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General context

Symmetric key cryptography is an essential part of communication systems, where a secret key is
used to protect data confidentiality. Surprisingly, the only way of trusting these ciphers is to perform
continuous analysis that update the security margin. With the advent of quantum computers in
an arguably near future, the security of nowadays ciphers has been put into question. While most
currently used asymmetric primitives would be completely broken, doubling the key size of symmetric
constructions provides the same level of security with respect to exhaustive key search. However, we
still have a long way to go in the field of quantum cryptography and further cryptanalysis must be
carried out to reassure the validity of these emerging ciphers.

Research problem

This internship has taken place in the context of the ERC project QUASYModo, which aims to provide
quantum-secure symmetric primitives. We have studied the Salsa20 family of ciphers [Ber08b], which
has received very little cryptanalysis ever since the most relevant result one decade ago [AFK+08].
Recent research has shown some evidence that 12-rounds Salsa suffice to provide security against the
current best known differential attacks [CM16]. Despite their believed resistance against quantum
computers, no one has ever performed cryptanalysis on ARX primitives with a quantum adversary in
mind, due to the lack of theory surrounding them. Such scrutiny is utterly important now that the
inclusion of this cipher suit in TLS 1.3 is almost complete.

Contribution

Before providing the first quantum attack we tried to improve the best classical ones. My contribution
to the stated problem can be summed up in the following points. First, an introductory cryptanalysis
of Salsa20/8 (section 3). This comprises a study of the diffusion of the cipher, a construction-based
formula to find good differentials, an analysis of linearized versions to find neutral bits and a prob-
abilistic heuristic to estimate differences of ARX rounds. Second, we propose a faster attack on 8
rounds of 256 bit key Salsa combining conditional cryptanalysis and the novel idea of forward PNBs
(4.2). Third, we revisit some state-of-the-art attacks to give more correct time complexities (4.3).

Arguments supporting its validity

During this internship, we used the toolkit Merengue, a set of functions written in Python and C
for the cryptanalysis of Salsa and other ARX ciphers. We programmed this software to design the
proposed attack, thanks to the multiple functionalities provided. In order to guarantee its validity,
the toolkit makes use of the official implementation of Salsa20 submitted to the eSTREAM portfolio1.
Together with a test suite, this program is publicly accessible on the author’s GitHub account2.

1www.ecrypt-eu.org/stream/e2-salsa20.html
2https://github.com/queroliita/merengue
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Summary and future work

This document gathers a brief view of the current panorama in the attacks on the symmetric ci-
pher Salsa20, supplementary differential and linear cryptanalysis performed on this ARX primitive,
and the introduction of a new cryptanalysis approach that lays the foundations of our attack on
256 bit key Salsa20/8 with time complexity 2241.8 and data 231.7, which is the fastest known result of
this cipher. We intend to submit these results to some important cryptologic conferences in early 2019.

The next question to be addressed is the feasibility to perform an attack on over 9 rounds of Salsa.
We give some ideas, that we would like to pursue, that could help meet this target in the near future
through imposing conditions on the attacker controlled initial bits. Another important step to be
taken by this team is to tailor a quantum-based attack on ARX ciphers by adapting existing classical
attacks in the quantum setting.

Notes and acknowledgements

The present document is written in English because of my insufficient proficiency in the French lan-
guage. I must clarify in advance that the work presented in this report is not a quantum study. Owing
to the lack of sufficient time, we focused on classical attacks and left quantum strategies for further
partnership during my PhD studies.

I would like to acknowledge the Fondation Sciences Mathématiques de Paris for awarding me with
the PGSM fellowship to study the MPRI. Special thanks to Anne Canteaut, who has performed an
excellent mentorship during this year introducing me into the world of secret keys. My gratitude
to Maŕıa Naya Plasencia, for giving me the opportunity to work at this top research institute while
making me feel at home.
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1 Background

The focus of our research, the 256 bit key Salsa20 pseudorandom function, is explained in this section.
This ARX primitive, namely add-rotate-xor, is the basis of the stream cipher of the same name. We
also explain its expected security and a brief introduction to differential and linear attacks. When we
cannot attack the whole cipher, cryptanalysis of modern primitives considers reduced rounds versions
of the ciphers to determine the security margin, since they present more easily exploitable properties.

1.1 Salsa20 Cipher

The Salsa20 cipher was created by Daniel J. Bernstein as a candidate in the eSTREAM project [Ber05].
It is a 512-bit state stream cipher divided into 32-bit words represented in little-endian. This bitstring
depends on a 256-bit key, a 128-bit constant, a 64-bit nonce and a 64-bit counter (note these last 128
bits of initial value are attacker-controlled in our quite realistic model). Because 4 words are fixed for
all instances of the cipher, this pseudorandom function maps F384

2 → F384
2 , with 32 bytes of unknown

input. Its initial state can be seen as a square matrix of 16 words, following the structure below:

c0 k0 k1 k2

k3 c1 n0 n1

p0 p1 c2 k4

k5 k6 k7 c3

c0 = 61 70 78 65

c1 = 33 20 64 6E

c2 = 79 62 2D 32

c3 = 6B 20 65 74

X =

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

XT =

x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

(a) (b) (c) (d)

Figure 1: Structure of a Salsa20 state: (a) Location of keywords, constants, nonces and counters in
the initial state; (b) Constants in hexadecimal; (c) Odd rounds state; (d) Even rounds state.

The underlying machinery of the cipher Salsa is an ARX function that modifies the initial state X to
obtain the final state, referred to as XR. This function called QuarterRound is applied R consecutive
times on X, depending on the number of rounds specified in the mode of the cipher Salsa20/R:
Salsa20/8 (already broken), Salsa20/12 (recommended) and Salsa20/20 (for added security).

a d c b

b a d c

c b a d

d c b a

b ⊕ = (a+ d) ≪ 7

c ⊕ = (a+ b) ≪ 9

d ⊕ = (c+ b) ≪ 13

a ⊕ = (c+ d) ≪ 18

b

c

d

a

(a) (b) (c)

Figure 2: Definition of a QuarterRound: (a) Location of word types; (b) ARX operations of a
QuarterRound; (c) Circuit representation of a QuarterRound.

A Salsa20/R keystream Z = (X +XR) is computed after applying the QuarterRound function R times
(the official versions being either 8, 12 or 20) to the initial state X, followed by a modular addition
feedforward to prevent backward substitution. This pseudorandom function is applied to the columns
of the matrix independently in odd rounds, whereas even rounds use its rows instead. Another way
of putting it, with shorter software implementation, is to perform a matrix transposition after every
QuarterRound, except for the last one. This function updates each word by XORing its previous
value with the addition of the two words above, rotated to the left a predefined number of bits. The
reverse Salsa function is usually referred to with negative exponents. That is, the initial state would
be recovered if the operation X = (Z −X)−R were performed.
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1.2 Expected Security

The ciphertext generated by an additive stream cipher (the most common type) results from XOR-
ing the keystream produced by the pseudorandom generator with the original message, recalling the
one-time-pad. The main difference lies in the pseudorandom function used to generate the secret
keystream in the former, from a small secret key of n bits (the seed). The goal of the cryptographer is
to build a primitive that generates sequences undistinguishable from random, so that the best method
to guess the n bits of the used seed is brute force.

This generic attack by brute force has a cost of 2n computations, as recovering the good seed is always
possible by trying them all, checking if the generated keystream is the same as a given one. This
key-recovery attack should be the best one against the cipher. Otherwise, another key-recovery attack
in symmetric cryptography is considered a break as long as it is faster than exhaustive search over the
keyspace (i.e. < 2256 for the studied version of Salsa).

The cryptanalysis results that we will explain throughout this document assume the model of known-
plaintext attack (KPA). In this widespread model, the attacker is given both the plaintext and its
corresponding ciphertext. In the present case, the attacker will have access to Z and Z ′. Plus, we
reasonably assume the attacker can control the nonce and the block counter.

1.3 Differential and Linear Cryptanalyisis

Differential cryptanalysis studies how an input difference between states can generate a certain differ-
ence in the output. We define now the particular case of single bit differentials, whose notation is easier
to understand. We refer to input differential ∆0

b as the XOR between two states X,X ′ that differ in the
bit b. After applying the primitive on both initial states, the output differential ∆r

β is computed as the
XOR of both final states Y, Y ′ in the bit β after r rounds. In the case of a perfectly random function
50% of the times yβ = y′β. When the stream cipher uses a weak pseudorandom function, there may be
some correlation between these two bits, meaning that the single bit input difference has some mean-
ingful effect on the β values of Y, Y ′. More formally, Pr{yβ 6= y′β|xb 6= x′b ∧ xi = x′i ∀i 6= b} = 1

2(1 + ε)
for a non-negligible bias ε. Usually, a bias is considered significant if the number of samples used to
compute this probability is N > ε−2.

Multibit differentials can be classified in three groups: first order multibit differentials, where the
XOR difference of multiple bit positions in the output is measured after fixing a single bit difference
in the input; multiple order single bit differentials, where a number of differences in the initial states
may produce a bias in a single output bit; and multiple order multibit differentials, which considers
multiple bits both in the input and the output. Generally speaking, they comprise the cases where
the initial states differ in in bits and the output difference is measured in some bits out. Similarly,
Pr{

⊕
β∈out yβ 6= y′β|

∧
b∈in xb 6= x′b, xi = x′i ∀i 6= b} = 1

2(1 + ε).

Given a number of independent binary random variables X1, . . . , Xn with Pr{Xi = 0} = 1
2(1 + εi)

each, the piling-up lemma [Mat94] states that the bias of the probability that all of them hold can be
computed as the product of each individual bias: Pr{

∑n
1 Xi = 0} = 1

2(1 +
∏n

1 εi). This lemma is used
extensively to estimate linear approximations of stream ciphers.

2 State of the Art

The strategies presented in this section aim at recovering the secret key. Two years after Bernstein
presented Salsa20 in 2005, Aumasson, Fischer, Khazaei, Meier and Rechberger published the first
attack over 8 rounds of this cipher in 2251 time with 231 data. Eversince then, very little progress has
been made to decrease the attack complexity of Salsa20/8, which remains the furthest broken cipher in
the family (see Table 1 for details). This section presents such attack, which has become a widespread
base technique to perform the cryptanalysis of Salsa.
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Rounds Year Reference Time Data

5 2005 [Cro06] 2165 26

5 2006 [FMB+06] 281 224

5 2006 [SZFW13] 255 210

5 2006 [CM17] 28 28

6 2006 [FMB+06] 2177 215

6 2006 [SZFW13] 273 216

6 2006 [CM17] 232 232

7 2007 [TSK+07] 2184 212

7 2007 [AFK+08] 2153 226

Rounds Year Reference Time Data Memory

7 2012 [SZFW13] 2148 224

7 2017 [CM17] 2137 261

8 2007 [AFK+08] 2251 231

8 2012 [SZFW13] 2250 227

8 2015 [MGM15] 2247.2 227.2

8 2016 [Mai16] 2245.5 222.5

8 2017 [CM17] 2244.9 230.8

8 2008 [PSB08] 2192 2191 2192

8 2008 [Ber08a] 296 264 296

Table 1: Chronology of previous 256-bit Salsa20 cryptanalysis

2.1 Aumasson’s Attack

In [AFK+08], Aumasson et al. presented the best known attacks so far to this cipher family, i.e.
Salsa, ChaCha and Rumba. Taking advantage of the similar construction of the first two ciphers, they
designed an attack working for both of them which allows to break 256-bit version of Salsa20/8 using
truncated forward differentials and probabilistic backward computation. In short, they find an initial
bit that is correlated with another bit after 4 rounds and they measure this correlation performing 4
reverse rounds from the output state of Salsa20/8 guessing fewer keybits than with exhaustive search.

Forward

Because Salsa20 is a pseudorandom function, one may expect it will not present a perfectly random
behaviour for the first rounds. The forward step of this attack consists on finding a good single bit
input differential ID that produces some high bias a few rounds later in the output differential OD,
generating an interesting pair (OD|ID). If the only difference between the initial states X and X ′ is
the jth bit of word i, we define the ID as ∆0

i,j = xi,j ⊕x′i,j = 1 and the function f = ∆r
p,q = xrp,q⊕x′rp,q

outputs the XOR difference of the bit (p, q) between the two intermediate states Xr and X ′r, then the
bias εf of the OD after r < R rounds is defined by the probability over all nonces, n, and counters, p,
Prn,p{f = 1|∆0

i,j} = 1
2(1 + εf ), for the same fixed key, which is measured in the bit (p, q).

Unsurprisingly, the higher the bias the faster to detect and thus, the easier the attack. Their exper-
iments found no significant bias for single bit differences for over 4 rounds. Aumasson et al. use the
pair (∆4

1,14|∆0
7,31) with forward bias εf = 0.131, though many other better single differentials were

found afterwards [MGM15] by exhaustive search. Other approaches suggest multibit higher order dif-
ferentials [Ish12, SZFW13, CM17], sometimes obtaining higher biases after 5 rounds. However, none
suffices to perform an attack over 8 rounds by mere forward computation.

Backward

Aumasson’s R-round attack combines an r-round forward differential with R− r inverse Salsa rounds
and by guessing keybits. Given that an output state is defined as Z = (X + XR) where the state X
was created using the seed k, an intermediate state can be computed as Xr = (Z −X)r−R.

Figure 3: Scheme of the construction of a Salsa20/R keystream
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The idea is to perform an exhaustive search over the m most influential keybits, reverse 4 rounds and
expect a random outcome when the guess of keybits is incorrect. Put it another way, let X̂ be an
initial state with the same diagonal constants and IV as X and key k̂, there will be no bias if there
were no relation between Z and X̂. That is, if X̂ was built with a different choice of the key k̂ 6= k,
the outcome of (Z − X̂) will be a random matrix. Afterwards, an independent second search is used
to obtain the remaining 256−m keybits.

In order for this attack to work, the authors evaluate a function g over only m keybits and bias
εg, which is expected to behave similarly to f such that Prn,p{f = g} = 1

2(1 + εg). The backward

function is defined as g = yp,q ⊕ y′p,q where Y = (Z − X̂)R−r and Y ′ = (Z ′ − X̂ ′)R−r. It can be
obtained by finding the most significant keybits and setting the n remaining ones to zero, the so called
probabilistic neutral bits (PNBs). They use a neutrality measure such that 1

2(1+γi) is the probability
that complementing the keybit ki will not change the output of f when reversing by R − r rounds
from the output keystream. Fixing a threshold determines a compromise between the set of significant
keybits (≤ γ) and the overall complexity of the attack: the higher the threshold, the slower the search
but higher the bias as well.

γi


1, f never depends on ki
0, f half times depends on ki
−1, f always depends on ki

Figure 4: Neutrality measure

Complexity

The actual attack would measure a total bias ε which can be estimated as εf · εg. The authors
use Neyman-Pearson’s decision theory [Sie85] to estimate the number of input pairs satisfying the

ID needed to detect such bias as N ≈ (
√
α log 4+3

√
1−ε2

ε )2, where Pr{false alarm} = 2−α, for each
choice of the subkey. When a non-negligible bias is detected, an additional exhaustive search is per-
formed to obtain the remaining non-significant keybits. This means the attack time complexity is
2m(N + 2n2−α) = 2mN + 2256−α and data complexity N . Their experiments estimate an attack com-
plexity of 2251 with 231 pairs and α = 8. They detect a bias |ε?f | = 0.131, and using the threshold

γ = 0.12, they obtain |ε?g| = 0.0011, |ε?| = 0.00015 and n = 36 PNBs at x41,14.

Seven years later, Maitra et al. revisited this attack [MGM15] using slightly modified parameters to
obtain two better attacks with 2247.2 time complexity. They tried both increasing the median bias
|ε?| and the number of PNBs. The former strategy consists on taking the median of a few average
measurements of ε to obtain a bias of 0.00060 instead and setting α = 12.82 as well. Regarding the
latter, they decrease the threshold γ down to 0.0488 and choose 41 PNBs with |ε?| = 0.000106.

2.2 Maitra’s Approaches

After revising Aumasson’s proposal, Maitra presented an attack on Salsa20/8 which outperformed the
then fastest strategies. One year later, and together with Choudhuri, he published a new differential-
linear cryptanalysis on Salsa, the most recent work on this cipher. We will describe now these two
attacks, as well as the theoretical bases of the latter.

Chosen IV

The attacker in [Mai16] takes advantage of its control over the initial values to slow down the propa-
gation of differences along the initial rounds of Salsa. In particular, the single ID in ∆0

7,31 produces
between 4 and 22 differences after the first QuarterRound. Maitra’s idea consists of choosing pairs
whose x7 will only generate 4 differences at this stage in order to measure a higher forward bias.
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Column operations are performed independently, so one can just focus on the fourth column to un-
derstand the source of disparity between the number of differences. The first step does not depend
on x7, so there are no differences between x13 and x′13 . The XOR in the second step keeps one single
difference in the MSB of x17. The addition in the third step will not produce a carry, so the only
difference will occur at ∆1

11,12. Last, the number of differences at x115 depends on the carry in the 12th

bit of (x17 + x111). If the bits 11...0 do not produce a carry and x17,12 = 0, then no differences will be

propagated further. The same is true when there is carry and x17,12 = 1. This means, in half of the

cases only two more differences will occur at ∆1
15,17 and ∆1

15,30.

The attack itself follows the same steps than Aumasson’s one, except for the proper choice of IVs.
His experiment comprises 256 random keys, and for each fixed key he computes the median biases
using the 231 values for x07 that produce only 4 differences after the first QuarterRound (being found
by exhaustive search). Using 33 PNBs, he obtained ε?f = 0.228538, ε?g = 0.013778 and ε? = 0.003154.

If α = 15 then N ≈ 222.5 so the overall attack complexity is 2245.5.

Hybrid Model

The analysis in [CM16] lays the foundations of the attack in the following section and gives an upper
bound on the number of Salsa rounds needed to achieve the desired level of security. The proof is
based on a linear version of the cipher which substitutes modular additions to exclusive OR operations
(+ 7→ ⊕). By the piling-up lemma, they state that any actual forward bias is upperbounded by the
bias in the linear counterpart. This proof of security uses two well known results in cryptanalysis.

First, a distinguisher requires the forward bias be more than 2−
k
2 [MS02]. Otherwise, attacks cannot

be faster than exhaustive search. Last, a feasible attack must satisfy εfεg < 2−
n
2 .

The starting point of this proof is the number of bit dependencies between words in consecutive rounds.
Because of the cipher structure, the first types of words will be the ones with the least number of
dependencies with the previous round. This means b words have 3 dependencies, c words have 5, d
words have 9 and a words have 15. Note the transpose between rounds swaps the roles of b and d
words. Denoting |εrOD| < 1−δ the forward bias in the output differential after r Salsa rounds, then we
can compute an upper bound of this bias for each type of word using the dependencies above. This
means, the biases after one more round can be estimated with the following expressions.

Bit b−1 c−1 d−1 a−1 Bias upper bound

bi 1 0 1 1 |εr+1
b | < (1− δ)3

ci 1 1 1 2 |εr+1
c | < (1− δ)5

di 2 1 3 3 |εr+1
d | < (1− δ)9

ai 3 2 4 6 |εr+1
a | < (1− δ)15

Table 2: Inter round word dependencies

With that in mind, one can check that the highest bias after 2 more rounds will be |εr+2
b |, upperbounded

by (1−δ)27=1·9+0·5+1·3+1·15. Setting this quantity to 2−128 implies non-indistinguishability of the bias.
One can stop after r + 2 rounds if the forward bias after r rounds is less than 0.037402, higher than
the best known |ε?f | for 5 Salsa rounds. Considering now the backward direction, it is known that
|εg| < 1 for −4 rounds and single bit OD and obviously n < k, so the condition above will hold

because εf < 2−
k
2 is already verified. Plus, their experiments show that no PNBs can be found for

more than 4 rounds backwards. Put all together, this study gives a proof of security under differential
attacks on a linearized version of the cipher after 12 rounds (i.e. 5+2+5). Given that the actual
biases will be smaller than their linear version, it gives evidence that 256-bit key Salsa20/12, the
accepted eSTREAM candidate, suffices to obtain the desired level of security with respect to this type
of attacks. Conversely, it leaves an open door to the cryptanalysis of 9, 10 and 11 rounds of Salsa,
which have anyhow no known improvement.
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Multibit Differentials

The full version [CM17] of the paper above includes a differential-linear attack on Salsa20/8 that takes
advantage of the structure of the cipher to find multibit differentials. Unlike single bit differentials,
this task is unfeasible by brute force search (namely, in the order of

(
512
x

)
). Their approach gives a

theoretical reason of many multibit differentials found in the literature.

Differential-linear analysis [BDK02] gives the means to study a cipher from a differential that creates
a linear approximation. This version will output the same result as the original function with some
biased probability Pr{f = l} = 1

2(1 + εl), where the differential-linear bias is εfε
2
l .

The Salsa QuarterRound is linear (εl = 1) when the addends of the ARX operation are the LSB, so
there is no input carry and additions behave like XOR. Here, the bias of some active bits at round r
can be expressed as a linear combination of active bits from the next round.

ε{cr9} ·ε{ar0} ≈ ε{c
r+1
9 ⊕ br+1

0 } ε{d r
13} = ε{dr+1

13 ⊕ c
r+1
0 ⊕ br+1

0 } ε{ar18} = ε{ar+1
18 ⊕d

r+1
0 ⊕ cr+1

0 }

For all other cases (εl < 1), the linear approximation leads to some loss of information. They substitute
modular additions si = αi + βi for si = αi ⊕ βi ⊕ αi−1, which holds true 75% of the times. They
extend this for r + 2 rounds to obtain multibit forward biases for up to 6 rounds. Experiments show
that the highest biases can be observed when the OD is a d word. In particular, they find a single bit
ID multibit differential of 19 OD after 6 rounds, whose equations follow this pattern:

εl = 1
23

: b ri+7 = br+1
i+7 ⊕ ar+1

i ⊕ ar+1
i−1 ⊕ d r+1

i−18 ⊕ cr+1
i−18 ⊕ d r+1

i ⊕ cr+1
i−13 ⊕ br+1

i−13 ⊕ br+1
i−14

εl = 1
22

: c ri+9 = cr+1
i+9 ⊕ br+1

i ⊕ ar+1
i ⊕ ar+1

i−1 ⊕ d r+1
i−18 ⊕ cr+1

i−18

εl = 1
2 : d r

i+13 = d r+1
i+13 ⊕ cr+1

i ⊕ br+1
i ⊕ br+1

i−1

εl = 1
2 : ari+18 = ar+1

i+18 ⊕ dr+1
i ⊕ cr+1

i ⊕ cr+1
i−1

εl = 1
26

: d r
13 = br+2

0 ⊕ ~c r+2
19 ⊕ d

r+2

19 ⊕ d
r+2

18 ⊕ cr+2
0 ⊕ ~d

r+2

23 ⊕ a
r+2
23 ⊕ a

r+2
22 ⊕ ~b r+2

5 ⊕ cr+2
5

⊕ d r+2
13 ⊕ ~a r+2

6 ⊕ ~a r+2
5 ⊕ b

r+2

20 ⊕ ~c r+2
20 ⊕ b

r+2

6 ⊕ ~c r+2
25 ⊕ d r+2

25 ⊕ d r+2
24

Unfortunately, a large number of OD decreases enormously the number of PNBs. Then, the actual
attack uses the linear approximation of d to go 5 rounds forwards and 3 rounds backwards with 42
PNBs. They use the multibit differential (∆5

9,0 ⊕∆5
13,0 ⊕∆5

1,13|∆0
7,0) with εf = −0.114. In order to

get higher biases (double it, in fact), they also apply the Chosen IV strategy to ensure the minimal
number of differences after the first round.

They perform an exhaustive computation on the last column to identify the suitable combinations of
x3, x7, x11, so the attack has a data complexity overhead of 296. With εf = −0.233918, εg = 0.000752,
ε = −0.000178 and α = 15.5, they get time complexity of 2244.9 and N ≈ 230.8 (296 in the worst case).
Despite the smaller time complexity, its augmented data requirement makes this approach a trade-off,
in comparison with the previous best known attack.

3 Tentative Cryptanalysis

This section shows the steps I made throughout this internship, as well as a basic iterative technique
to estimate the bias introduced by an ID in linear time in the word length named PDARX.

3.1 Preliminary View

During the first part of my internship, I analysed simplified versions of Salsa for a better understanding
of its behaviour. The most relevant remark is that the cipher structure itself promotes the presence
of good differentials that include, what we called, “slow-update” and “slow-propagate” words.
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Diffusion

Due to this cipher’s construction, we observe words with different properties. First, words in the main
diagonal have the largest number of dependencies on the words from the last round. Second, words
of type b have fewer dependencies on words from last round. Third, words of type c are the slowest
to be propagated (i.e. affect other words) Fourth, words of type d are the slowest to be updated (i.e.
be affected by other words). One must notice that a and c words maintain the same role from odd to
even rounds, whereas b and d words swap [CM16]. A priori, this means that a good differential may
place its ID bit in a c word whereas one will observe the OD in a slow-update word b or d (after odd
or even rounds, respectively).

Salsa20 takes 3 rounds until every word affects each word in the block, and 4 rounds until each bit
affects every single bit. We checked the later statement considering linear dependencies with the
propagation module of Merengue, that we will explain in section 4.1. The former claim can be easily
proven by a careful study of the QuarterRound, counting the number of word dependencies. Thanks to
the cipher structure, the behaviour of any word can be expressed by shifting the corresponding terms
of any other column.

~a d ~c b

~b a ~d c

~c b ~a d

~d c ~b a

c c← c c

~c ~c ~c ◦ ~c

c c c c→

~c = ~c ~c ~c

(a) (b)

Figure 5: Our state notation: (a) Word types in odd rounds (b) Free words after two rounds

Trivially, the words in the initial state only depend on themselves. After the first round, b1 word
positions depend on 3 initial words a0, b0, d 0, whereas the remaining words in the column depend on
the 4 initial words from the same column. Even from this early step, we can notice the uneven pattern
between words. On the one hand, b words take longer to be updated with the same number of words.
On the other hand, c words take longer to affect all words. After the transpose and second round, d 2

words have 11 word dependencies whereas all other words have 15. After the third round, each word
depends on all initial words. These equations show the exact dependencies at r = 2:

d 2 ⇒ d 1 + ~a 1 + b
1
⇒ { a + b + c + d + ~a + ~b + ~c + ~d + a + b + d }0

c 2 ⇒ c1 + ~d
2

+ a
1 ⇒ { ~a + ~b + ~c + ~d + a + b + c + d + ~a + ~b + ~d + a + b + c + d }0

b 2 ⇒ b1 + ~c 2 + d
2
⇒ { ~a + ~b + ~c + ~d + a + b + d + ~a + ~b + ~c + ~d + a + b + c + d }0

a 2 ⇒ a1 + ~b
2

+ c
2 ⇒ { ~a + ~b + ~d + a + b + c + d + ~a + ~b + ~c + ~d + a + b + c + d }0

Matrix in Figure 5(b) shows graphically the location of the free initial words after two rounds for each
word cell. This means the rows do not depend on c = x07, ~c = x08, c = x013 and ~c = x02, from the first
to the fourth. That is, slow-update words {12,1,6,11} do not depend at all on c words {2,7,8,13},
respectively, so this can become a bias in higher rounds. Apart from that, d cells do not depend
on the columns corresponding to the left position. This means, {12,1,6,11} words do not depend on
{(3,7,11,15), (0,4,8,12), (1,5,9,13), (2,6,10,14)}, each.

Given that the attacker can only set the ID on the IV in our reasonable model, one can theoretically
infer good differentials of the form (∆r

1,q|∆0
7,j), (∆

r
6,q|∆0

8,j) in a first approach. The literature in
differential cryptanalysis of Salsa20 shows a clear majority of differentials following the above structure
(see Table 3 for details). The research held in [MGM15] validates the important role of slow-update
words, verifying experimentally that they form an input/output differential cycle after 4 rounds.
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Order OD ID Bias Reference

(1|1) (∆4
1,14 | ∆0

7,31) 0.131 [AFK+08]

(1|1) (∆4
6,26 | ∆0

7,31) 0.201 [SZFW13]

(1|1) (∆4
6,26 | ∆0

7,31) 0.195 [MGM15]

(1|1) (∆4
11,26 | ∆0

8,31) 0.191 [MGM15]

(1|1) (∆4
11,17 | ∆0

8,31) 0.164 [MGM15]

(2|1) (∆4
1,0 ⊕∆4

2,9 | ∆0
7,26) -0.600 [AFK+08]

(2|1) (∆4
6,23 ⊕∆4

7,0 | ∆0
8,17) 0.178 [Ish12]

(3|1) (∆5
9,0 ⊕∆5

13,0 ⊕∆5
1,13 | ∆0

7,0) -0.114 [CM17]

(1|2) (∆4
1,7 | ∆0

7,24 ∧∆0
8,17) 0.670 [SZFW13]

(3|2) (∆5
9,0 ⊕∆5

13,0 ⊕∆5
1,13 | ∆0

7,17 ∧∆0
8,23...29) ≈ 0.31 [CM17]

(1|4) (∆5
6,1 | ∆0

2,8 ∧∆0
6,12 ∧∆0

14,19 ∧∆0
14,31) 7.7e-4 [FMB+06]

Table 3: Some high biased differentials of 256-bit Salsa20

Linearization

In order to understand Aumasson’s differential (∆4
1,14|∆0

7,31), we created a naive Salsa20 linear version
by simply substituting modular addition by XOR operation (+ 7→ ⊕), wich only holds when no input
carries are produed. Certainly, diffusion became slower because of linearity, obtaining a large number
of neutral bits. We realised that the word x7 generated the least number of dependencies on the word
x1 after 4 rounds. Moreover, the bit z1,j+15 presented the largest number of dependencies on the
bit x7,j , naively resulting in Aumasson’s good differential for j = 31. Nonetheless, this differential
only showed 54 non-affecting keybits, whereas the pair (∆4

6,j+15|∆0
8,j) presented 58 and thus it is a

candidate for becoming a better differential. The reason for placing the ID on the MSB is to avoid
propagation of differences to left bits after the initial round.

One can profit from the XOR non-idempotency to increase the number of actual neutral bits. The
advantage of this kind of linear version relies on the ease to compute the final value of one bit by
xoring operators appearing an odd number of times. Thus, input bits acting an even number of times
(including no occurrences at all) will be neutral bits. After running this experiment for 4 rounds, we
noticed x1 would only have 95 forward neutral keybits whereas the word with the largest number of
neutral keybits is x3 with 132. The full state can be observed in Figure 6(a).

Our next linear approximation consisted on replacing operations si = αi + βi by si = αi ⊕ βi ⊕ αi−1,
∀i 6= 0, which holds with probability 75%, as recently suggested in [CM17]. This approach treats LSB
differently, so one cannot expect a constant number of intraword neutral bits as previously. Instead,
we show the bits with the largest (Figure 6(b)) and smallest (Figure 6(c)) numbers of neutral keybits
after considering odd occurrences only.

Despite computing forward neutral bits of a linear version and not PNBs, it helps understanding the
diffusion in Salsa. When obtaining the number of non-occurring bits in this approximation, we noticed
the neutral bits of the bits within a word follow the same structure, except for a few bits with extra
neutral bits. Predictably, slow-update and slow-propagate words are the only ones with actual neutral
bits after 4 forward rounds. The matrix in Figure 6(d) shows the maximum number of neutral keybits,
being x11,7 the highest.

In order to improve the attack, one needs both a high biased differential and a large number of neutral
keybits. In spite of the hypothetical (OD|ID) pair (∆4

6,j+15|∆0
8,j), one can see that the word x41 may

indeed have a larger number of PNBs. Let t the type of the current word, ~t refers to the word of type
t on the column on the right, ~t on the left and t two columns beyond. Appendix B. Table 7 shows the
location of these neutral bits in the linearized setting.
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122 95 126 132

128 124 93 124

122 129 117 89

100 126 122 119

146
30

147
29

140
22

144
22

143
15,24

145
30

139
29

143
22

142
22

145
24

148
30

136
24

158
6

142
18

144
6

146
30

114
26

120
19

119
10

118
19,20

121
23,29

111
15

114
2

120
24

124
19

116
30

107
15

119
7

128
7

122
3

117
30

113
7

5 1

2 0

2 6

3 4

(a) (b) (c) (d)

Figure 6: Neutral bits after linearization experiments

Remarks

The above Salsa linearized versions comprise a clear example of how easily breakable linear ciphers
can be. Some known results show AR systems are theoretically equivalent to their ARX counterpart,
whereas XR and AX systems can always be broken [KN10].

Modular addition is a non-linear operation because the carries from less significant bits will affect the
output value. In particular, when adding two 32-bit words modulo 232, the output carry bit in the
MSB is ignored, whereas the value of the LSB is always the XOR of the addends. Similarly, mod-
ular addition behaves linearly until the first appearance of the bit addends 1+1 starting from the LSB.

Given a Salsa20 ciphertext Z = (X + XR), one can always compute the half of X corresponding
to the words in the diagonal and the IV by simply subtracting its known values as xRi = zi − xi.
Given an output state with even R, one can compute the whole 10th word from the previous round
as xR−110 = xR10 ⊕ (xR8 + xR9 )≪18. Plus, one can control the exact value to be xored to x014 in the first
round because the attacker knows (x06 +x010)≪7. Since the last bit of the constant term is 0, the value
of x114,8 will be computed using the linear operation (x06,1 ⊕ 1⊕ x014,8).

3.2 Probabilistic Differential ARX

The role of the different operations of ARX ciphers is well known: the non-linearity of modular ad-
dition brings confusion, rotation offers intra-word diffusion and XOR gives inter-word diffusion and
linearity. It is a general belief that the combination of these operations provides certain level of secu-
rity after a sufficiently high number of rounds. However, their exact effect is not so well understood
because of the lack of theory concerning ARX constructions. For this reason, we built our own basic
heuristic that helps us understand the propagation of differences and approximate some bias after a
number of Salsa rounds, which can be extended to any ARX cipher.

Prior work has been conducted in order to compute differential properties of addition. The differ-
ential probability of addition DP+(α, β 7→ γ) is defined as the probability that (x + y) differs from
((x ⊕ α) + (y ⊕ β)) at the positions set by γ. The fastest algorithm for the average case is loga-
rithmic in the bitstring length [LM02]. Besides, the additive differential probability of ARX, namely
adpARX(∆α+ ∆β,∆λ

r→ ∆γ), is defined as the proportion of pairs (a+ b, d) such that the difference
between the two outputs equals some fixed value after the ARX operation ((a + b) ≪ r) ⊕ d. An
algorithm to compute this probability was proposed in [VMDCP11], with linear time complexity.

We present a technique called probabilistic differential addition, which on input two vectors of dif-
ferences, computes the probabilities of outputting a different bit value after performing a modular
addition on the words satisfying such differentials. Together with differential XOR and rotation, it
can be used to determine the probabilities of outputting a different bit value after performing one
ARX operation. Besides the naive algorithm to compute these probabilities in exponential time, we
propose a linear time approach to address this problem.
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Notation

Let {0, 1} be the possible binary values of one bit, we can represent the uncertainty of the value of
one bit as some real number between 0 and 1. For instance, if b = 0.5 then the actual value of b will
be 0 or 1 with equal probability. Similarly, let {0,1} be the possible values of the difference between
a pair of bits, we can represent the uncertainty of the value of the difference between the two bits as
some real number between 0 and 1. This means 0 translates to two possible values, b = 0 ∧ b′ = 0 or
b = 1∧ b′ = 1; and 1 implies b = 0∧ b′ = 1 or b = 1∧ b′ = 0. Thus, 0.5 means a pair of bits will differ
from each other half of the time.

Applying a constant rotation on a word is as simple as rotating to the left the vector of values. Com-
puting the XOR of two bitwords can be done using Venn diagrams as XOR(A,B) = A+B−2·AND(A,B)
where AND(A,B) = A ·B. These two ARX operations are valid for both vectors of values and vectors
of differences. However, addition must be treated differently.

In the case of modular addition with valued inputs we use a 32-bit full adder. This means the sum
is computed iteratively from the LSB to the left and initial carry c0 = 0 such that ADD(ai, bi, ci) =
XOR(ai, bi, ci) with output carry ci+1 where OR(A,B) = A + B − AND(A,B). That is, there will be a
carry when at least two inputs are valued 1.

In order to compute modular additions with differential inputs, it is possible to analyse each bit case
separately and extend them to the general case (detail in Table 8). Let ADD(ai,bi, ci) = (si, ci+1), then
Pr{6= valuei} = si and Pr{6= carryi+1} = ci+1. If any input bit value is fixed and known beforehand,
as in the case of diagonal constants, the propagated uncertainty in can be reduced when the differential
addends are flipped and there is no difference in the input carry.

ADD


(0,0)c = (12)

c
2

(0,1)c = (1− c)
1
2

(1,0)c = (1− c)
1
2

(1,1)c = c
1−c
2

ADD


(0,1)0 7→ (0/0,1)0/0 = (1− c)0

(0,1)0 7→ (1/1,1)1/1 = (1− c)0

(1,0)0 7→ (1, 0/0)0/0 = (1− c)0

(1,0)0 7→ (1, 1/1)1/1 = (1− c)0

Heuristic

There exists a simple but exhaustive method to obtain the modular addition of differential inputs, i.e.
computing the addition over all possible inputs satisfying such differences and counting the number
of pairs with different output bits among all combinations.

By the law of total probability, this quantity can be calculated in linear time in the word size. This
is, for each triplet of input bits (ai,bi, ci) we can compute the probabilistic output value and its
probabilistic output carry as follows:

ADD


si = (1− ai)(1− bi)

1
2 + (1− ai)bi(1− ci) + ai(1− bi)(1− ci) + aibici

ci+1 = (1− ai)(1− bi)
ci
2 + (1− ai)bi

1
2 + ai(1− bi)

1
2 + aibi

1−ci
2

This approach can estimate the bias generated by an ID, so it helps us finding good differentials.
More interestingly, we use this technique to observe the propagation of differences along successive
Salsa rounds. In particular, we evaluated this heursitic with x07,31 = 1 and all remaining input bits
to 0, specifying the constants values. After running 4 rounds of differential Salsa, we observed a high
biased differential output value at x41,14 = 0.48675, hence this intermediate value is more likely to be

equal. Likewise, when imposing the single bit ID at x08,31 = 1, we observed the same biases provided
x1 7→ x6. The reason why this procedure does not output the actual bias is the lack of linkage between
bits. Nonetheless, it is still useful to understand the source of differences between states.
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4 Contribution

This section includes our contribution to the cryptanalysis of Salsa20. We revisited existing papers
to formulate a new attack over Salsa20/8 in time 2241.8 and data 231.7 using conditional differential
cryptanalysis 4 rounds forwards and 4 rounds backwards. This method constitutes a factor 23.1

time improvement over the state-of-the-art fastest attack [CM17] (but 20.9 data overhead). More
importantly, we provide new directions to exploit in order to further improve the attacks. We also
introduce Merengue, a toolkit we developed for the cryptanalysis of this cipher.

4.1 Merengue Toolkit

Over the course of this internship, we developed a toolkit for cryptanalysis of ARX ciphers, and
more specifically, the Salsa20 primitive. It is divided in two parts, depending on the desired kind
of analysis. Because of the different features of programming languages, the first module contains
an intuitive Python set of functions for simplified versions of the cipher whereas the second module
consists of a powerful kit programmed in C to compute the actual biases of Salsa for the offline attack.

Python Kit

This kit uses Python lists to represent the cipher state, that is, a list of length 16 where each element
is a list of 32 bits, which will take between 1 and 4 bytes of memory (characters {'0', '1'}, integers
in the set {0, 1} or floating point numbers {0.0, 1.0}). Despite its slow treatment of data, Python’s
high level programming style gives the user a comfortable syntax to visualize the matrix. Plus, it
provides a number of functions to check some properties of linearized versions of Salsa. The following
paragraphs present, in general lines, the different modes used in this software.

This kit counts with eight basic functions modelling Salsa: QuarterRound(), transpose(), swap(),
column(), ARX(), ADD(), ROT(), XOR(). They all can work in different modes depending on the spe-
cific measurement. It includes some functions that initialize the state: bitstring(), diagonal(),
inivalue(), keywords().

This software provides two cipher modes. The encryption mode "enc" of the function Salsa() returns
the keystream after a number of rounds (with or without feedforward) and the value of an output dif-
ferential between two initial states. The "inv" mode of the function Aslas() returns an intermediate
state Xr by applying reverse Salsa rounds over the state XR or Z = (X +XR).

The kit can handle linearized versions of Salsa. Given an ID, the "pro" mode of propagate() outputs
the linear propagation of this ID assuming the substitution (+ 7→ ⊕). The ID is set to 1 and the
output list will gather the number of times that this ID affects the resulting equation of each output
bit. Making use of this function, LNBs() returns the coordinates of the linearly neutral bits after r
Salsa rounds with respect to an OD. The "lin" mode of linearize() computes the state after a
number of rounds when modular additions are substituted by the linear expression α[i]⊕β[i]⊕α[i−1].

The program includes the function unroll() that computes dependencies from backward direction.
Its "xor" mode returns the coordinates of all initial bits that affect linearly an output bit (p, q) after
a number of rounds. It keeps track of the whole equation of such bit recursively, simplifying its terms
whenever possible. Conversely, "lin" performs this same operation when the linearization comes from
the linearization with probability 3

4 .

On another note, the function carrify() with mode "car" computes probabilistic output values of
the Salsa cipher. It initializes the state with floating point numbers following this convention: for all
attacker known bit values, these positions are set to 0.0 or 1.0 accordingly; keybits are initialized to
0.5 to represent perfect randomness. After a few rounds, if the values of the output state do not tend
to 1

2 , then the cipher beneath has very little confusion.
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Similarly, the function pdarx() with mode "pda" applies the PDARX heuristic to estimate the ex-
pected difference between two initial states after a number of Salsa rounds. This means the matrix is
initialized with 0.0 except for the positions of the (possibly non-single) ID, which are set to 1.0 to
represent the XOR difference of these bits. Unlike the above convention, a value equal to 0.5 implies
two bits will be different or equal with same probability. Our experiments show a slower tendency to
0.5 in the PDARX function, resulting in a more helpful tool for cryptanalysis. In any case, the most
realistic tool and thus the most convenient to attack Salsa is explained in the next section.

C Library

This compact library written in C leverages its low-level capabilities to achieve a much higher perfor-
mance for faster cryptanalysis of Salsa20. This implementation performs in average 224 QuarterRound
functions per second, which is to say, applying 8 rounds of Salsa to 221 initial states each second.
We verified the correct functioning of this program reproducing existing results from the literature in
attacks to Salsa. Besides, it uses the official code of this primitive underneath.

This program is equipped with the primitive salsa(), the inverse round function alsas() and a
number of useful measurements. This toolkit contains the function getbias(), which can be run to
compute the forward bias εf with parameter "Ef", the backward bias εg with "Eg", the total bias
ε with "E". Also, we can obtain probabilistic neutral bits with getPNBs(), both forwards "for"

and backwards "back". The test suite provided allows the user to invoke these functions with any
configuration, by writing to stdin (the command line terminal). We can choose any of the above
measurements, a valid single ID and (optional) multibit OD, the number of samples (which includes
the number of random initial values and different keywords, to compute the median values), the num-
ber of forward rounds r and total rounds R. More interestingly, the user can decide whether or not
functions will constraint the initial values. They can receive up to two different kinds of conditions.
First, maximizing determinism through the initial rounds of Salsa by controlling certain bits of the
nonce or counter. Second, fixing forward probabilistic significant bits of the IV. Such strategies will
be explained in depth in the following subsection.

Now, we give some tips for the desired functioning of this program. When using Aumasson’s differen-
tial, the user can impose conditions on x7,12, x6,10 or none writing the configuration CIV as 7, 6 or n,
respectively. In the case of the dual differential, the user can condition on x8,12 writing 8 (or none, as
above). Regarding backward PNBs, it is possible to constraint the number of keybits by setting BPNB

to 36, 37 or 38 for Aumasson’s differential with γ = 0.12 or 48 with γ = 0.04, and 30 or 31 for the
dual. Forward PNBs can be controlled for Aumasson’s differential with the parameter FPNB set to 47,
52, 54. For more advanced settings, the file testsuite.c can be modified accordingly.

4.2 Conditional Differential Cryptanalysis of Salsa20

We applied conditional differential cryptanalysis, the technique presented in [KMNP10], to the stan-
dard attack by Aumasson to control some IV bits so as to delay the uncertainty imposed by the
differential along the initial rounds of Salsa. We kindly suggest the reader running Merengue for a
better understanding of the proposed attack. Its imported header gives precomputed structures to be
used for a faster execution of the recommended settings.

Conditioned IV

The ideas presented in this section are related to the work done in [Mai16]. Applying the ideas of
conditional differential cryptanalysis to the choice of nonce and counter, we can find higher biases
after 4 rounds. Picking the MSB for the ID is not arbitrary. Instead, it ensures slower propagation of
differences, hence higher biases. Plus, one can fix some input bits to grant some properties will hold.
The goal of this part is to explain an attacker strategy that exploits their control over the choice of
concrete values of some bits of the IV.
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The number of forward rounds for which it is possible to observe a good differential depends on
the speed of the diffusion of the cipher. One can check that an Aumasson’s ID generates up to
22 differences after the first QuarterRound, as already explained. Maitra’s attack uses an exhaustive
search over the word x07 to choose the exact values that will only generate 4 differences, for a specific
key. However, we noted such a large search space is not necessary. In fact, some bits of this nonce
word do not influence the number of differences. The only IV bits determining the presence of carry
at (x111 + x17)12 are x07,11...0 due to x17 and x07,30...19 because of x111. Then, the search space could be

reduced from 232 to 224, and still be able to get the 231 valid values for the IV, using any combination
of bits for the remaining 7 neutral positions and 0 or 1 at x07,12. Note the ID is a free bit.

Besides, there is no need to keep track of all these IVs. For any combination of fixed key and non-free
IV bits, either 0 or 1 at x07,12 will produce only 2 differences at x115. We cannot predict which bit value

will be the correct one because the actual value of x17,12 depends on the unknown key. What we can
do is run the ID experiment twice and measure the forward bias after 4 rounds. The thread with
the highest |ε?f | will have the correct bit guess, without exhaustive search at all, but using techniques
from [KMNP10] instead. To prevent from storing the biases for each thread, another option consists
on fixing x07,18...13 as well and find the correct bit value for x07,12, which will be valid for all samples
with the same key.

Nonetheless, the sharp reader will agree that sometimes the flipped bit x07,12 can produce a differ-

ent carry in each thread, leading to a different bit value in (x13,19 + x17,19) and thus in x111,0 between
the two threads (but equal inside X and X ′). Plus, this could result in a different carry value in
(x17,12 + x111,12)≪18 producing additional differences in x115. This happens in the non-negligible case

that the thread with x111,0 = 1 sums to a large trail of zeroes in (x17,11...0 + x111,11...0) and the thread

with x111,0 = 0 sums to a large trail of ones. The first case will produce a carry in the 12th position
whereas the second will not. In order to be sure that the measurements always correspond to a state
producing 2 differences in x115, we need to think of a way to control this undesired situation. Instead,
we can also flip x07,13 to stop this propagation of differences. In this case, there will be 4 threads, with
only one of them leading to the highest bias.

Even if only 4 differences occur at round 1 and a higher bias can be detected, the 2 differences in the
diagonal position will still propagate significant uncertainty shortly. We considered further control
over the IV to reduce the number of differences after 2 rounds as well. The first ARX operation,
where x115 is added to x114, is crucial to this aim.

In the spirit of the paragraph above, we want to control x114,17 to grant at most 3 differences go to x212
at ∆2

12,24, ∆2
12,5 and sometimes ∆2

12,6. In this sense, we do not care much about ∆1
15,30 because it only

generates one more difference half of the times. Hence, we need to flip the bit x06,10 and control the

bits that could affect its input carry (i.e. the bits 16 . . . 0 of the addends x114 and x115). These are the
bits x06,31...25, x

0
6,10...0, and the whole x07. In this case, for a fixed combination of keys and non-free bits

at x06 and x07, we will have 4 independent runs of the experiment depending on the bit values of x07,12
and x06,10: (0,0), (0,1), (1,0), (1,1). The one with the best forward bias will satisfy both 4 differences

after the first round and 2 or 3 at x212.
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As in the case of a single conditioned IV word, we can fix the whole x7 and x6 for the same key for
a faster evaluation of biases. Then we flip x07,13 and x06,11 as well, so that the same concrete values of
the conditioned bits hold for that key. During the first iteration of the loop, we will check the number
of differences in x115 to get the correct values of x07,13 and x07,12. Afterwards, we do likewise in x212
to obtain the combination of x06,11 and x06,10. This way, there is no need to have 2 or 4 threads of
execution to estimate these biases. Nonetheless, we must keep them during the actual attack, which
will multiply the overall time complexity by the number of threads.

We measured the median forward bias with 210 different keys and 224 nonces and values for each
key. If no conditions are imposed on the IV, we found Aumasson’s expected bias of 0.1314. In the
conditioned x07,12 we found Maitra’s expected bias of |ε?f | = 0.228. Now, adding the condition at x06,10
results in a forward bias of 0.252594. It is worth saying one can apply the first conditioned strategy to
the differential (∆4

6,14|∆0
8,14) in a similar way (i.e. flip x08,12 and fix x08,30...19 11...0) to obtain 2 differences

at x10. Here, we found a forward bias of 0.142761 for this differential and |ε?f | = 0.264526 when fixing
one condition. However, the second approach cannot be reproduced because we cannot control any
bits of x13. Plus, controlling more bits of the IV leaves very few free bits to perform our measurements.

On another note, if we perform PDARX on these conditioned scenarios, we will observe a higher
number of differential outputs significantly different from 0.5. Note the same biases observed when
ID = ∆0

7,31 can be measured if ∆0
8,31, provided x1 7→ x6 7→ x11 (because of the structure of the cipher).

Annex B. Table 9 shows such biases after 4 rounds of differential Salsa and ID = ( c, 31).

Backward PNBs

Aumasson’s attack leverages the existance of probabilistic neutral keybits to perform the backward
stage of their attack. As a reminder, let X,X ′ be two initial states satisfying the ID, Z,Z ′ the
keystreams output by Salsa20/R and X,X ′ the resulting input states after flipping the bit bi, then
this bit is a backward PNB if it does not affect the output of the function f(Z,Z ′). That is, bi is a
non-significant keybit if the bias of Pr{(X4

OD ⊕ X ′4OD ⊕ YOD ⊕ Y ′OD = 0|∆0
ID = 1)} is higher than a

threshold for the neutrality measure, where the states Y, Y ′ are computed by reversing R − r Salsa
rounds using the flipped states as Y = (Z −X)R−r and Y ′ = (Z ′ −X ′)R−r.

(∆4
1,14|∆0

7,31) Keyword Intraword bits Keyword (∆4
6,14|∆0

8,31)

x11 20 x12
x3 7, 8 x4

13, 14, 31 x11
x13 18, 19, 20 x2
x4 24, 25, 26
x1 26, 27, 28, 29, 30, 31
x14 0, 1, 18, 19, 20, 21, 22, 23 x3
x12 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 x1

Table 4: BPNBs of dual differentials

We analysed this concept and detected a curious pattern on backward PNBs. When the differential
is a slow-propagate/slow-update pair, we observed the positions of the BPNBs follow cycles. In par-
ticular, we found 63 of them when OD = (d, 14), as detailed in Table 10 (considering all kinds of bits,
not only keybits). We checked Aumasson et al.’s 36 BPNKBs for (∆4

1,14|∆0
7,31) where c = 7, d = 1

and also obtained the BPNKBs for our hypothetically good differential (∆4
6,14|∆0

8,31). Unfortunately,
because of the structure of the Salsa cipher, the latter only has 30 BPNKBs. Despite the slightly
higher forward bias of this differential, this result suggests an overall slower attack.
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The attack in [Mai16] pays very little attention to probabilistic neutral bits. In fact, they state “we
need to discard the PNBs corresponding to the keywords k2, k4. This reduces 3 PNBs (...) from the
list of 36 PNBs”, but he never explains why. We ourselves have run the experiment a number of
times using 224 pairs for each keybit to understand this decision. Surprisingly, we checked that the
number of BPNBs increases when we consider conditioned x7. As a consequence of the overall rise of
the biases in the conditioned scenario, neutrality measures are slightly higher and a larger number of
bits exceed the threshold. Anyway, the observed backward bias decreases due to the existing tradeoff.

Experiments with Merengue show 64 BPNBs for this kind of differential pair with γ = 0.12, resulting
in 37 BPNKBs for Aumasson’s differential and 31 when c = 8, d = 6. The extra keybit corresponds to
the bit (~b, 2). It is worth noting the presence of actual neutral bits in the conditioned scenario, such as
( ~d, 5) with bias γi = 1.000. Plus, when we consider conditions on both x7 and x6, we obtain another
BPNKB at position ( ~b, 12), resulting in a total number of 38. This is great news, because an increased
number of BPNBs will partly compensate the overhead due to multiple threads with conditioned IV.

Once we get these BPNBs, we build function g by setting the neutral keybits to random. Then, we
compute the bias |ε?g| of the probability that the new function depending only on 256 − n keybits
behaves as the full f function. Considering Aumasson’s 36 PNBs, 100 executions, 25 keys and 224

initial values, we obtained an average median bias of 0.005004, substantially higher than what was ob-
tained in [AFK+08]. It is no surprise that their value may be pessimistic, given that another research
reported a bias 4 times higher [MGM15]. Using the dual differential, we obtained the bias 0.004435. If
we consider the conditioned scenario on x7 and build the function g with our 37 BPNKBs, we obtain
a bias |ε?g| = 0.004491. When we extend conditions to the sixth word as well, we get |ε?g| = 0.004026,
using 38 BPNKBs. Needless to say, the chosen IVs for these experiments satisfy the condition that
only 4 differences appear after the first Salsa round.

We performed further experiments regarding the threshold of the neutrality measure. Similarly to what
was previously done in [MGM15], we set γ = 0.04 and found 48 BPNBs for Aumasson’s differential.
This configuration produces smaller biases, but in exchange, the parameter m is smaller. We observed
a backward bias of 0.000265 and 0.000439 for both conditioned scenarios.

Forward PNBs

We came up with the notion of forward probabilistic neutral bits to name the initial bits that do
not influence the intermediate state with high probability. In other words, let X,X ′ be two initial
states satisfying the ID and X,X ′ be these states with one bit flipped, then bi is a FPNB if the bias

of (X4
OD ⊕ X ′4OD ⊕ X

4
OD ⊕ X ′

4
OD = 0|∆0

ID = 1) is higher than a given threshold. Our hypothesis,
with certain independency assumptions, is that fixing only the most significant bits of the IV (i.e. not
FPNBs), will result in a higher forward bias.

Using Aumasson’s differential and a threshold of 0.12, we detected 48 FPNBs in the IV (must not
count the ID). Similarly, using the differential (∆4

6,14|∆0
8,31), we detected 130 FPNBs, 43 of them in

the IV. As in the case of BPNBs, these bits follow a pattern that can be observed in Table 11. Note
the positions of the FPNBs are not random, but they appear in sequential order. Moreover, half of the
MSB are FPNBs as well (at a, b, d,~a,~b,~c, ~d, ~c). When we consider the conditioned scenario on x7 we
obtain 5 additional IV FPNBs x6,11, x7,1, x7,30, x8,10, x9,18. This number increases even more when
we set conditions on x6 as well, where we get 2 more IV FPNBs at x7,20 and x8,13.

We verified our hypothesis running Merengue to compute the forward bias using 224 samples, sufficient
to be detected. Freeing the FPNBs in the IV for sampling resulted in higher |ε?f | for all three cases; the
standard, conditioned on x7, conditioned also on x6. The exact values were 0.235291, 0.255981, 0.271301,
respectively. Nonetheless, we obtained slightly lower values in the backward direction with |ε?g| equal
to 0.003244, 0.003790, 0.001642, each. Thus, this strategy will only be followed if the increase of εf is
sufficient to outweight εg to obtain a total bias ε still higher than the case without FPNBs.
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Setting a higher threshold to 0.2 decreases the number of FPNBs down to 11. In this case, the
forward bias will be closer to the standard case, but the observed backward bias will grow instead.
In particular, if no conditions are imposed we get |ε?f | = 0.154175, we measure |ε?f | = 0.262024 if we
condition on x7,12 and |ε?f | = 0.263672 when we also flip x6,10.

IV word Intraword bit

x6 0, 10, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
x7 1, 18, 19
x8 1, 2, 3, 11, 12, 23, 24, 25, 26, 27, 28, 29, 30, 31
x9 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 24, 25, 27, 28, 29, 30, 31

Table 5: 48 FPNBs of Aumasson’s differential

9 Rounds

Today, there is no known key recovery attack on 9 rounds of Salsa (note [MGM15] gives a related-key
attack). Despite our trials, we were unable to measure significant biases after 5 QuarterRound using
single bit differentials. Unfortunately, this is no surprise in forward direction, as previously noted
in [Ish12], nor in backward direction, see [AFK+08]. While a significant increase in the biases was
observed, our strategies were not enough for now to achieve one more round. The next paragraphs
give some insight on the exact ideas that we followed when trying to meet this goal, which we trust
will be met anytime soon.

An important drawback of multibit differentials is the huge fall in the number of BPNBs, hence an
increase in the time complexity of the attacker. Assuming single bit differentials, we still wanted to
measure backward PNBs from the 9th round for a better understanding of their distribution. The
naive OD = ∆4

1,14|ID = ∆0
7,31 for R = 9 did not show any single BPNB. Conversely, ∆5

1,14 does not
have any FPNB that could rise the forward bias. Nonetheless, the latter turned to have only one
neutral bit with γ14,31 = 0.308.

If we look at the cipher structure, we can check ∆4
1,14 strongly affects the ninth word of the fifth round,

since x59,21 = x49,21⊕(x41,14+x45,14)≪7. We posit most PNBs at x41,14 will go to x59,21, which is evidenced

when computing its BPNBs: most BPNBs found at x41,14 have their equivalent neutral bit at x59,21,
with similar neutrality measure (somewhat smaller, reason why there are fewer of them). In partic-
ular, we found 25 such BPNKBs with γ = 0.12, following a funny relation. Intuitively, intraword bit
indexes must be rotated 7 bits left. Plus, these cycles hold for word indexes (from (d, 14)4 to (b, 21)5):
~d 7→ ~b 7→ ~d 7→ ~b and d 7→ b 7→ d, deriving from the transpose between consecutive rounds. The bad
news is that there is no significant εf in ∆5

9,21, partly because we could not find any FPNB.

We tried to find BPNBs from the 9th round at x56,1, so as to get some estimates on a related key attack
using the differential in [FMB+06]. Since this is a fourth order single bit differential, finding a number
of BPNBs of a single OD did not seem impossible. Unfortunately, we only found one BPNB with
γ3,18 = 0.180. Conversely, when we compute the BPNBs in the triple bit OD = ∆5

9,0⊕∆5
13,0⊕∆5

1,13 in

[CM17], we get none. If we compute them from the 8th round, we get almost the same 36 Aumasson’s
PNBs, with indexes rotated one bit right. This makes total sense, because x41,13 = x51,13⊕ x59,0⊕ x513,0.

4.3 Revisiting Existing Attacks

In the course of the preceding months, we have actively used our toolkit Merengue to support our ar-
guments in practice. Along these lines, we verified the proper functioning of this software replicating
Aumasson’s attack [AFK+08] (among many others). In this case, we found almost twice the values εg
and ε. However, we were unable to obtain similar results than those of Maitra [Mai16]. This section
gives some insight into the observed differences.
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As mentioned earlier, there exists a tradeoff between the threshold on the neutrality measure γ and
the total bias ε. The former determines the number of BPNBs, and thus, the number of significant
keybits m. The latter will affect the number of pairs N needed to perform the attack. Another im-
portant parameter is α, which must be chosen in a way that the first addend of the time complexity

expression overcomes the second 2m(
√
α log 4+3

√
1−ε2

ε )2 + 2256−α.

In his article, the author decided to include less BPNBs (corresponding to keywords in the fourth
column) in order to observe a higher backward bias εg. Thanks to the exhaustive search performed
over x7 for each key, he could measure the bias of the only samples with suitable IVs. Using the same
differential, he observed an improved forward bias with respect to Aumasson’s of 0.228538. Applying
our method of conditional cryptanalysis, we obtained the same bias with no need of expensive searches.

Our discrepancy comes next. Even if we also set the same 33 BPNBs, we have never got such a
high backward bias. Maitra claimed a value ε?g = 0.013778 ≈ 2−6 which, together with the forward
bias, results in a total bias of ε? = 0.003154 ≈ 2−8. Nonetheless, we obtained a backward bias of
|ε?g| = 0.020763 and total bias |ε?| = 0.002446, meaning a difference of 1.29 times smaller. Needless to
say, this mismatch has an impact on the overall attack complexity. While Maitra’s published result
was the fastest known attack so far with time complexity of 2245.52 and 222.5 data, our reproduction
of this analysis gives 222.5 data and 2245.6 time using α = 15. We attribute this difference to an
insufficiently large sample leading to an unimportant miscalculation of the bias.

Anyhow, we do not understand how this analysis would translate into a real attack, where the ad-
versary cannot access the number of differences after the first round. In the event of an actual secret
key, the attacker cannot distinguish the IVs that give only 4 differences after the first QuarterRound.
Instead, half of his samples would satisfy this constraint whereas the other half would not. Thus, this
analysis is very good to estimate theoretical biases, though the author does not provide a concrete
strategy to detect them in a real setting. On the contrary, our conditioned IV method would execute
two threads and select the one with the higher bias observed (and thus, we must multiply our equiv-
alent attack time complexity by 2).

Whilst we do not say that his result is false, we do think further details should be given that explain
the exact strategy to be followed by an attacker. In the meantime, we intend to write the author to
provide our views on this analysis.

5 Conclusion

This document gathers our study of the cipher Salsa, faster attacks to the version of 8 rounds and
new tradeoffs. Our best attack has theoretical time complexity of 2241.8 and 231.7 data. We found
this complexity combining 4 conditioned threads on x7,12 and x6,10, 48 BPNBs with γ = 0.04 and 11
FPNBs. At the end of this internship, we provided plenty of new estimates on the cost of breaking
256-bit key Salsa20/8 as well as a technique of conditional cryptanalysis that could be further exploited
in order to define tighter security margins for this family of ciphers. We have given some theoretical
background on the choice of good differential pairs, based on its structure and a linearized version
of Salsa, that answers to the pattern followed by most known differentials. We developed the toolkit
Merengue, a useful set of functions that can be applied to cryptanalyse Salsa and other ARX ciphers.

Our next goal for the medium-term is to achieve the first attack to 9 rounds of Salsa. We will try to
adapt our conditioned IVs strategy to move some significant forward bias in the 5th round, using a
reduced number of OD. Regarding PNBs, we will study the differences (if any) when fixing significant
IV bits and neutral keybits to zeroes, ones or random bits. Also, we will explore a new idea that
aims at considering some concrete values of possibly weak keybits, so as to obtain a specific bitstring
after undoing the feedforward. We want to check if there were any keybits of XR whose value affects
significantly any intermediate bit values.
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Despite all the previous work done in this matter, no one has ever presented a key recovery attack to
Salsa for over 8 rounds (which is not the case for related key attacks). However, we expect that these
notions may imply a step forward in the security margin of this eSTREAM candidate.

We present here estimations of the attacker strategies we considered, showing the best possible com-
bination of approaches. The reader may refer to the attached Table 6 to have a wider view of the
parameters involved (i.e. number of rounds, input differential, output differential, conditioned initial
values, forward bias, backward bias, total bias, backward PNBs of the key, forward PNBs of the initial
value and negative exponent of the probability of false alarm base-2). Note that the rows with 11
FPNBs are not actual attacks because they leave fewer free IV bits than the number of pairs needed
to detect the total bias. Nonetheless, they come in handy for theoretical reasons. The entries of the
table are ordered from the slower attack to the fastest. The last two rows correspond to the most
recent attacks to Salsa20/8; [Mai16] and [CM17], respectively, for the sake of comparison.

R ID OD CIV |ε?f | |ε?g| |ε?| BPNB FPNB α Data Time

8 ∆0
8,31 ∆4

6,14 0.142761 0.004435 0.000543 30 7 226.4 2252.5

8 ∆0
8,31 ∆4

6,14 x8 0.264526 0.014184 0.001031 31 10 224.7 2250.8

8 ∆0
7,31 ∆4

1,14 x7 0.262024 0.017698 0.000890 33 11 12 225.3 2249.4

8 ∆0
7,31 ∆4

1,14 x7 0.262024 0.003081 0.000262 37 11 12 228.8 2248.9

8 ∆0
7,31 ∆4

1,14 x7 ∪ x6 0.263672 0.001418 0.000282 38 11 13 228.7 2248.8

8 ∆0
7,31 ∆4

1,14 x7 ∪ x6 0.252594 0.004026 0.000334 38 15 228.3 2248.3

8 ∆0
7,31 ∆4

1,14 x7 0.229462 0.004491 0.000368 37 12 227.8 2248.0

8 ∆0
7,31 ∆4

1,14 0.154175 0.005649 0.000481 36 11 15 227.2 2247.2

8 ∆0
7,31 ∆4

1,14 0.131409 0.005004 0.000585 36 12 226.5 2246.7

8 ∆0
7,31 ∆4

1,14 x7 0.229462 0.020763 0.002446 33 15 222.5 2246.6

8 ∆0
7,31 ∆4

1,14 x7 ∪ x6 0.271301 0.001642 0.000445 38 54 15 227.4 2246.5

8 ∆0
7,31 ∆4

1,14 0.235291 0.003244 0.000763 36 47 15 225.9 2245.9

8 ∆0
7,31 ∆4

1,14 x7 0.255981 0.003790 0.000970 37 52 16 225.2 2245.3

8 ∆0
7,31 ∆4

1,14 x7 0.262024 0.000206 0.000054 48 11 19 233.7 2242.7

8 ∆0
7,31 ∆4

1,14 x7 0.255981 0.000212 0.000054 48 52 19 233.7 2242.7

8 ∆0
7,31 ∆4

1,14 x7 0.229462 0.000265 0.000061 48 19 233.4 2242.4

8 ∆0
7,31 ∆4

1,14 x7 ∪ x6 0.252594 0.000439 0.000111 48 21 231.7 2241.8

8 ∆0
7,31∆0
7,31∆0
7,31 ∆4

1,14∆4
1,14∆4
1,14 x7 ∪ x6x7 ∪ x6x7 ∪ x6 0.271301 0.000405 0.000110 48 54 17 231.7231.7231.7 2241.82241.82241.8

8 ∆0
7,31 ∆4

1,14 x7 ∪ x6 0.263672 0.000446 0.000118 48 11 21 231.5 2241.6

8 ∆0
7,31 ∆4

1,14 x7 0.228538 0.013778 0.003154 33 15 222.5 2245.5

8 ∆0
7,0 ∆5

9,0 x7 0.233198 0.000752 0.000178 42 15.5 230.8 2244.9

∆5
9,0

∆5
13,0

∆5
1,13

Table 6: Results of our cryptanalysis of Salsa20/8
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Appendix B. Tables and Figures

Word Common NBs Except Extra NBs

(c, 12) (c, 31)
(c, j) (~c, 18 + j) (c, 25) (c, 31)

(c, 26) (~c, 13)

(d, 7) (~c, 13), (~c, 22), (~b, 13), (~b, 26)
(~c, 28 + j) (d, 9) (c, 31)

(c, 8 + j) (d, 12) (~b, 31)
(d, j) (c, 20 + j) (d, 14) (c, 4)

(c, 21 + j) (d, 16) (~c, 31)
(c, 27 + j) (d, 17) (c, 13)

(d, 22) (c, 31)

(d, 25) (~b, 31)

Table 7: Neutral bits after 4 rounds of linearized Salsa

ADD ∆ ∆
out carry

(0 + 0)0 0 0 (0 + 0)0/(0 + 0)0 = 00/00 (0 + 1)0/(0 + 1)0 = 10/10 (1 + 0)0/(1 + 0)0 = 10/10 (1 + 1)0/(1 + 1)0 = 01/01

0 0 (0 + 0)1/(0 + 0)1 = 10/10 (0 + 1)1/(0 + 1)1 = 01/01 (1 + 0)1/(1 + 0)1 = 01/01 (1 + 1)1/(1 + 1)1 = 11/11

(0 + 0)1 1 0.5 (0 + 0)0/(0 + 0)1 = 00/10 (0 + 1)0/(0 + 1)1 = 10/01 (1 + 0)0/(1 + 0)1 = 10/01 (1 + 1)0/(1 + 1)1 = 01/11

1 0.5 (0 + 0)1/(0 + 0)0 = 10/00 (0 + 1)1/(0 + 1)0 = 01/10 (1 + 0)1/(1 + 0)0 = 01/10 (1 + 1)1/(1 + 1)0 = 11/01

(0 + 1)0 1 0.5 (0 + 0)0/(0 + 1)0 = 00/10 (0 + 1)0/(0 + 0)0 = 10/00 (1 + 0)0/(1 + 1)0 = 10/01 (1 + 1)0/(1 + 0)0 = 01/10

1 0.5 (0 + 0)1/(0 + 1)1 = 10/01 (0 + 1)1/(0 + 0)1 = 01/10 (1 + 0)1/(1 + 1)1 = 01/11 (1 + 1)1/(1 + 0)1 = 11/01

(0 + 1)1 0 0.5 (0 + 0)0/(0 + 1)1 = 00/01 (0 + 1)0/(0 + 0)1 = 10/10 (1 + 0)0/(1 + 1)1 = 10/11 (1 + 1)0/(1 + 0)1 = 01/01

0 0.5 (0 + 0)1/(0 + 1)0 = 10/10 (0 + 1)1/(0 + 0)0 = 01/00 (1 + 0)1/(1 + 1)0 = 01/01 (1 + 1)1/(1 + 0)0 = 11/10

(1 + 0)0 1 0.5 (0 + 0)0/(1 + 0)0 = 00/10 (0 + 1)0/(1 + 1)0 = 10/01 (1 + 0)0/(0 + 0)0 = 10/00 (1 + 1)0/(0 + 1)0 = 01/10

1 0.5 (0 + 0)1/(1 + 0)1 = 10/01 (0 + 1)1/(1 + 1)1 = 01/11 (1 + 0)1/(0 + 0)1 = 01/10 (1 + 1)1/(0 + 1)1 = 11/01

(1 + 0)1 0 0.5 (0 + 0)0/(1 + 0)1 = 00/01 (0 + 1)0/(1 + 1)1 = 10/11 (1 + 0)0/(0 + 0)1 = 10/10 (1 + 1)0/(0 + 1)1 = 01/01

0 0.5 (0 + 0)1/(1 + 0)0 = 10/10 (0 + 1)1/(1 + 1)0 = 01/01 (1 + 0)1/(0 + 0)0 = 01/00 (1 + 1)1/(0 + 1)0 = 11/10

(1 + 1)0 0 0.5 (0 + 0)0/(1 + 1)0 = 00/01 (0 + 1)0/(1 + 0)0 = 10/10 (1 + 0)0/(0 + 1)0 = 10/10 (1 + 1)0/(0 + 0)0 = 01/00

0 0.5 (0 + 0)1/(1 + 1)1 = 10/11 (0 + 1)1/(1 + 0)1 = 01/01 (1 + 0)1/(0 + 1)1 = 01/01 (1 + 1)1/(0 + 0)1 = 11/10

(1 + 1)1 1 1 (0 + 0)0/(1 + 1)1 = 00/11 (0 + 1)0/(1 + 0)1 = 10/01 (1 + 0)0/(0 + 1)1 = 10/01 (1 + 1)0/(0 + 0)1 = 01/10

1 1 (0 + 0)1/(1 + 1)0 = 10/01 (0 + 1)1/(1 + 0)0 = 01/10 (1 + 0)1/(0 + 1)0 = 01/10 (1 + 1)1/(0 + 0)0 = 11/00

Table 8: Differential Addition

23



CIV d31 d26 d25 d24 d23 d18 d17 d14

NULL 0.49999 0.48675
( c, 12) 0.49963 0.50053 0.49997 0.45543
(6, 10) 0.49995 0.52063 0.49447 0.49937 0.50001 0.49837 0.49988 0.54782

d13 d12 d11 d10 d9 d7 d5 d4 d1

0.50046 0.49996
0.49738 0.50122 0.49987 0.49999 0.50004 0.49941

0.49986 0.50004 0.50131 0.49549 0.49999

d0 ~d26 ~d25 ~d24 ~d19 ~d17 ~d16 ~d7

0.49970 0.49994 0.50003
0.50002 0.49749 0.49930 0.50002 0.50041 0.49995
0.49915 0.50001 0.50018 0.49999 0.49986

Table 9: PDARX using conditioned x7

ID OD BPNBs
(c, 31) (d, 14) 63 64

Word Bits γi > 0.12

d 26 0.734 0.737
27 0.622 0.625
28 0.490 0.493
29 0.355 0.359
30 0.234 0.239
31 0.153 0.158

~a 21 0.142 0.147
25 0.248 0.252
26 0.123 0.128
31 0.179 0.184

~b 24 0.370 0.373
25 0.245 0.250
26 0.141 0.145

~d 13 0.261 0.265
14 0.141 0.145
31 0.286 0.290

c 18 0.606 0.609
19 0.411 0.415
20 0.243 0.247

a 4 0.779 0.781
5 0.676 0.680
6 0.548 0.551
7 0.401 0.405
8 0.255 0.258
9 0.131 0.135
18 0.674 0.677
19 0.502 0.506
20 0.299 0.303
24 0.123 0.126

~b 0 0.447 0.451
1 0.269 0.273
2 0.122
18 0.779 0.782
19 0.676 0.679
20 0.548 0.551
21 0.401 0.405
22 0.255 0.259
23 0.130 0.134

b 7 0.337 0.341
8 0.197 0.200

d 20 0.129 0.131

~d 5 0.998 1.000
6 0.996 0.998
7 0.993 0.994
8 0.987 0.990
9 0.977 0.980
10 0.959 0.963
11 0.929 0.936
12 0.880 0.889
13 0.804 0.814
14 0.691 0.703
15 0.547 0.563
16 0.376 0.393
17 0.201 0.219

~a 22 0.784 0.786
23 0.674 0.677
24 0.537 0.540
25 0.371 0.376
26 0.230 0.234

a 10 0.387 0.386
11 0.263 0.268
12 0.155 0.160
30 0.468 0.471
31 0.373 0.377

Table 10: Backward Probabilistic Neutral Bits on 8− 4 Salsa reverse rounds
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ID OD FPNBs
(c, 31) (d, 14) 134 130

Word Bits d = 1 d = 6

~c 0 0.184 0.184
1 0.158 0.159
2 0.130 0.129
7 0.219 0.220
8 0.213 0.215
9 0.226 0.224
10 0.224 0.223
11 0.224 0.223
12 0.225 0.224
13 0.218 0.218
14 0.212 0.209
15 0.231 0.228
16 0.220 0.219
17 0.224 0.223
18 0.228 0.222
19 0.162 0.162
20 0.129 0.131
25 0.228 0.227
26 0.208 0.210
27 0.187 0.196
28 0.248 0.232
29 0.225 0.219
30 0.215 0.217
31 0.223 0.223

d 0 0.198 0.197
1 0.161 0.154
2 0.159 0.153
3 0.143 0.140
4 0.121
6 0.190 0.176
7 0.162 0.171
8 0.156 0.143
9 0.149 0.125
17 0.131 0.129
18 0.128 0.125
20 0.193 0.183
21 0.159 0.153
22 0.151 0.146
23 0.127
30 0.210 0.213
31 0.208 0.206

~b 24 0.149 0.135
25 0.126 0.130

c 1 0.145 0.143
2 0.131 0.129
4 0.210 0.212
5 0.197 0.195
6 0.194 0.195
7 0.170 0.170
8 0.144 0.142
14 0.225 0.226
15 0.225 0.225
16 0.223 0.224
17 0.223 0.224
18 0.224 0.225
19 0.223 0.222
20 0.222 0.221
21 0.220 0.220
22 0.215 0.215
23 0.208 0.207
24 0.194 0.193
25 0.177 0.176
26 0.154 0.152
27 0.127 0.127

~d 0 0.140 0.138
10 0.129 0.149
22 0.135 0.133
23 0.218 0.219
24 0.217 0.216
25 0.212 0.216
26 0.213 0.209
27 0.201 0.205
28 0.201 0.198
29 0.193 0.188
30 0.184 0.183
31 0.168 0.175

a 6 0.188 0.185
7 0.176 0.169
8 0.158 0.155
9 0.146 0.133
10 0.130
30 0.157 0.155
31 0.141 0.141

~a 0 0.123 0.129
30 0.175 0.179
31 0.165 0.173

c 18 0.235 0.223
19 0.169 0.158

b 5 0.215 0.215
6 0.209 0.209
7 0.199 0.198
8 0.185 0.184
9 0.169 0.169
10 0.146 0.145
11 0.126 0.126
13 0.192 0.199
14 0.189 0.180
15 0.160 0.176
16 0.154 0.161
17 0.140
24 0.132 0.131
25 0.130 0.128
27 0.196 0.186
28 0.173 0.182
29 0.167 0.172
30 0.140 0.154
31 0.134 0.133

~c 1 0.167 0.169
2 0.144 0.146
3 0.121 0.121
11 0.158 0.156
12 0.136 0.130
23 0.123
24 0.209 0.205
25 0.203 0.194
26 0.186 0.173
27 0.163 0.162
28 0.141 0.141
29 0.135 0.135
30 0.125 0.124
31 0.126 0.125

~b 0 0.221 0.220
1 0.216 0.219
2 0.215 0.212
3 0.212 0.210
4 0.200 0.202
5 0.199 0.202
6 0.171 0.179
7 0.152 0.145
8 0.123
17 0.155 0.154
18 0.124 0.122
29 0.136 0.135
30 0.224 0.223
31 0.231 0.229

Table 11: Forward Probabilistic Neutral Bits on 4 Salsa rounds
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Figure 7: One QuarterRound function followed by a transposition
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