://hal.archives-ouvertes.fr/hal-01112914

J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-optimal parallel and sequential QR and LU factorizations, 2008.
DOI : 10.1137/080731992

URL : https://hal.archives-ouvertes.fr/hal-00870930

J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-optimal parallel and sequential QR and LU factorizations, SIAM J. Sci. Comput, vol.34, issue.1, pp.206-239, 2012.
DOI : 10.1137/080731992

URL : https://hal.archives-ouvertes.fr/hal-00870930

A. Deshpande, L. Rademacher, S. Vempala, and G. Wang, Matrix approximation and projective clustering via volume sampling, Theory of Computing, vol.2, pp.225-247, 2006.
DOI : 10.1145/1109557.1109681

URL : http://www-math.mit.edu/~vempala/papers/matrixsoda.ps

W. Fong and E. Darve, The black-box fast multipole method, Journal of Computational Physics, vol.228, pp.8712-8725, 2009.
DOI : 10.1016/j.jcp.2009.08.031

G. Golub and C. Van-loan, Matrix Computations, 1996.

S. Goreinov, I. Oseledets, D. Savostyanov, E. Tyrtyshnikov, and N. Zamarashkin, How to find a good submatrix, ICM HKBU, 2008.
DOI : 10.1142/9789812836021_0015

S. Goreinov and E. Tyrtyshnikov, The maximal-volume concept in approximation by low-rank matrices, Contemporary Mathematics, issue.280, pp.47-51, 2001.
DOI : 10.1090/conm/280/4620

S. Goreinov and E. Tyrtyshnikov, Quasioptimality of skeleton approximation of a matrix in the chebyshev norm, Doklady Mathematics, vol.83, issue.3, pp.374-375, 2011.

A. Gray and M. A. , N-body problems in statistical learning, Adv. Neural Inf. Process. Syst, pp.521-527, 2001.

L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Journal of Computational Physics, vol.73, issue.2, pp.325-348, 1987.

L. Grigori, S. Cayrols, and J. Demmel, Low rank approximation of a sparse matrix based on lu factorization with column and row tournament pivoting, SIAM J. Sci. Comput, vol.40, issue.2, pp.181-209, 2018.
DOI : 10.1137/16m1074527

URL : https://hal.archives-ouvertes.fr/hal-01313856

M. Gu and S. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factorization, SIAM J. Matrix Anal. Appl, vol.17, issue.4, pp.848-869, 1996.

W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis, Springer Series in Computational Mathematics, 2015.

N. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics, 2002.

R. Horn and C. Johnson, Topics in Matrix Analysis, 1991.

S. Kapur and D. Long, N-body problems: IES3: Efficient electrostatic and electromagnetic simulation, IEEE Computational Science and Engineering, vol.5, issue.4, pp.60-67, 1998.

P. Koumoutsakos, Fast multipole methods for three-dimensional N-body problems, pp.377-390, 1995.

N. Kumar and S. G. , Literature survey on low rank approximation of matrices. Linear and Multilinear Algebra, vol.65, pp.2212-2244, 2017.

M. Mahoney and P. Drineas, Cur matrix decompositions for improved data analysis, Proceedings of the National Academy of Sciences, vol.106, issue.3, pp.697-702, 2009.

W. March and G. Biros, Far-field compression for fast kernel summation methods in high dimensions, Applied and Computational Harmonic Analysis, vol.43, issue.1, pp.39-75, 2017.

P. G. Martinsson and V. Rokhlin, An accelerated kernel-independent fast multipole method in one dimension, SIAM J. Sci. Comput, vol.29, issue.3, pp.1160-1178, 2007.

L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math. Oxford Ser, vol.11, issue.2, pp.50-59, 1960.

A. Osinsky and N. Zamarashkin, Pseudo-skeleton approximations with better accuracy estimates, Linear Algebra and its Applications, vol.537, pp.221-249, 2018.

N. A. Ozdemir and J. Lee, A low-rank IE-QR algorithm for matrix compression in volume integral equations, IEEE Transactions on Magnetics, vol.40, issue.2, pp.1017-1020, 2004.

C. Pan and P. Tang, Bounds on singular values revealed by QR factorizations, BIT Numerical Mathematics, vol.39, issue.4, pp.740-756, 1999.

S. Rjasanow, Adaptive cross approximation of dense matrices, International Association for Boundary Element Methods Conference, IABEM, 2002.

D. Sommerville, An Introduction to the Geometry of n Dimensions, 1958.

O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements, 2008.

S. Voronin and P. G. Martinsson, Efficient algorithms for cur and interpolative matrix decompositions, Advances in Computational Mathematics, vol.43, issue.3, pp.495-516, 2017.

%. and Y. , Source and target points, given as matrices of size (mxd) and (nxd)

, % respectively, where d is the geometric dimension 5 % k: fixed approximation rank

, Laplacian kernel: fun = @(x,y) ?1/(2 * pi) * log(norm, % fun: kernel function

, % Exponential kernel: fun = @(x,y) exp(1i * norm(x?y))/norm

, Gravitation kernel: fun = @(x,y) 1/(4 * pi * norm

, Returns: 10 % CUR: a rank?k approximation of matrix A(i,j)=fun, vol.9

%. Cxuxr, C. , and R. Gcs, U are complex matrices of size (mxk), (kxn), (kxk) 12 13 function

, C=zeros(m,t

, R=zeros(k,n)

, % Decompose target domain into t subdomains

=. Sampling,

=. Sampling,

, 1:k), Q=Q

, :k)), p _ c

_. I=p, :k); j=1:size(Y,1)

·. ·-·-,-y-h-}-?-y, has two sons corresponding to disjoint sets of pints separated by the plane orthogonal to the line having direction given as the first left singular vector of matrix T := [y 1 , · · · , y h ] ? g ? R 3×r , and intersecting it at g. The following algorithm, 53 calling function BinaryPartition, which is an approach known as geometrically balanced clustering, c.f. [4, Alg, vol.3

, %% Select target points using geometrically balanced partition 2 % Require

, % Y: set of n target points, Y is an mxd matrix, d: geometric dimension

%. ,

[. G{1}, G. S{1}, and . Geo, Bal _ Partition(Y

=. S{i} and . {},

=. G{i} and . {}, for j = 1:size(S{i?1},2) % number of clusters at previous generation 27 [g,s] = Geo _ Bal _ Partition, vol.26

=. S{i} and . Cat,

=. G{i} and . Cat, G{i},g); j=1:size(G{l},2) 35 for i=1:size(Y,1) 36 if(G{l}{j}'==Y(i

, J(j)=i

%. , cluster of points 53 % Returns: 54 % Son: list of two cluster sons

%. , contains the gravity centers of cluster sons

%. Gcc, , vol.59, p.60

=. S-_-y'-*-ones,

. Cov-=-s-_-y-?-g,

~. and ~. , Cov)

=. ,

=. ,

, Getting the index of target point closest to the gravity center of S _ y 73 v = (S _ y ? g

, n _ s = size(Sons{j},1)

=. G{j} and . Sons{j}, * ones(n _ s,1)/n _ s

=. Sons{j} and ?. G{j},

(. G{j}=sons{j},

, Selecting columns using Nearest-Neighbors approach This approach consists in selecting t target points the closest to the set of source points, see Figure 2c. Then, indices corresponding to these points are the selected columns to be used to compute a CUR approximation and we call the resulting algorithm CUR_NNS as

, %% Select target points using Nearest?Neighbors