D. Tsafrir, Y. Etsion, and D. G. Feitelson, Backfilling using system-generated predictions rather than user runtime estimates, IEEE Trans. Parallel Distrib. Syst, vol.18, issue.6, pp.789-803, 2007.
DOI : 10.1109/tpds.2007.70606

J. Lelong, V. Reis, and D. Trystram, Tuning EASY-Backfilling Queues, 31st IEEE International Parallel & Distributed Processing Symposium, vol.10773, pp.43-61, 2017.
DOI : 10.1007/978-3-319-77398-8_3

URL : https://hal.archives-ouvertes.fr/hal-01522459

E. Gaussier, D. Glesser, V. Reis, and D. Trystram, Improving backfilling by using machine learning to predict running times, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC '15, vol.64, pp.1-64, 2015.
DOI : 10.1145/2807591.2807646

URL : https://hal.archives-ouvertes.fr/hal-01221186

W. Ahuva, D. G. Mu, and . Feitelson, Utilization, predictability, workloads, and user runtime estimates in scheduling the ibm sp2 with backfilling, IEEE Trans. Parallel Distrib. Syst, vol.12, issue.6, pp.529-543, 2001.

G. Dror and . Feitelson, Parallel workload archive, 2008.

S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, Characterization of backfilling strategies for parallel job scheduling, Proceedings. International Conference on Parallel Processing Workshop, pp.514-519, 2002.

G. Dror and . Feitelson, Metrics for parallel job scheduling and their convergence, Job Scheduling Strategies for Parallel Processing, pp.188-205, 2001.

D. Perkovic and P. J. Keleher, Randomization, speculation, and adaptation in batch schedulers, Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, SC '00, 2000.
DOI : 10.1109/sc.2000.10041

K. Aida, Effect of job size characteristics on job scheduling performance, Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing, pp.1-17, 2000.
DOI : 10.1007/3-540-39997-6_1

URL : http://www.cs.huji.ac.il/%7Efeit/parsched/jsspp00/p-00-1.pdf

N. Papadopoulou, G. I. Goumas, and N. Koziris, A machine-learning approach for communication prediction of large-scale applications, CLUSTER, pp.120-123, 2015.

D. Tsafrir, Y. Etsion, and D. G. Feitelson, Modeling user runtime estimates, Proceedings of the 11th International Conference on Job Scheduling Strategies for Parallel Processing, JSSPP'05, pp.1-35, 2005.
DOI : 10.1007/11605300_1

O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. M. Brandt et al., Diagnosing performance variations in hpc applications using machine learning, 2017.
DOI : 10.1007/978-3-319-58667-0_19

H. Mao, M. Alizadeh, I. Menache, and S. Kandula, Resource management with deep reinforcement learning, Proceedings of the 15th ACM Workshop on Hot Topics in Networks, HotNets '16, pp.50-56, 2016.
DOI : 10.1145/3005745.3005750

D. Carstan, -. Santos, and R. Y. De-camargo, Obtaining Dynamic Scheduling Policies with Simulation and Machine Learning, SC'17-2 International Conference for High Performance Computing, Networking, Storage and Analysis (Supercomputing), 2017.

C. Victoria, F. Stodden, R. D. Leisch, and . Peng, Implementing Reproducible Research, 2014.

E. Dolstra, E. Visser, and M. De-jonge, Imposing a memory management discipline on software deployment, Proceedings of the 26th International Conference on Software Engineering, ICSE '04, pp.583-592, 2004.

L. Bianchi, M. Dorigo, M. Luca, W. J. Gambardella, and . Gutjahr, A survey on metaheuristics for stochastic combinatorial optimization, Natural Computing, vol.8, issue.2, pp.239-287, 2009.
DOI : 10.1007/s11047-008-9098-4

URL : http://doc.rero.ch/record/319945/files/11047_2008_Article_9098.pdf

T. Glasmachers, T. Schaul, S. Yi, D. Wierstra, and J. Schmidhuber, Exponential natural evolution strategies, Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO '10, pp.393-400, 2010.
DOI : 10.1145/1830483.1830557

URL : https://infoscience.epfl.ch/record/163869/files/exponentialnaturalevolutionstrategies.pdf