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Abstract

Variational and Hamiltonian formulations for geophysical fluids have proven to
be a very useful tool in understanding the physics of flows and developing new nu-
merical discretizations, and represent an important aspect of the geometric struc-
ture of the equations for geophysical fluid flow. However, the majority of such
formulations have been developed in the language of vector calculus: scalars and
vectors. Another key aspect of the geometric structure is a representation using split
exterior calculus: straight and twisted differential forms. This arguably began with
the work of Enzo Tonti, who developed a classification of physical quantities into
source and configuration variables; which are unambiguously associated with inner-
oriented (configuration) and outer-oriented (source) geometric entities, which are
themselves associated with straight (inner) and twisted (outer) differential forms.
Such a classification has proven fruitful in various areas of classical mechanics,
such as electrodynamics, solid mechanics and and some aspects of fluid dynam-
ics. However, an extension of the idea to compressible fluids was lacking until the
development of the split covariant equations by Werner Bauer. The current work
aims to unify these two aspects of the geometric structure for fluids, by developing
variational and Hamiltonian formulations for geophysical fluids using split exterior
calculus. A key aspect is that the Hamiltonian structure gives a natural representa-
tion of the topological-metric splitting in the split covariant equations through the
Poisson brackets (purely topological equations) and the functional derivatives of
the Hamiltonian (metric-dependent equations). Additionally, the Lagrangian and
Hamiltonian are seen to consist of terms that are pairings between straight and
twisted forms. These new formulations are illustrated with some specific exam-
ples of commonly studied geophysical fluids: the shallow water equations, thermal
shallow water equations and the compressible Euler equations.

Keywords: geophysical fluids, variational, Hamiltonian, exterior calculus, differential
forms, tonti diagram



1 Introduction

Fundamental aspects of the geometric structure of the equations for geophysical fluids

can be understood by studying the variational ( ); ( );
( )i ( ); ( ) and Hamiltonian

(2014); (2008); (2009);
( ); ( ) formulations. These approaches facilitate a unified representa-

tion of a diverse range of topics, such as: stability theorems and pseudo-energy/pseudo-
momentum/finite-amplitude invariants for wave-mean flow interactions and associated

linearizations ( ), structure-preserving numerical discretizations
(2018); (2015); (2018); (2017);
( ); ( K ( ) and consistent approximate mod-
els ( ). However, existing literature on variational approaches in

geophysical fluids has been formulated mostly in terms of vector calculus (scalars and
vectors), with some limited work using exterior calculus and standard differential forms
(2014).

Another fundamental aspect of the geometric structure is the representation in terms
of differential forms instead of scalars and vectors. The use of exterior calculus in flu-
ids (2012); (2016); (2014); (2011)
and other physical theories such as electromagnetics and solid mechanics ( );

(1981); (1989); (2007); (2012); (2008)
has a long history. For the most part, these approaches use standard differential forms.
However, the work of Enzo Tonti ( , ) suggests that it is fruitful to instead
represent physical quantities in terms of straight and twisted differential forms that carry
information about the ambient orientation or space. This permits a natural classification
of variables into source (twisted) and configuration (straight) quantities, that has shown
to be robust for a wide range of physical theories ( ). Using these ideas, a
split covariant formulation of several geophysical fluids was developed in ( ),
that naturally separated the equations into topological equations and metric equations.
However, the underlying variational and Hamiltonian structures were not explored.

This work combines these two threads, and develops a version of the Euler-Poincaré
framework with associated Euler-Lagrange equations ( ) ( )
in terms of split exterior calculus, along the corresponding curl-form Hamiltonian for-
mulation (termed the split Hamiltonian formulation). We treat a single component,
single phase fully compressible fluid in a rigid domain (n = 2 and n = 3) with mate-
rial boundaries that can be characterized by a mass density, a velocity and possibly a
thermodynamic scalar. Lagrangians (and Hamiltonians) are shown to be the result of a
pairing between source (twisted) and configuration (straight) variables, or in other words,
between twisted and straight differential forms. The Poisson brackets arise through the
use of a new notion specific to split exterior calculus: the topological pairing, which pairs
k-forms with the associated n — k forms of the opposite type (that arise from the action
of the Hodge star). Unlike the metric pairing, this pairing requires only the wedge and
integration, which are purely topological operators. The split Hamiltonian formulation
is shown to reproduce the split covariant equations from ( ), and gives a nat-
ural representation of the topological-metric splitting found there through the Poisson
brackets (topological equations) and the functional derivatives of the Hamiltonian (metric



equations).

This new variational formulation of geophysical fluids in terms of split exterior calculus
provides a deeper understanding of the geometric structure underlying the equations of
motion. It is also believed that the split Hamiltonian formulation will provide new insight
into existing discretization schemes and facilitate the development of new approaches

( ). Just as the standard exterior calculus formulation underlies

single grid compatible discretizations ( );
( ), it seems likely that the split exterior calculus formulation underlies primal-dual
grid compatible discretizations ( ); ( )

( , ). An important example of such a discretization is the TRiSK scheme
( (2017); (2012); (2014, 2009);

( : ); ( ), which is widely used in existing atmospheric and
ocean models ( ) ( ); ( ) despite
its known shortcomings with respect to accuracy.

The remainder of this paper is structured as follows. Section 2 introduces exterior
calculus in a concise way, while Section 3 covers split exterior calculus and the new notion
of a topological pairing. A review of variational and curl-form Hamiltonian formulations
using vector calculus appears in Section 4. Then, in Section 5 the Lagrangian and curl-
form Hamiltonian formulations for n = 3 using split exterior calculus are presented. In
Section 6 the properties of these equations, such as energy conservation, Casimirs and the
Kelvin Circulation Theorem are verified. The formulation is illustrated (by introducing
specific Lagrangians and Hamiltonians) in Section 7 with some examples of commonly
studied geophysical fluids: shallow water, thermal shallow water and compressible Euler.
Finally, Section 8 draws some conclusions and discusses future direction of research.
Appendix A discusses the use of some alternative forms of the thermodynamic scalar
(which are simply a change of variables) and Appendix B contains the details of some
simplifications that arise when n = 2 or there is no thermodynamic scalar. Appendix C
contains useful relationships connecting vector calculus operators and exterior calculus
operators.

2 Exterior Calculus, Differential Geometry and Vec-
tor Proxies

In this section we introduce the required concepts of differential geometry in a concise
way without proofs. For more details, we refer the reader to standard textbooks on
differential geometry or to ( ) for a concise overview.

2.1 Topological operators on topological manifold

We start our introduction of differential geometry with a discussion about differentiable
topological manifolds, differential forms (DF), and topological operators. For the fol-
lowing definitions within this subsection neither orientation nor metric is needed. We
consider a domain of interest given by a smooth n-dimensional closed compact orientable
manifold M. The pair (U, ¢y) consisting of patches U < M that cover M and of in-
vertible maps ¢y : U — V € R”™ defines local coordinate representations x on the patch



U < M such that the local coordinates of point x € M are given by (z',...2") = ¢y (x).
The span of vectors that are tangent to x € M form the tangent space To M. A
vector field u on M is a smooth mapping from each x to Ty M; hence it is tangent to
M everywhere. The space of vector fields is denoted as X' (M). The dual objects to
tangent vectors are cotangent vectors; at every point x they are linear maps from Ty M
to R. Cotangent vectors span at x the cotangent space T M. A differential 1-form w
is a smooth mapping from x to the cotangent space T M. Hence, w defines a smooth
mapping from the vector field u to a scalar function w(u) with values 'w(u)(x) € R at
point x. The superscript in front of w indicates the degree of the differential form.

A differential k-form %v, or simply k-form, is a smooth mapping that assigns to each
k—ti
point x an anti-symmetric k-linear mapping TxM X S TxM — R on the tangent

space Ty M. We denote the space of all k-forms as A*(M), or simply A*. The direct sum
A(M) := ®F_,A*(M) is a graded algebra where the algebraic structure is given by the
wedge product (or exterior product) A.
The wedge product of a k-form and an [-form gives a (k + [)-form. For %o, "3 € A¥
b,% e Al, and a, b scalars (O-forms), this product has the following properties:
1. bilinearity:
(afa+b*3) Aty = alfa Aly) +b(*8 A ly), o n (ay+0%) = alfa Aly) +b(Fa A B);
2. anticommutativity:
Fo Ay = (1R by A ko
3. associativity:
(o 18) A ™y = Fa n (18 A ™).
Noting that O-forms are scalar functions f, their wedge products with k-forms are given
by the product f A % = fko.

Remark 1 Using the wedge product, differential k-forms can be constructed out of 1-
forms. For instance, the wedge product of two 1-forms ' and '3 gives the 2-form ‘o A 3
that is defined via 'a A 1B8(X1, X5) = (X)) A 1B(Xy) — 'a(X3) A 1B(X;) for all pairs of
vector fields X, Xy € X(M). In the same vein, any k-form can be constructed following
this procedure from 1-forms.

Finally, we introduce two very important topological operators acting on k-forms, the
exterior derivative d and the interior product i.y. The exterior deriative d is a map from
k to k 4+ 1-forms that satisfies the following properties:

1. for a function °f € A?, its total differential in local coordinates is d°%f = >, g g{ dx?,

2. product rule (Leibniz rule): d is R linear and for %o € A¥ and %y € A! there is
d(fa aly) = (dfa) Aty + (=)W Fa A (dhy),
3. closure: d(d'w) = d* fw = 0 for any k-form k.

The inverse operation to d is the interior product (contraction) of a k-form % with the
vector field X, denoted as ix %w. It is a map from & to (k — 1) forms defined by

ix (Xo,. . Xp) = (X, X, Xp)

for all vectors X; € X(M),7 = 2,..., k, while the contraction of a O-form is zero. As d,
the interior product is R-linear and, for v € A* and iy € A ix(Fa A ly) = (ix %) A ly +
(=1)® ko A (ix '8). Moreover, we have iyx) "o = fix k.
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Example 2 For instance, the contraction of a 1-form w with a vector field u is the scalar
function i, w = w(u)(x) € A°. The contraction of a 2-form % with u is the 1-form i, .

We can define the Lie derivative Ly of a k-form % with respect to the vector field X
in terms of interior product and exterior derivative:

Ly fw =iy d* + dix %w. (2.1)

This formula is frequently referred to as Cartan’s formula.

2.2 Oriented manifolds, integrals, and Stokes theorem

To define the notion of integrals of k-forms an orientation must be fixed. We will denote
the selected orientation with Or and the opposite one with —Or. Given a k-form in local
coordinates, fw = w(x)dz! A ...dz* with component function w(x), its integral over the
k-dimensional submanifold V* = M is given by

J ho = J w(x)dzt ... da*.
vk ou(VF)

This definition is independent of the choice of coordinates, due to the change-of-variables
formula. Stokes theorem for k-form %v on an oriented manifold M is given by

f df :J k.
M oM

The value of the integral depends on the ambient orientation, as the sign of the
volume form changes from Or to —Or. Using a twisted volume form instead (see (3.1)
and Section 3) will allow us to define integrals that are invariant under changes of the
ambient orientation.

2.3 (Oriented) Riemannian manifold and Hodge star operator

We equip the topological manifold M, not necessarily oriented, with a metric g(,) =
gijdx'dx? with coefficients g;; = g(%, %), i,j =1,..n. At point x € M, gl is an inner
product on Ty M. The pair (M, g) is called Riemannian manifold.

The metric g induces a nondegenerate symmetric bilinear form g = ()on M, a
mapping from two k-forms to functions, by {-,-) : A¥ x AF — C* with (%, %)) = (i, k)
for all %, %y € A¥. The metric g also induces a uniquely defined volume form 1 on M,
which can be used to define the Hodge star operator x. Given the oriented n-dimensional
manifold M with nondegenerate symmetric bilinear form (-, -) and volume form g induced
by the metric g, then there exists a unique isomorphism, called the Hodge star operator,
* 1 AF — A"F satisfying

foo nox k3 = CFa, "85 for  Fa, kB e AR (2.2)
and with properties:

P
2. %l =p" xp =1,



3. %k Fy = (_1)1{(717]{) kOé,

4. o, "By = (W, »B).

The latter definitions depend on orientation and may change sign when the ambient
orientation changes. Such change can be avoided when using twisted DF and twisted
operators, as introduced in the following.

3 Split exterior calculus for formulations indepen-
dent of ambient orientation

In this section we introduce concepts of differential geometry and exterior calculus in an
ambient orientation independent manner by using straight and twisted DFs. Based on
these ideas, we introduce two novel key concepts essential for this manuscript, namely
the topological pairing of straight and twisted DF's as a metric independent version of an
inner product of k-forms and the topological functional derivatives with respect to this
topological pairing.

Definition of twisted objects. Given an orientation Or on M with opposite orien-
tation —Or, and given a straight differential form %v € A*, we define twisted differential
forms by

%= {{tw, 0r}, {~*u, —Or}} e A" (3.1)

We denote the space of twisted k-forms as A*. Using a combination of straight and
twisted differential forms to describe a system of equations allows for formulations that
do not depend on the choice of the ambient orientation of M ( ) or dimension.

We also define an orientation independent Hodge star operator which we refer to as
twisted Hodge star *. 1t is defined by * := {{x, Or}, {—*,—Or}}. When we use twisted
quantities, the formulation is independent of the chosen orientation. Possible sign changes
are taken care of by the twisted forms and the twisted operators.

The pairing of differential forms. An important tool for our formulation is the
pairing of differential forms. The inner product ¢, ) induced by the metric g is a metric
dependent pairing of differential forms of the same type, and can be defined in terms of
the wedge product A and the twisted Hodge star %, as done in Definition 3. In addition,
in Definition 4 we define the topological pairing of differential forms of opposite (dual)
type (e.g. of a straight k-form and a twisted n — k-form), denoted with {((;)), as a metric
independent version.

Definition 3 On an orientable Riemannian manifold (M,g), the metric g with associ-
ated inner product {, ) induces metric pairings between either two straight or two twisted
k-forms:
Catsyim [ fansts, e | faasth), (32
M M
Note that the inner product s symmetric.



Equation (3.2) is an orientation-independent definition of the inner product, as it uses
the twisted Hodge star.

Definition 4 On an orientable topological manifold M with twisted volume form "fi, we
define the topological pairing {((,)) of straight (twisted) k-forms with twisted (straight)
(n — k) forms by

(CFa, 5y = f b n PR (P j oA RE (33)
M M

Proposition 5 The topological pairing {{,)) has the following properties:

1.) The topological pairing is independent of the metric g and of the ambient orien-
tation;

2.) The topological pairing (o, ""¥)3)) is an inner (metric) product if the metric
closure equation " %3 = % *¥3 holds. An analogous statement holds for (&, "=F)3)).

3.) In case the metric closure equation holds, the topological pairing is symmetric with
respect to a duality exchange:

((a, "7RE)) = (B, " May) (3-4)

where **a = "F§ and * <”—’“>B =r3 .

Proof: Property 1 follows immediately from the definition of the topological pairing in
terms of the wedge product A and an integrals over a twisted n-form, both of which are
purely topological operations independent of the ambient orientation. Property 2 arises
immediately by substituting in (3.3) the metric closure equation * *3 for the (n — k)-
form ("%, and comparing to the metric product from Definition 3. Finally, Property 3
follows by duality pairs * %o = ™% and * %3 = *3 into the definition of the topological
pairing. o
Equation (3.3) is independent of both orientation and metric.

Functional derivatives. On the basis of the pairings of DF, we define two versions of
functional derivatives: (i) with respect to the metric pairing ¢, ) and (ii) with respect to
the topological pairing {({, )).

We start by recalling the standard exterior calculus definition for functional deriva-
tives. Given a functional F[fu] : A* — R depending on (straight) k-forms, variations of
the functional §F results from variations of *u, defined by d.F := F[fu + ¢ fu] — F[u].
Introducing an arbitrary straight test function % we write § *u = €%v and evaluate §.F in
terms of a Taylor expansion in e:

Flhu + efw] = Flfu] + %]:[ku—i—ekw]

K + O(€%). (3.5)

Therefore we can relate the derivatives of F with respect to € to functional derivatives:

= liml(]——[ku + éw] — Flfu]) = f "1 ?—Z; o =: 6F. (3.6)
M

d
—F[*u + "]
e=0 e—0 €

de




This definition relates the derivative of F with respect to € with a linear functional with
kernel g—,fi that acts on the test function %w(x). To guarantee that this definition exists,
we assume to take only differentiable functionals.

In the following two definitions, we extend the definition of functional derivatives (3.6)
in standard exterior calculus using instead split exterior calculus.

Definition 6 The standard (or metric) functional derivatives of F[*u] : A¥ — R (or
Flka] : A¥ — R) with respect to the k-form *u (or %i) and with respect to the inner
product {, ) are defined by

1 oF oF
OF = lli% E(F[ku +e'w] — Flfu]) = (w, %> = fM ko A i% vho e AF (3.7)
for arbitrary test functions % (or %0). In particular, if *u € A* is a straight k-form, also
SE € A* is a straight k-form, while for a twisted k-form *u € A*, 2 € A* is a twisted
k-form.

Definition 7 The topological functional derivatives of Flfu] : A* - R (resp. Flku] :
A* — R) with respect to the k-form *u (resp. *i) and with respect to the topological
pairing {{, )y are defined by

1
OF = hm (F[fu + e'w] — Ffu]) = <<k >> J WA —— Yhoe A
‘ i (3.8)
resp. OF = hm (Flfa+ @] — F[fa)) = ku>> J DA — Vkoe A
e—0 €
for arbitrary test functions fw (resp. %) under the metric closure condition
OF  _OF OF  _0F
S = (o 5 = ) (39)

In particular, if 'u € A¥ is a stmight k-form, SZL e A=K s g twisted (n—k)-form,while
for a twisted k-form *u e AF, 2£ 2L € A s a straight (n — k)-form.

Remark 8 Note that the appearance of two tildes in 5—~ indicates that the twisting
cancels to produce a straight form. In general an odd number of tildes gives a twisted
DF, an even number a straight one.

The topological functional derivatives defined in (3.8) are metric-independent, since
they involve only the wedge product. In contrast, the metric functional derivatives involve
* and therefore depend on the metric. Furthermore, the metric and topological functional
derivatives coincide when enforcing the metric closure condition (3.9).

Further useful relations.  Using {-,-) we find a duality between vector fields and
I-forms w', given by b : X — Al v’(v)(x) = (u,v)(x) for all vector fields v e X'(M).
The inverse operator is given by f : A! — X(M). We refer to both mappings b and £ as
Riemannian lift.

The b operator allows us to represent the interior product in terms of A and *.

Definition 9 (Hirani’s formula) The interior product ix % of a k-form %w € A* with
the vector field X € X (M) can be written as

ix = (DR R A (X)), (3.10)

8



4 Variational and Hamiltonian Formulations using
Vector Calculus

This section presents a review of variational and Hamiltonian formulations using vector
calculus for a single component, single phase fluid that can be described in terms of a
(transport) velocity u, a mass density D and a thermodynamic scalar s, in preparation
for the development of these formulations using split exterior calculus. More details
on the traditional approach can be found in standard texts on the subject, such as

( ); ( ); ( ) ( ). We assume a fixed
domain 0 < R™ (this is relaxed to general manifolds later) with boundary 0f2, where
the boundary is a material surface (u-i = 0 on 0Q2). An extension to domains with
time dependent boundaries (such as a free surface or elastic lid) is possible, and leads
only to an additional surface term in the Lagrangian £ or Hamiltonian H

( ). As is standard in geophysical fluid dynamics, we use the scalar (s) rather
than density (S = Ds) form of the thermodynamic variable in the variational Lagrangian
formulation. In contrast, in the Hamiltonian formulation we use the density form of the
thermodynamic variable. We consider here only the case when n = 3, the case of n = 2
is discussed in Appendix B.

4.1 Variational Lagrangian Formulation

Given the Lagrangian functional £[u, D, s| in Eulerian coordinates that characterizes the
fluid, standard variational techniques involving constrained variations ( ,
) yield the corresponding Euler-Lagrange momentum equation:

0 (146L 146L oL 1L

— [ =— Lyl =— ] — — ——Vs = 4.1

ot (Déu)+ “<D5u> v(éD)+D55vs 0 (4.1)
where L, is the Lie derivative with respect to u. Specializing now to n = 3 and expanding

the Lie derivative term using Ly, x = V x x x u +V(u -x) gives finally the curl-form Euler-
Lagrangian equations:

0 (1d0L 16L 16L 6L 16L
a (5%) TV (Ea_u) XUtV (“'EE - 6_D) TV (4

This is supplemented with kinematic transport equations for D and s

oD

= = =V-(Du) (4.3)
ds
Fri u-Vs. (4.4)
Combining (4.3) and (4.4) gives an equation for S as
oS

In tensor notation, u is typically treated in contravariant form, while v, introduced in
the following definitions, is treated in covariant form. This is akin to the transition from

9



vector fields on the tangent bundle to 1-forms on the cotangent bundle. See

( ) for more details.
Introducing
10L 146L 1oL 6L soL
T:=——— =—=— == - — + =— F:=D 4.
Dos' T Dou “Dou oD " Dos u (46)
in order to simplify the equations, and following standard definitions in the literature
( , ); ( ), the momentum and transport equations
can be written as
VL VY FAVB4sVT - 0 (4.7)
— s = )
ot D ’
oD
—+V-(F) = 0, (4.8)
ot
os F
2oy = 4.
e + o) Vs 0, (4.9)
0S
Oa—t+v‘(sF) - 0. (4.10)

A closed set of equations is given by equations (4.7) - (4.8) and either (4.9) or (4.10).

4.1.1 Rotation

For geophysical fluids, it is often beneficial to work in terms of a coordinate system
that is undergoing solid body rotation. In R3, a solid body rotation is described by a
rotation vector €2, which is a uniform constant vector. Therefore, V- Q =V x Q = 0.
It is important to note that €2 is a pseudo-vector that changes sign under a reversal
of orientation. The velocity R associated with the rotation is defined by V x R =
2€2. In fact, this definition for R is fundamental and holds for more general manifolds
than R3. Note the gauge symmetry in the definition of R, similar to the one found
in electrodynamics. However, unlike electrodynamics, we are not aware of any work
exploiting this. In R3 the standard choice is R = © x r, where r is the position vector.
Rotation is introduced by adding a term to the Lagrangian £, as

L' =L+ (DuR).

Therefore N
=—+DR.
ju Jdu *
According to (4.6), the latter implies that v/ = v + R, or in other words, when rotation

is added v’ = %‘;—ﬁ/ represents the absolute velocity rather than a relative velocity. More

details on this can be found in ( : ).

4.2 Kelvin Circulation Theorem

Integrating (4.1) over a closed curve v(t) and using the fundamental theorem of calculus,
the Kelvin circulation theorem is obtained as

d 10L 16L

(1) v(t)

10



where % = % + L, is the total derivative.

4.3 Potential Vorticity

The potential vorticity is
~ Vxv-Vs

D

where Q = VB". In fact, the potential vorticity can be defined more generally by replac-

ing Vs by VA(s), where A(s) is an arbitrary function, but this is not pursued further.
Combining (4.7) - (4.9) gives the evolution equation for potential vorticity density

q =Q-Vs.

d(Dq)
V-(¢gDu) =0
5 tV-(aDu)
and for potential vorticity
0
Tq +u Vq =0.
ot

The last equation is a statement of the fact that potential vorticity is materially conserved

(% =0).

4.4 Hamiltonian Formulation

Here we will focus on the variant that predicts (v, D, .S), some alternatives are discussed
in Appendix A. Note that we have switched from the thermodynamic scalar s to the
thermodynamic scalar density S. The fundamental objects in the Hamiltonian formu-
lation are the Poisson bracket {A, B}, which is a bilinear, anti-symmetric operator on
functionals A[v, D, S| and B[v, D, S| satisfying the Jacobi identity and Leibniz rule; and
the Hamiltonian H[v, D, S]. The evolution of an arbitrary functional F[v, D, S] is then
given by
dF

—r = {FHL (4.11)

For geophysical fluids in Eulerian coordinates, the Poisson bracket is usual non-canonical
(singular) and therefore there exists a set of functionals C[v, D, S|, termed Casimirs, that
lie in the null space of the Poisson bracket

{C,LA} =0V A. (4.12)

By combining (4.11) and (4.12), it is clear that the Casimirs are conserved quantities.
More details can be found in ( ) or any standard text on non-canonical
Hamiltonian mechanics.

4.4.1 Hamiltonian

The Hamiltonian H|[v, D, S| corresponding to L[u, D, S| is obtained via a Legendre trans-
form as

H[V,D,S]zJ(ug—ﬁ)—L:J(Du-v)—E. (4.13)

11



Hence, in the Hamiltonian formulation the fluid’s velocity is described by the vector field
v, which is usually written using covariant components. The functional derivatives of H
are given by

OH OH 0L s oL OH 146L
ov PR Tt Tse e P 55T o b

which agree with the definitions in (4.6).

4.4.2 Poisson Brackets
The Poisson bracket is

{A,B} ={A,B}r + {A,B}s + {A, B} (4.14)
where
oA oB 0B 0A
(ABlp — L(—EV'(S—VJFCS—DV i, (4.15)
oA oB oB 0A
(A B}s = L“EV (552) + 5oV (52 ), (4.16)
By = [ -2 (Qx—) 00, (4.17)

Equation (4.14) defines a Poisson bracket with respect to the variables (v, D, S), which
is known as the curl-form Poisson bracket. It is also possible to define a bracket pre-
dicting (m, D, S) where m = Dv is the momentum. This is known as the Lie-Poisson
bracket, and examples are found in ( : ) (amongst others). The
Lie-Poisson bracket gives the flux-form momentum equations. It is straightforward to
show that the Poisson bracket (4.14) with Hamiltonian (4.13) lead to the equations of
motion (4.7), (4.8), and (4.10).

4.4.3 Casimirs

The Casimirs of (4.14) take the general form

S
C[V7D7S] = f‘DF<_7Q)

D
where F'(s,q) is an arbitrary function of the thermodynamic scalar s and the potential
vorticity ¢. The functional derivatives of C[v, D, S| are

0C oF

E = Vx(a—qVS),

0C oF oF s oF

o0 - Frag, =55t pV (G V)
0C oF 1 oF

55 = o Y GV

Important cases are I’ = 1 (total mass), F' = ¢ (total potential vorticity) and F =
(total thermodynamic scalar).

12



5 Variational and Hamiltonian Formulations using
Split Exterior Calculus

Instead of vector calculus, we now wish to use split exterior calculus: to work in terms of
straight and twisted differential forms instead of scalars and vectors. Our intention is to
translate the standard variational and curl-form Hamiltonian formulations from vector
calculus into split exterior calculus. The resulting novel framework applies for arbitrary
manifolds with n < 3 and is independent of the orientation of the ambient space, and
can incorporate many different fluid models through an appropriate choice of Lagrangian
functional. A principle result for the Hamiltonian formulation is the appearance of Pois-
son brackets that involve only topological operators, with all metric operators appearing
in the Hamiltonian. This is the major advantage of the split exterior calculus formulation
over the vector calculus formulation.

5.1 Choice of predicted variables

14, representing an n — 1

The transport velocity u is described by a twisted n — 1 form ™
dimensional flux and defined by

i =1, = *"IAtu) = %' (5.1)
using Hiranis formula (3.10) and °T = %" with "t the twisted n-volume form, and where
lu = u’ is the straight 1-form associated with u. In fact, 'u and ™' are the two
differential forms associated to the vector u. The mass density D becomes the twisted
n-form "D, the thermodynamic scalar s the straight 0-form s and the thermodynamic
scalar density S = Ds the twisted n-form S = "D A Os. There is a corresponding mass
density straight O-form °D = *"D. The material boundary condition u-A = 0 on €

becomes i, i = *(*"i A 'u) = *(°T A tu) = ™10 = 0 on Q.

Remark 10 These variables follow precisely the classification used in the work of Tonti

( , ), which associates each physical quantity to an oriented geometric
entity, which are themselves associated with oriented differential forms. One way of
viewing this work, and in particular the Hamiltonian formulation using split exterior
calculus, is as a generalization of Tonti diagrams to compressible fluids with arbitrary
equations of state.

5.2 Variational Lagrangian Formulation

The Lagrangian, now formulated in terms of DFs, is £[*'@,"D, %], and the resulting
Euler-Lagrange momentum equation is

o (1 4oL 1 6L oL 1 _oL |,

Using Cartan’s formula to expand the Lie derivative this can be written in curl-form as

o (1 6L . 1 6L (1 4c oL 1 oL
%<@m>+lu<d@m>+dlu<®m>—d5nﬁ+@/\*m/\dS—O

(5.3)
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where the functional derivatives of £ are calculated with respect to the topological pairing
of Definition 7. In particular, (5.2) and (5.3) describe the dynamics of a straight 1-form.
This is supplemented with kinematic transport equations for D and %s

aatD — —L,"D = —d(°D A ™'q), (5.4)
0
% = L% =—%(""ird%). (5.5)

As before, (5.4) and (5.5) can be combined to yield

a;té — - L,"S=-d <Os A n-115> . (5.6)

Proposition 11 Equations (/.2) - (4.5) are equivalent to (5.3) - (5.0).

Proof: Start by recalling (4.1)

0 L 10L
gV—FLuV—v (E) +EEVS:O (57)
and noting that (5.2) can be rewritten as as
21V—I—Lulv—dé—/{ + 1 ;% A d% = 0.

ot 57D oD " T sos

By the direct association between 0-forms and functions we have D = °D and s = s,
and therefore 35 = %& and % = 2£. We also have that v’ = 'v. Now take b of (5.7)

D — 69D
and use the fact that (Vz)* = d2° for a scalar  (see Appendix C) to get
04 b L 1oL
— Lyv) —d| == ——d% =0.
o ¥ HLav) (50D) Topgos @ 8=
Using (3.9) and the chain rule (since "D = *°D, the standard functional derivatives 2L
and % are related to the topological functional derivatives by ;n% and % by
0L 0L oL 0L oL
50D 59D gup’ 60s 508

Therefore, it remains only to show that (L, v)” = Ly 'v. Start by expanding L, v into
V x vxu+V(u-v) and then use the material in Appendix C to get

(Lav) = (Vxvxu) + (Vu-v)) =*xdv alu) +d*(tun*lv).
Using Hirani’s formula (3.10) this is simply
(Luv)b =iydiv+diglv=1Lyv.
Now consider the kinematic equation

oD

Y _L.D=-V-(Du).
ot u V- (Du)

14



This can be directly translated as

0
aa—tD = —%d*(°D A 'u)

using the formula relating V - x and */d from Appendix C. Take % of both sides to yield

) R 3
a(% = —d*°DA'u) = —diy"D = —L,"D

by combining Hirani’s formula (3.10) and Cartan’s formula (2.1). Similar considerations
give

0"S . .
P —d*(°SAtu) = —diy"S = —L,"S.
Finally, the kinematic equation
% =—Lys=—u-'Vs
C
can be written as
0% (1. 130 : 10
T —*(uA*d’s) = —i,d"s
using the formulas from Appendix C. O

Following the same steps as in the vector calculus case, we proceed by defining

1 6L
0 . I
1 6L
1 N
1 0L oL O oL oL

0 R e _ 1 0 0

B := lu (@511_1{1) _611]?)_'—@*@_1“ V_(Snf)_ S A T, (510)
wlp . 0p Al (5.11)

which are equivalent definitions to (4.6) but now in terms of straight and twisted differ-
ential forms. Substituting them into (5.3) gives the following momentum and transport
equations

1
a?—tVJriudlv—I—doB—i—OSAdOT _ (5.12)
C
oD i
d™F = 0 5.13
% (1 Lz 0
0_t+*(®A Fad s) = 0, (5.14)
6ng 0 n-11- o
- +d(S/\ F) ) (5.15)

Given the equivalence of the EP equations in split (5.3) and in VC form (4.2), the latter
equations in (5.12)—(5.15) are equivalent to vector invariant equations in (4.7)—(4.10).
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5.2.1 PV Flux Term

The PV flux term

indv =i4%n

with 2 = d v can be written in several equivalent ways. Start by introducing ?Q, defined
. n=dv=2QAr"D.
Taking % of this yields the definition for 2Q as
2 =12 =2Q A D, (5.16)
Writing i, 27 out using Hirani’s formula (3.10) gives
i *1 = *(*%n A ). (5.17)
Substituting (5.16) into (5.17) gives
2 = #("2Q A 'F) = (32 4 'F) = ip Q.
where we have used 'F = °D A 'u, F = Du and (F)’ = 'F. Further manipulations yields
i = ()" F(2Q AFMIE) (5.18)

The form will be particularly useful in developing the Hamiltonian formulation.

5.2.2 Rotation
Since €2 is a pseudo-vector, the associated 1-form is twisted, and
0=
From this, an associated straight 2-form can be defined as
P10 =:20.

In fact, as shown in ( ), the rotation straight 2-form 2(2 is the correct dimension-
agnostic way to describe solid body rotation. Note that 2Q is a closed form: d?Q = §2Q =
0. From 20, the rotational velocity straight 1-form 'R is defined through

d'R =22%2Q.

This is a dimension independent definition of 'R, and it implies that the rotational velocity
part of the PV flux term can be written as

i,d'R =1i,2%Q

which is the standard representation of the Coriolis term. Rotation is introduced into
the Lagrangian exactly the same way as in the vector calculus case:

L£'=L+{"Dr'un,'R),
oL 6L
5n-1ﬁ - 5n-1ﬁ

with 'v' = v + 'R, using (5.8).

+°D A IR,
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5.3 Hamiltonian Formulation

Here we will focus on the variant that predicts (v, HD, HS), some alternatives are discussed
in Appendix A.

5.3.1 Hamiltonian

The Hamiltonian is obtained from £[*'i1,"D, %] using a Legendre transform:
H['v,"D,"S] = D, i, 'v) - L. (5.19)

This is a transformation from the twisted n — 1-form 1 to the straight 1-form !v. As
mentioned in the introduction, the Hamiltonian consist of a metric pairing of two DF
of the same kind. However, this can also be viewed as a topological pairing between a
straight and a twisted different form

D, iy 'v) = ("D, iy 'v))
More examples of this duality can be found in Section 7.
Proposition 12 Equation (5.19) has topological functional derivatives given by

0" s OH 0L s 0L o, 0 1 0L

n-1-~ n-1 =0
E—DA u=""F, 5n]3—1uv = "T5.20)

— 4+ —%—="B, —= = —— % —
snD 9D §0s 5§18 0D  §9s

We see that the topological functional derivatives relate straight and twisted DF's, and
they are in fact a type of metric closure equations related to those studied in

(2016).
Proof: Start by writing H['v,"D,"S]
H['v,"D,"S] = JOD A=) E Y A ) — L

where £[*',"D,%]| = { L[*'&,"D,%]. Using the properties of the wedge product and
the twisted Hodge star this becomes

Now taking variations yields

OH = f (50D ANATIE+ D AV A A+ D A Y Aén'lﬁ) — 0L[™1,"D,%]. (5.21)

Note that . - -
~ oL - 0L oL
n-1~ n 0 n n-1~ 0
OL["1,"D, " s] = S0l A0 D—i—én_11~1 N 55 A0S (5.22)
and . |
(5os=m/\§5ng—@/\05/\§5“f). (5.23)
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The latter comes from the definition of ®S = "D A %s. Substituting (5.22) and (5.23) into
(5.21) and grouping terms gives

- oL % oL
n : 1 0 n-1~
57—[:[6 DA<1UV—5HD+—OD 508)4—5 V/\(D/\ u)+

na 1 oL wig  fop a1, L
5S/\(—®A 508) +9 (DA V—5H_1ﬁ>.

5‘3_‘1:&, proving the statement. o

The last term is zero since °D A v =

5.3.2 Poisson Brackets

The Poisson brackets, written with respect to the topological pairing, are

(A Bl = <<§A i)~ (@ o8 §;“>> 524
. o g 0B 5A

(ABls = a0 aTom = sad 2D 20 (525)

(ABlg — ~G(2Qaz o) 24y (5.26)

with ®2Q A "D = 25 = d'v, where 27 is the the absolute vorticity straight 2-form. ote
that we use in the @) bracket the representation (5.18) for the PV flux term, taking into
account that n = 3.

Proposition 13 The Poisson brackets (5.24) - (5.20) are bilinear, anti-symmetric, sat-
i1sfy the Leibniz rule and Jacobi identity and are purely topological.

Proof: By inspection, these brackets are bilinear and satisfy the Leibniz rule. Similarly,
since they involve only the topological pairing and topological operators (d, A and iz),
they are purely topological. Although it appears that the PV flux term is not topological
(since it involves %), recall that it is simply another way to write the interior product,
which is a topological operator. The Jacobi identity is satisfied since the vector calculus
bracket (4.14) satisfies it, and these brackets are simply a translation into split exterior
calculus.
Now consider the anti-symmetry. Start with the Leibniz rule for d and A:

f d(%a A "71h) = J d% A "o+ % Ad ™.
v 1%
Now use Stokes theorem

J Og A " 1h = Jd Oa A " 1h+ % A d "D
v

In our case we will have "' = 0 on OV, since we will use "~1b = %, and % =0 on
0V due to the boundary conditions. Therefore we can write
Jd %9 n "+ % nd b =0. (5.27)
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Now consider the {A, B} bracket. We have

0 A 0 oB oA 0 B 5 oA 0B
B B = —
(A Bl (B, Abn =~ £ 52 20028 a2y a2 28y
Using (5.27) with %a = % and "1h = 6~ the first and last terms combine to zero.
Similarly, using (5.27) again with %a = fn% and "~1h = 3{4, the second and third terms

combine to zero. Therefore

{A,B}R—F {B,.A}R = 0.

1

The same argument can be used with the {A, B}s bracket, except that now %a = s and
"‘15208/\% or Oa— o5 and” 1 = SA§18 Thus
{A7B}S + {BJA}S = 0.
Finally, consider the {A, B}q bracket. We have
N bA. B s~ O0A. 0B
(B Ajo = ~(G QA3 S0 Sy = = |50 Qns Sy A S
Using the properties of * and A this can be written as
6B _,~ _0A i (usr 0B _bA
(B.Ajo = - [#50 A2 Qs 5h = (1t [Qas i a g -
0A ) - 0B, JA
n—1 T (n-2 T n-2 z
(7 [ o A3 ) =[RS 0 A 5T = (4Bl
Thus (5.24) - (5.26) are anti-symmetric. o

5.3.3 Equations of Motion

Inserting functional derivatives (5.20) into the Poisson brackets (5.24) - (5.26) gives the
equations of motion as

1
a}—tV—I— *("2QAFME) +dB+%Ad’T = 0,
%
oD .
d™'F = 0
ot " ’

RIS
ot

+d (05 A MF) = 0.

5.4 Summary of Results

For a fully compressible fluid characterized by a mass density, a velocity and a ther-
modynamic scalar through the Lagrangian £[*',"D, %] (with associated Hamiltonian
H['v, "D, ng]) on a general manifold M, the following variational Lagrangian and Hamil-
tonian formulations hold:
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Euler-Lagrange and Kinematic Equations:

o (1 6L , 1 6L 1 6L 5L 1 oL |,
at(m(srl'lfl)—’_lu(dmén'lﬂ)—i_dlu( _~>—d ~+7A*7Ads—0,

0D §r-1g snD %D 5 9s
an~ nry _ ﬁn~ ng __ 20 _
a3 D+Ly"D =0, P S+L,"S=0, P s+Ly% =0.
Poisson Brackets:
5 A 68 68 5 A
{A7B}R - _<<(5 51 >> << nD "5 ly >>
5 A (58 5 A

{ABls = —(5d(s )>> s A 5e87 51y

onS’
(A.Blo = —<<*(“QA*5B) ;5:4>>

Topological Functional Derivatives:

o — _L;E: 57%’
D 4%  §nS
‘B = iulv—éé—OS/\OT:é}f,
5°D 5D
- OH
n-lF _ OD n-ls =
ATTa Sy

(Hamiltonian) Equations of Motion:

1 - -
a}—tv—I—;(H'QQAJ(“'lF)+dOB+OS/\dOT = 0,
(
oD .
d™F = 0
o ’

RIS
ot

+d (05 A MF) = 0.

These formulations are closed by making specific choices for mass density "D, trans-
port velocity ™11 and thermodynamic scalar ’s; and specifying the Lagrangian in terms
of these variables, which determines 'v and the functional derivatives ™'F, °B and °T.
Some specific examples of this for common geophysical fluids (shallow water, thermal
shallow water, compressible Euler) are given in Section 7. It is also possible to predict %s
or ™3 instead of S in the Hamiltonian formulation, and more details about this are found
in Appendix A. There are also some slight changes that arise for n = 2 (in the PV flux
term) and if there is no thermodynamic scalar, and these are explored in Appendix B.
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6 Properties of Split Exterior Calculus Variational
Formulation

Now we will investigate some basic properties about the general formulation: conservation
of energy and Casimirs, Kelvin Circulation theorem and potential vorticity. The last
three turn out to depend on dimension and/or the presence of a thermodynamic scalar.
Therefore, we discuss only the n = 3 case in these subsections.

6.1 Energy conservation
Proposition 14 The three sets of equations of motion in 5.3.3 preserve total energy.
Proof: For all three sets of equations with corresponding Hamiltonian H,H’, H”, the

conservation of energy follows from the anti-symmetry of the corresponding Poisson
bracket such that

d
dt ={H,H}=—{H,H} =0
holds for H and, analogously, for #" and H” (from Appendix A). o

6.2 Kelvin Circulation Theorem
Integrating (5.2) over 7(t), the Kelvin circulation theorem is
d 1
2 - 0L jo
dt 5 n- 1u jg 5 0g ¢
v(t)

This is a natural definition, since both sides are straight 1-forms that can be integrated
over curves. When there is no thermodynamic scalar, this simplifies somewhat (the right
hand side vanishes), as discussed in Appendix B.

6.3 Potential Vorticity

For n = 3, we define the potential vorticity straight 3-form "q, twisted 0-form °q and
straight 0-form °q by

=d% A2Q,
%G = & =¢~<d 51 %Q)
Yq="TA%,
recalling that °D A 2QQ = 2 = d 'v. Note that
D A%q ="D A°j.
By combining (5.12) - (5.14), evolution equations for the potential vorticity density
9D A “q straight n-form and potential vorticity twisted 0-form °q are obtained as

0%D A "q

L.®DA®q) =0
pra ("D A"q) =0,
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0°g
2 4 Lu(°g) = 0.
8t+ w(’@) =0

The last equation is a statement of material conservation of °G. These definitions only
make sense when n = 3, when n = 2 the potential vorticity takes a different form, and
the governing equations depend on whether or not a thermodynamic scalar is present.
This is discussed in Appendix B.

6.4 Casimirs

Since the Casimirs are a function of the Poisson bracket, and the Poisson bracket changes
when dimension changes or if there is no thermodynamic scalar, there will be three sets
of Casimirs: n = 3, n = 2 and n = 2 with no thermodynamic scalar. Here we will discuss
only the Casimirs for n = 3, the other two cases can be found in Appendix B. Recall that
the Casimirs satisfy

(C, A =0V A.

They are of the form o
C[1V7nD7nS] = <0D7F(Osaoq>> (61)

where F(Ys,%q) is an arbitrary function of %s and °q. The functional derivatives of (6.1)
are

6C

5Ty - d(F, AT A d"%), (6.2)
6C P _OgNF _Og A F 40 i OJARAE A2 6.3
315 = — qQALg— SAFg+ S/\OD/\ /\( g N 77)7 ()
6C 1

o = F,— ) AT A *(dF, A n), (6.4)

where F, = aaf and Fy = g—F. Important cases are F' = 1 (total mass), F = %q (total
potential vorticity) and F' =% (total thermodynamic scalar).

Proposition 15 Equation (6.1) is a Casimir of the brackets (5.2/) - (5.26).

Proof: It is easier to do this proof when predicting s instead of n§ (see Appendix A),
in which case the topological functional derivatives of C'[*v,"D, %] are

o€ A(F, A °TAdO%), 6C~ =F - AF, oC

_ — =D AF,—"TAdF, A%n. (65
dlv 4 51D 5 0g A ANdFy; A (6.5)

In order that {C, A} = 0 ¥ A, functional derivatives (6.5) must satisfy

5Ty =0 (6.6)

21 sC’
(@ A d% A(Slv) =0 (6.7)

s 0C 6ic 1 _6c
*( 2Q/\*51 ) 5nf)_®/\d08/\*(5os =0 (6.8)



The first condition (6.6) follows immediately from dd = 0 and 2& in (6.5). The second
condition (6.7) becomes

1 - 1 =
i(@ Ad%SAd(F, A°TAd%)) = i(@ Ad%SAdF, ATAd%)=0

since d% A d% = 0. The third condition (6.8) is the most complicated. Start by consid-
ering the middle term of (6.8). It is
oC 0 0., _0 0 0, _ 0
d5“]3 =Fds+F,And’'q—"gandF,—F,Ad q=F,ds—"qAdF,.

Now consider last term of (6.8). It can be written as

1 _oc 1 . 1 s
_@/\dOSA*gos =—®/\d08/\*( D/\Fs)-i-@/\dOS/\*(OI/\qu/\277). (6.9)

The first part of the right-hand side of (6.9) is equal to (after re-arrangements and using
71D = OD)
F, AndY%.

The second part of the right-hand side of (6.9) is equal to
A% A *(TAdF, A%Q) ="TAd % A *(dF, A %Q).
Therefore we can combine the middle and last terms of (6.8) as

—dF, A%+TAd% A*(dF, A %Q).

Inserting the definition °%q = °T A *(d%s A 2QQ) then yields
TA(—dF, A% A2%Q) +ds A*(d F, A%Q)). (6.10)

Now using the exterior calculus analogue of the vector triple product (C.1) from Appendix
C, (6.10) becomes . )
—TAF("2PQAX(AF, A d%)).

However, this is nothing more than the minus of the first term of (6.8). Therefore the
first condition (6.8) holds, and {C, A} =0 V A. o

7 Specific Examples

In this section we show how some commonly used equations sets in geophysical fluid
dynamics (shallow water equations, thermal shallow water equations and compressible
Euler equations) fit into the general formulation discussed above. This will include the
split covariant equations from ( ).

7.1 Shallow Water Equations (n = 2, no thermodynamic scalar)

For the rotating shallow water equations, we have n = 2, the relevant mass variable is
the twisted fluid height 2-form 2h, and there is no thermodynamic scalar.
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7.1.1 Hamiltonian

The Lagrangian £[™'1, 21~1] for the rotating shallow water equations is formed as usual,
it is the kinetic energy plus a rotation term minus the potential energy:

~ 1 - -
L75,%0] = ("h,"K) + ("h ', 'R) - 5 <0g A 2D, 2h> . <°g A 2D, 2t> (7.1)
with kinetic energy K = %iu by =% % and height straight 0-form °h = %2h where
Og is the gravitational constant straight O-form and 2t is the topography twisted 2-form.
Here we have written the Lagrangian using the metric pairing. This gives
'v="u+'R
for the absolute velocity 'v. Now note that
iy'v=%"vaxtu) =2°K+*('R A % 'u).
Taking the Legendre transform (4.13) of (7.1) gives the Hamiltonian as
. 1 o~
H['v,2h] = ("B, 2°K + ('R A %)) = (°h,°K) = (b A "u 'R) + 5 (g A %0 %)

The second part of the first term is equal to (°h A 'u,'R), and thus the Hamiltonian is
finally given by

M 2E] = (00, °K) + 3 (e a0 + (% 2707,

As discussed in the Introduction and Section 5.3.1, the Hamiltonian (and also the La-
grangian) can be written as a topological pairing between straight and twisted forms

as
N N S . .
Hl'v, 0] = 5 <<1u, 1F>> 5 <<Og A Oh,2h>> + ((°g A °h, 2)).
The topological functional derivatives of H['v, 2h] are
OH 1= ) OH

n-1 ~/0 1 0 n-1
STy = F=%"hA u)="ha"q, E

where %t = %2t is the topography straight 0-form.

="K+ A(°h+%), (7.2)

7.1.2 Equations of Motion

Putting the functional derivatives (7.2) into the Poisson brackets (5.24) and (5.26) gives
the equations of motion

1 - -
aa_tv+n'QQAr"lFerOK+°gAd(oh+°t) = 0 (7.3)
02h .
R LarE — . 7.4
— (7.4)

Note that we did not use (5.25), since there is no thermodynamic scalar. Equations (7.3)
- (7.4) are equivalent to the topoological part of the split covariant equations from

( ), while (7.2) are the associated metric closure equations. This is a demonstration
that the split covariant equations can be reproduced by the curl-form Hamiltonian formu-
lation, with the Poisson brackets generating the topological equations and the functional
derivatives of the Hamiltonian generating the metric closure equations.
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7.2 Thermal Shallow Water Equations

The thermal shallow water equations (also known as the Ripa equations) extend the
rotating shallow water equations to the case of variable buoyancy ( );

( ). As in the shallow water equations, the relevant mass variable is the fluid
height 2h. However, now there is a thermodynamic scalar: the buoyancy %s = g%; where
p = p(z,y,t) is the horizontally varying density and p is the density used in the Boussinesq
approximation. When s = g, the rotating shallow water equations are recovered. There
are three choices for the representation of the thermodynamics: the buoyancy density
twisted n-form S, buoyancy straight O-form %s and buoyancy twisted n-form 3. Here we
will present the Lagrangian £["'1,2h,%], and the Hamiltonian #['v,2h,"S]; but show
the equations of motion for all three choices. The material in Appendix A can be used
to make the change of variables to get H'['v,2h, %] or H"['v,2h,"3] if desired, and this
is left as an exercise for the interested reader.

7.2.1 Hamiltonian

Again, the Lagrangian £[*'%,2h, %] is the kinetic energy plus a rotation term minus the
potential energy:

L™, 2h, Os] = <Oh, 0K> + <0h A, 1R> — % <Os A 2D, 2B> — <Os A 2L, 2E> .

The same exact manipulations as in the shallow water case (except with a different
potential energy) yield the Hamiltonian H['v,2h,S]

. 1 - -
H['v,?h,"S] = (°h,°K) + B <Os A 2h,2h> + <Os A ?h, 2t> :

This has functional derivatives
OH
olv

where 9§ = 1S = Oh A Os.

B Sayr 0 5 N
="'F =% Atu) =°h A, il :°K+—S, o _ — +%, (7.5)
62h 2 §nS 2

7.2.2 Equations of Motion

Putting the functional derivatives (7.5) into the Poisson brackets (5.24) - (5.26) (or the
equivalent when % or "§ are predicted) gives the equations of motion

%Jr“QA“FerOKqLd?+08Ad(?+21~3) = 0, (7.6)
ChLamE - o, (.7)

if+d@mﬁ“® = 0, (7.8)

ag_fj Coaw(MEAA) = 0 (7.9)

8; + % AMIEAdYs = 0, (7.10)

where only one of (7.8) - (7.10) is needed.
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7.3 Compressible Euler Equations (n =2 and n = 3)

For the compressible Fuler equations, the relevant mass variable is the density twisted
n-form "p (with associated straight O-form %0 = *"5) and the thermodynamic scalar is
the entropy straight O-form s, with associated thermodynamic scalar twisted n-form "3
and thermodynamic scalar density twisted n-form "S. It would also be possible to use the
potential temperature instead of the entropy, which has advantages for an ideal gas (see
Section 7.3.3). As for the thermal shallow water equations, we will present the Lagrangian
L[*1,2h, %] and Hamiltonian #['v, 2h, *S], but show the equations of motion for all three
choices of thermodynamic variable. These equations apply equally well to the n = 2 and
n = 3 cases, with some slight simplification in the PV flux term arising when n = 2. The
case of n = 2 gives rise to what are commonly known as slice equations. However, these
slice equations are somewhat different than others in the literature

( ); ( ), since they assume that the out of slice velocity is zero,
and that there is no variation in the out of slice direction for the thermodynamic scalar.
An extension of the general framework to incorporate non-zero out of slice velocity and
variability in the out of slice direction for the thermodynamic scalar will be the subject
of future work.

7.3.1 Hamiltonian

The Lagrangian £[™'11,"p, %] is the sum of the kinetic energy plus a rotation term minus
the sum of the gravitational potential energy and the internal energy

E[n_lﬁ,nﬁ,OS] _ <0p,0K> + <0pA lu,1R> _ <0p’0q)> _ <Op,OU<OL,OS)>
where “U(°a, %) is the internal energy, °® is the geopotential and ‘K = * *H‘TAI“ A
choice of internal energy is equivalent to a choice of equation of state. These equations
will hold for arbitrary choices of °U and °®, which allows a wide range of geophysical
fluids to be treated. Again following the same procedure as in the shallow water case,
the Hamiltonian is given by

H['v,"5,"S] = (9, "K ) + (°p,°® ) + (°p,"U(a, %)).

The functional derivatives of H['v,"p, ng] are given by

OH = OH OH
:n—F:~O 1 _0 n-1-~ :OK+O(I)+0U_O 0 +O OT ~:0 11

51y *(“pAtu) ="p A, 53 pra+is’T, = T7.11)

where we have the temperature straight 0-form °T = %%[Sj and pressure straight 0-form

0 2°U

P =50,
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7.3.2 Equations of Motion

Inserting the topological functional derivatives (7.11) into the Poisson brackets (5.24) -
(5.26) (or the equivalent when s or "§ are predicted) gives the equations of motion

ot ~ . 1
a—tv+;(“'2QA7(“'1F)+dOK+dO(I>+%/\dop — 0,
aﬁp+d“'115 = 0,
ot
orS -
o +d(%s A™F) = 0,
% 1 _ /= 0
E+@A*< Fad s> = 0,
ors 1 4= 0
o +E/\ Fad's = 0.

Here we have used the fact that
1
s Ad'T+d("U—"pa+%"T) = — A d%
P
by the fundamental thermodynamic relationship
dU = -9 Ad%%+%AdoT.

These are equivalent to split covariant equations from ( ), although no ther-
modynamic equation was presented there. This is another demonstration that the split
covariant equations can be reproduced by the curl-form Hamiltonian formulation, with
the Poisson brackets generating the topological equations and the functional derivatives
of the Hamiltonian generating the metric closure equations.

7.3.3 Predicting "O instead of "S

In geophysical fluid dynamics, potential temperature is often used instead of entropy,
especially in the case of an ideal gas. If the thermodynamic scalar is potential temperature
99 instead of entropy s, the fundamental thermodynamic relationship becomes

dU=-"pAd%+°9Ad%

2%U

5oy and we have

with the Exner pressure straight 0-form %7 =

1
%9 A d 7 +d(°U—"p a+°0"7) = —
P

Ad%.

In fact, the formulation remains the same, with % replaced by %0, ™S by *© = "D A %9
and °T by Y. However in the case of an ideal gas, “U = %p % — %9 %7, and the thermo-
dynamic contribution to gzqﬁ drops out:

oM 0 0 0 0,0, 0p0 0 0
6~:B:K+¢>+U—pa+6’7r:K+¢>.
hp

For more general equations of state, or other prognostic thermodynamic variables how-

ever, the thermodynamic contribution to gZ{ﬁ remains and there seems to be little advan-

tage to using potential temperature instead of entropy.
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8 Conclusions and Outlook

This paper has presented a start towards the development of variational and Hamiltonian
formulations for geophysical fluids based on split exterior calculus, providing additional
insight into the differential geometric structure underlying the equations of motion. An
important aspect of this structure is the splitting between topological and metric parts
of the equations, which reproduces the existing split covariant formulation from

( ) for the shallow water and compressible Euler equations. In fact, the Poisson
brackets are composed of purely topological operators, while all of the metric informa-
tion resides in the Hamiltonian. These formulations have been illustrated through the
selection of Lagrangians that give the shallow water equation, thermal shallow water
equations and compressible Euler equations. Significant work remains to be done, most
importantly the development of the split exterior calculus form of the Lie-Poisson bracket.
Additional future work further developing the formulation could consist of an extension
to: multicomponent, multiphase fluids; to fluids with irreversible processes; to domains
with moving boundaries (such a free surface); to non-Eulerian vertical coordinates, to
new Lagrangians (such as those for the Green-Naghidi equations); to slice equations
with out-of-slice velocity and thermodynamic scalars; to various standard approxima-
tions (traditional, shallow atmosphere, quasi-hydrostatic, etc.); and to semi-compressible
fluids (anelastic, pseudo-incompressible, Boussinesq, semi-hydrostatic).

The immediate application of this novel formulation is anticipated to be the develop-
ment of new numerical methods, and a deeper understanding of existing methods. The
split exterior calculus formulation is particularly interesting from a numerical modeling
point of view, due to its relative simplicity: the only operators that appear are x, A
and d, along the metric and topological pairing. Work is current ongoing to develop a
discrete exterior calculus (or primal-dual discretization) in n = 2 and n = 3 for gen-
eral, non-orthogonal grids (emphasizing the cubed-sphere and icosahedral grids) that
preserves a subset of the key properties of these operators. Such a discretization can
be combined with the formulation presented in this paper to yield a quasi-Hamiltonian
numerical method that preserves important aspects of the Hamiltonian structure (such
as anti-symmetry of the Poisson bracket and a subset of its Casimirs), and therefore has
discrete equations that have many of the same properties as the continuous ones. There
is strong evidence that the TRiSK scheme ( );

(2009); (2012); (2014); (2014), although in-
consistent, is in fact a realization of such a discrete exterior calculus. This correspondence
will be further explored in future work.
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A Alternative Prognostic Variables: s, "s and "s

A.1 Vector Calculus

In the Hamiltonian formulation using vector calculus, it is also possible to predict the
thermodynamic scalar s, rather than the thermodynamic scalar density S. This is simply
a change of variables from the original set of (v, D, S) to (v, D, s).

Chain Rule. For an arbitrary functional we have A'[v,D,s] = A[v,D, S| and the
chain rule gives

SA _SA A _SA SA A SA

- = = = =D Al
5v. _ov' oD oD °%8 s 48 (A1)
The proof of this is straightforward, and is left for the interested reader.
Functional Derivatives The functional derivatives of H'[v, D, s] are
SH' SH' OH'
=F =B =B+ sT =T =DT A2
bv @D TS ’ (A.2)
and those of the Casimirs C'[v, D, s] read
5C’ oF 6C oF 5C’ oF oF
- — =F—q— =D— -V -(=—V :
ov - VG Ve 5 T2  os 25 (FgV V)

Poisson Bracket {A’, B’}. Using the chain rule (A.1) in (4.15) - (4.17), the new Poisson
brackets are

[(OA B 6B A

{A',B'}r = JQ< 5DV. 5v T 5DV- S Q, (A.3)
vy [ Vs (0AOB B A

A Bs = oD <5V ds  dv Os )dQ’ (A.4)
b [ A B

{A,B'}g = JQ S (Qxév)dQ. (A.5)

The proof of this is again left for the interested reader. Note that the {A’, B’} r and
{A’, B’} brackets have the same form as before, just with different arguments.
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Equations of Motion. Inserting the functional derivatives (A.2) into the Poisson
brackets (A.3) - (A.5), the equations of motion are then

ov , 1T
E‘FQXF‘FVB—BVS = 0,
D
Dovr -
ot
s F
g—i-ﬁ'vs = 0.

A.2 Split Exterior Calculus

In the Hamiltonian formulation using split exterior calculus, a change of variables from
thermodynamic scalar density twisted n-form ™S to either thermodynamic scalar straight
0-form %s or thermodynamic scalar twisted n-form *s = %% can be made. This is the
split exterior calculus analogue of predicting s instead of S.

A.2.1 Predicting %

Chain Rule. Now we have A/['v,"D,%] = A['v,"D,"S] for any functional A and the
chain rule for functional derivatives gives

A A SA A o OA  OA o o ;0A

_ 24 . A.
oy sy’ onD 5nD+ onS 9 0s RN (4.6)

Functional Derivatives: The functional derivatives of H'['v,*D, %] are

ﬂ — H—IF 57-[ OB+ S/\OT 0B/7 5570-[
S

0 ~0 0 nrp . nrr
5Ty i ="DAx"T="DA"T :="T, (A7)

where T = % °T. The functional derivatives of C'['v,"D, %] are

o . 5C 5c - -
mzd(Fq/\OI/\dOs), 5T]~)=F—Oq/\Fq, 505 = DAF,—TAdF, n%p.

Poisson Bracket {A’,5'}. Using also the chain rule (A.6) in (5.24) - (5.26), the new
Poisson brackets are

W Bl = <X a0 @l A, (A5)
(4B}, = ~G (iDA;”” w%) P E N LU TALE ST
(ABlg - (2 ai D) 24 (A10)

where again the {A’, B'}r and {A’, B’} brackets have the same form as before, just with
different arguments.
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Equations of Motion Predicting ('v,"D,%) the equations of motion are

0 1y B B ;nT/

= (2QAFMIF) +d B - D ~d% = 0,
0D .

d™F = 0

o |

I
e

% (1
ﬁ—i_ (@/\ F/\d S)

A.2.2 Predicting "s

Chain Rule. Predicting "§ instead of *S means A”['v,"D,"3] = A['v,"D,"S] for any
functional A and the chain rule for functional derivatives gives
N U Iy Soqn N N U N
AT _OA QAT DA G 0A DA o BA )
dlv. 4ty §*D 6D 6" 0"S onS

Functional Derivatives The functional derivatives of H”['v,D, %] are

g " B 5 " g "
" g H~ =B 95 AT := B, H~ ="DAT =T, (A.12)
0lv orD 0"s

where "T = % °T. The functional derivatives of C”['v,"D,"3] are

o€¢ :d(Fq/\OT/\dOs), 5C~ =F — % AF,, %

=1y S =D AF, =" TA%(dFy A %)

Poisson Bracket {A” B”}. Using the chain rule (A.11) in (5.24) - (5.26), the new
Poisson brackets are

” " 7 B 5A// 56” 56” 5./4//
(B = <O @B, (A13
R SA” 1 6B 1 (58” 6A”
{A". B"}s = _<<5n~7oD STy Ad S>>+<< g A d Y%, >> (A.14)
58” 5A//
(A" B"}q = —<<*(n2Q/\* Siv) iy (A.15)

where again the {A”,B"}r and {A”, B"}, brackets have the same form as before, just
with different arguments.

Equations of Motion. Predicting ('v,”D,"3) the equations of motion are

71 _ ~ OT/
S FHPQARTE) £ dB g A ds = 0,
"D -
d™'F = 0
P ’
0% 1 -
pr +@/\ FAad’s = 0.
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B Simplifications when n = 2 and if there is no ther-
modynamic scalar

Some simplifications and changes arise for certain aspects of the variational formulation
when n = 2 and if there is no thermodynamic scalar. These changes are discussed first
using vector calculus, and then shown in split exterior calculus. We do not treat the case
of n = 3 without a thermodynamic scalar, since it rarely arises in practice.

B.1 Vector Calculus

When n = 2 the Lie derivative for a vector field x is Lyx = (V- x)u? +V(u x), and
therefore the Euler-Poincaré equation in curl-form is

0 (1L s (16L\ 4 16 6L\ 160
a(ﬁm)w '(5%)“ v (“'5%‘@)*5@“‘0' (B-1)

Here we have used the skew-gradient VI = k x V and 2D curl V7 = k - V x, where k is
local vertical (these operators have intrinsic definitions valid on any orientable manifold).
Only the v equation of motion changes, it becomes

ov

=t QF" +VB +sVT =0 (B.2)

where QQ = %. This arises from a new {A, B} bracket, which is

SA [ BT
(A, B}g = L s (QE )dQ.

If there is no thermodynamic scalar, then the last term in (B.1) and (B.2) is dropped,
and there is no equation of motion for s or S. This is equivalent to dropping the {4, B}g
or {A', B’} bracket.

Rotation. Rotation is described by pseudo-scalar €2, which can be associated with a
pseudo-vector Qk where k points in the (local) vertical direction on the manifold. Then
the rotational velocity follows as before, and its (two-dimensional) curl is simply f = 2€).
Rotation is introduced into the Lagrangian in the same way as before.

B.1.1 Kelvin Circulation Theorem

The Euler-Poincaré equation can be integrated along a curve 7(t) as before to get the
Kelvin circulation theorem. When there is no thermodynamic scalar, it simplifies to

d 16L
dt Déu
()

-dx = 0.

35



B.1.2 Potential Vorticity

For the case of n = 2, potential vorticity is defined as

- vVT.v
q - D *
Note for n = 2, we have ¢ = (). The corresponding evolution equations are
0(D
0((%6]) +V-(¢gDu) — V" (TVs) =0,
oq

1 T

Therefore, potential vorticity is only materially conserved if there is no thermodynamic
scalar s. However, mass-weighted potential vorticity is still conserved, modulo boundary
effects.

B.1.3 Casimirs

The brackets change when going from n = 3 to n = 2, and also when dropping the
thermodynamic scalar. Therefore, each case will have a separate set of Casimirs. These
are detailed below.

Without a thermodynamic scalar. When n = 2 without a thermodynamic scalar,
the Casimirs are of the form

Clv. D] = fDF<q>,

where F'(q) is an arbitrary function of potential vorticity q. The functional derivatives of
C|v, D] are

0C T oC

— =-V'F' — =F —qF'

v Vi oD s

where F' = %. Important cases are F' = 1 (total mass), F' = ¢ (total potential vorticity)
2

and F' = % (potential enstrophy).

With thermodynamic scalar. When n = 2 with a thermodynamic scalar, the Casimirs
are of the form

Clv,D,S] = fDqF(s) + DG(s),

where F(s) and G(s) are arbitrary functions of the thermodynamic scalar s. The func-
tional derivatives of C[v, D, s| are

oC oC oC

= VTR Y _ F— / ’ _OF /
v V*F, 5D G —sQ sG', 59 QF + G,
where [’ = % and G’ = %. Alternatively, if s is predicted instead, we have C'[v, D, s| =
C|v, D, S] and
ocC’ T 6C’ 6C’
=-V'F =G = DqF' + DG".
sv - Vb sp =6 gy Tl

Important cases are F' = 0,G = 1 (total mass), I’ = 1,G = 0 (total potential vorticity)
and ' = 0,G = s (total thermodynamic scalar).
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B.2 Split Exterior Calculus

One advantage of using split exterior calculus is that the Lie derivative is dimension-
independent. Therefore the curl-form Euler-Poincaré equations do not change. Only the
PV flux term slightly simplifies, since *2Q is a 0-form. It becomes

iu 27] _ ;(n—2Q A 1F) _ n—QQ A n—lF.

In fact, when n = 2 then ™2Q is the potential vorticity. This is not the case for n = 3.
This leads to a simplified {A, B}g bracket

SA .~ B
{A,B}q = —<<m,“‘2Q Am».

If there is no thermodynamic scalar, then the last term in (5.2) and (5.3) is dropped, and
there is no evolution equation for "S, s or ™s. This is equivalent to dropping the {A, B} s,

{A', B’} or {A” B"}, bracket.

Rotation When n = 2 instead of 'Q we have °Q since rotation can be described by
a pseudo-scalar. However, this still gives 2Q = *°Q, and d'R = 22Q. Rotation is
introduced into the Lagrangian in the same way as before.
B.2.1 Kelvin Circulation Theorem
When there is no thermodynamic scalar, the Kelvin circulation theorem simplifies to
d 4; 1 6L
— ¢ —r——==0.
dt J °D  d»la
()

B.2.2 Potential Vorticity

When n = 2, the potential vorticity differential forms are defined as

"q =*Q,
’q=x"q=%*Q=""Q,
0q = 9T A %
The corresponding evolution equations are
aOD n
%—FLU(OD/\nq) —d"T Ad% =0, (B.3)
G 1u(0) — = A FAOT A dYs) = 0 (B.4)
ot YT op ' '

As before, °q is only materially conserved if there is no thermodynamic scalar; then the
last term in both (B.3) and (B.4) drops out.
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B.2.3 Casimirs

As before, there are two sets of Casimirs: one for the case of a fluid without a thermo-
dynamic scalar and one for the case with a thermodynamic scalar.

Without thermodynamic scalar. The Casimirs C['v,"D] when there is not thermo-
dynamic scalar are 3

C['v."D] = ("D, F(°q)),
where F(°q) is an arbitrary function of potential vorticity straight 0-form %q. The func-
tional derivatives of C['v,"D] are

oC . 5C
O AT AR O POy AF
iy — ACIAF), = qnF,
where F' = ;TFq. Important cases are F' = 1 (total mass), F' = %q (total potential
Oq A Oq

vorticity) and F' = (potential enstrophy).

2

With thermodynamic scalar. The Casimirs C['v,"D,"S] when there is a thermody-
namic scalar are

C['v,"D,"S] = (°D A q, F(°s)) + ("D, G(%)),
where F(%) and G() are arbitrary functions of %. The functional derivatives of
C['v,"D,"S] are

5C 5C 5C

—— =d("IAF), — =G =% A%QAF - % AG, _ =g AF + &,
51y = d ) 5D q o5~ @
where [’ = % and G’ = j—g*;. If % is predicted instead, we have
5C! . 5C! ¢ L~ i
51V=d(I/\F), 6HD=G, 505 = D APqAaF" +"D AG".

Finally, if "s is predicted, we have

5C" 5 5C" 5C"
51V —d( I/\F’>7 _5Hf) —G, m

= 3("DAGAF + "D AG") =D A g AF + D AG.

Important cases are F' = 0,G = 1 (total mass), F' = 1,G = 0 (total potential vorticity)
and F = 0,G = s (total thermodynamic scalar).

C Relationships Between Vector Calculus and Exte-
rior Calculus

Consider a scalar function f with associated straight O-form °f and vector field F with
associated straight 1-form 'F = F”. Then for n = 3 the following relationships hold (see

( ) for proofs) between the gradient, divergence and curl, Hodge star
and exterior derivative:

(Vf)=dFf,
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Furthermore, given vector fields u and v with associated straight 1-forms *u and v, the
following relationships hold between the cross product, dot product, wedge product and
Hodge star

(vxu) =*(v Alu),

1

v-u=*'v Axtu),

These latter equalities can be used to establish a useful analogue of the vector triple
product
ux(vxw)=(w-u)v—(v-u)w,

as
*tun*x(tvalw)) =*(twastu) Alv—3(vaztu) Alw, (C.1)
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