A. Askenfelt and E. V. Jansson, From touch to vibrations. I: Timing in the grand piano action, J. Acoust. Soc. Am, vol.88, issue.1, pp.52-63, 1990.

, From touch to vibrations. III: String motion and spectra, J. Acoust. Soc. Am, vol.93, issue.4, pp.2181-2196, 1993.

G. Weinreich, Coupled piano strings, J. Acoust. Soc. Am, vol.62, issue.6, pp.1474-1484, 1977.

H. A. Conklin, Generation of partials due to nonlinear mixing in a stringed instrument, J. Acoust. Soc. Am, vol.105, issue.1, pp.536-545, 1999.

M. Podlesak and A. R. Lee, Dispersion of waves in piano strings, J. Acoust. Soc. Am, vol.83, issue.1, pp.305-317, 1988.

H. A. Conklin, Design and tone in the mechanoacoustic piano. Part I. Piano hammers and tonal effects, J. Acoust. Soc. Am, vol.99, issue.6, pp.3286-3296, 1996.

J. J. Tan, A. Chaigne, and A. Acri, Contribution of the vibration of various piano components in the resulting piano sound, 22nd International Congress on Acoustics ICA 2016, pp.1-10, 2016.

L. Hiller and P. Ruiz, Synthesizing musical sounds by solving the wave equation for vibrating objects, Audio Eng. Soc, vol.19, pp.542-51, 1971.

A. Chaigne and A. Askenfelt, Numerical simulations of piano strings. I. A physical model for a struck string using finite difference methods, J. Acoust. Soc. Am, vol.95, issue.2, pp.1112-1118, 1994.

J. Bensa, S. Bilbao, R. Kronland-martinet, and J. O. Smith, The simulation of piano string vibration: From physical models to finite difference schemes and digital waveguides, J. Acoust. Soc. Am, vol.114, issue.2, pp.1095-1107, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00088329

N. Giordano and M. Jiang, Physical modeling of the piano, EURASIP J. on Applied Signal Process, vol.2004, issue.7, pp.926-933, 2004.

J. Chabassier, A. Chaigne, and P. Joly, Modeling and simulation of a grand piano, The Journal of the Acoustical Society of America, vol.134, issue.1, pp.648-665, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00768234

P. M. Morse and K. U. Ingard, Theoretical acoustics, 1968.

D. Rocchesso and F. Scalcon, Bandwidth of perceived inharmonicity for physical modeling of dispersive strings, IEEE Trans. Speech Audio Process, vol.7, issue.5, pp.597-601, 1999.

A. Quarteroni, R. Sacco, and F. Saleri, Méthodes Numériques, 2007.

S. Bilbao, Conservative numerical methods for nonlinear strings, J. Acoust. Soc. Am, vol.118, issue.5, pp.3316-3327, 2005.

B. Bank and L. Sujbert, Generation of longitudinal vibrations in piano strings: From physics to sound synthesis, J. Acoust. Soc. Am, vol.117, issue.4, pp.2268-2278, 2005.

S. Bilbao, Energy-conserving finite difference schemes for tension-modulated strings, Proc. IEEE Int. Conf. Acoust. Speech and Signal Process, pp.285-288, 2004.

J. Tan, C. Touzé, and B. Cotté, Double polarisation in nonlinear vibrating piano strings, Vienna talk 2015 on music Acoustics, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01194580

A. Izadbakhsh, J. Mcphee, and S. Birkett, Dynamic modeling and experimental testing of a piano action mechanism with a flexible hammer shank, Journal of computational and nonlinear dynamics, vol.3, issue.3, p.31004, 2008.

A. Thorin, X. Boutillon, J. Lozada, and X. Merlhiot, Non-smooth dynamics for an efficient simulation of the grand piano action, Meccanica, vol.52, issue.11-12, pp.2837-2854, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01331941

X. Boutillon, Model for piano hammers: Experimental determination and digital simulation, J. Acoust. Soc. Am, vol.83, issue.2, pp.746-754, 1988.

A. Stulov, Experimental and theoretical studies of piano hammer, Proceedings of the Stockholm Music Acoustics Conference, vol.485, 2003.

J. Chabassier and M. Duruflé, Energy based simulation of a Timoshenko beam in non-forced rotation. Application to the flexible piano hammer shank, Journal of Sound and Vibration, vol.333, issue.26, pp.7198-7215, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00929938

A. Mamou-mani, J. Frelat, and C. Besnainou, Numerical simulation of a piano soundboard under downbearing, J Acoust Soc Am, vol.123, p.2401, 2008.

E. Reissner, The effect of transverse shear deformation on the bending of elastic plates, J. Appl. Mech, vol.12, pp.69-77, 1945.

K. Ege, X. Boutillon, and M. Rébillat, Vibroacoustics of the piano soundboard:(non) linearity and modal properties in the low-and mid-frequency ranges, Journal of Sound and Vibration, vol.332, issue.5, pp.1288-1305, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00743291

J. J. Tan, Piano acoustics : string's double polarisation and piano source identification, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01755039

S. Bilbao, Sound synthesis for nonlinear plates, Proc. Conf. on Digital Audio Effects, pp.243-248, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01354772

J. Chabassier, M. Duruflé, and P. Joly, Time Domain Simulation of a Piano, ESAIM: Mathematical Modelling and Numerical Analysis, vol.2, issue.1, pp.93-133, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00739380

A. Chaigne, J. Chabassier, and M. Duruflé, Energy analysis of structural changes in pianos, Vienna Talk on Music Acoustics, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01296947

H. Järveläinen and T. Tolonen, Perceptual tolerances for decay parameters in plucked string synthesis, J. Audio Eng. Soc, vol.49, issue.11, pp.1049-1059, 2001.

J. O. Smith, Techniques for digital filter design and system identification with application to the violin, 1983.

T. I. Laakso, V. Välimäki, M. Karjalainen, and U. K. Laine, Splitting the unit delay-tools for fractional delay filter design, IEEE Sign. Proc. Mag, vol.13, issue.1, pp.30-60, 1996.

B. Bank, Physics-based sound synthesis of string instruments including geometric nonlinearities, 2006.

, Physics-based sound synthesis of the piano, vol.54, 2000.

S. A. Van-duyne and J. O. Smith, Developments for the commuted piano, Proc. Int. Computer Music Conf, pp.319-326, 1995.

J. Rauhala, H. M. Lehtonen, and V. Välimäki, Toward next-generation digital keyboard instruments, IEEE Signal Process. Mag, vol.24, issue.2, pp.12-20, 2007.

G. E. Garnett, Modeling piano sound using digital waveguide filtering techniques, Proc. Int. Computer Music Conf, pp.89-95, 1987.

G. Borin, D. Rocchesso, and F. Scalcon, A physical piano model for music performance, Proc. Int. Computer Music Conf, pp.350-353, 1997.

B. Bank and H. Lehtonen, Perception of longitudinal components in piano string vibrations, J. Acoust. Soc. Am. Exp. Lett, vol.128, issue.3, pp.117-128, 2010.

B. Bank, S. Zambon, and F. Fontana, A modal-based real-time piano synthesizer, IEEE Trans. Audio, Speech, and Lang. Process, vol.18, issue.4, pp.809-821, 2010.

S. Zambon, Distributed piano soundboard modeling with common-pole parallel filters, Proc. Stockholm Music Acoust. Conf, pp.641-647, 2013.