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Abstract. We study the fundamental problem of polytope membership
aiming at large convex polytopes, i.e. in high dimension and with many
facets, given as an intersection of halfspaces. Standard data-structures
as well as brute force methods cannot scale, due to the curse of dimen-
sionality. We design an efficient algorithm, by reduction to the approx-
imate Nearest Neighbor (ANN) problem based on the construction of
a Voronoi diagram with the polytope being one bounded cell. We thus
trade exactness for efficiency so as to obtain complexity bounds polyno-
mial in the dimension, by exploiting recent progress in the complexity
of ANN search. We employ this algorithm to present a novel boundary
data structure based on a Newton-like iterative intersection procedure.
We implement our algorithms and compare with brute-force approaches
to show that they scale very well as the dimension and number of facets
grow larger.

1 Introduction

In geometric optimization, convex polytopes are very important objects appear-
ing also as feasible regions in linear programming. Let us consider a convex
polytope P in H-representation, that is as the intersection of a finite set of linear
inequalities: P = {x ∈ Rd | Ax ≤ b, A ∈ Rn×d, b ∈ Rn}. An important ques-
tion on such a polytope is that of point membership. We wish to preprocess P
in order to obtain a membership data structure which, given a query point q,
efficiently decides whether q lies inside or outside P . A decision can be reached
by testing all n inequalities for a complexity of O(nd). This trivial approach is
often a plausible exact solution, especially in the high-dimensional case. In order
to design a more efficient algorithm in high dimension, we will focus on the ap-
proximate polytope membership problem where the membership data structure
is allowed to answer incorrectly for points lying very close to the boundary of
the polytope. A formal definition will be provided later in Section 2.2.

Algorithms used to solve combinatorial optimization problems, such as the el-
lipsoid, interior point or randomized methods (for the latter see [1]), usually rely
on randomly sampling convex polytopes. The inner loop of such algorithms needs
access to a membership or a boundary oracle, where the latter is the procedure
that computes the intersection of a ray with the boundary of the polytope and
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is equivalent to membership via binary search. The oracle specification means
that we are not interested in how the solution is computed or of its computa-
tional complexity. Grötschel et al. [2] proposed the oracle model of computation
and among other results they prove the polynomial time equivalence of basic
oracles such as optimization, separation, and membership. This has become a
commonly employed tool in combinatorial optimization mainly for studying the
computational complexity of problems. Another important example of applica-
tion is volume approximation [3,4] which has also an established connection to
combinatorial optimization. For example, the volume of order polytopes gives
the number of linear extentions of the associated partial order set.

From a practical point of view opening the oracle black box, in particular
membership, and improving their complexity, implies improvements to the appli-
cability of the aforementioned algorithms. For example, the first implementation
of randomized algorithms that scale in high dimension appeared in [5]. Their ap-
proach relies on the standard random walks known as hit-and-run, which require
a boundary oracle. Notice that, although this software can handle polytopes in
spaces whose dimension goes up to 200, it cannot scale as efficiently for spe-
cific classes of polytopes with a large number of facets. In particular, it cannot
approximate the volume of cross-polytopes of dimension 20 or more.

Here, we radically shift the aforementioned paradigm and, moreover, im-
prove upon the complexity of membership and boundary data structures, when
dimension d is an input parameter. We exploit the approximate setting and al-
low ourselves to answer correctly within some approximation error ε and with
some success probability. Our new paradigm uses a reduction to the Approxi-
mate Nearest Neighbor (ANN) problem, which is the most fundamental problem
among those today with a practical, poly-time solution in high-dimensions.

Previous Work. There are two classical results for the approximate member-
ship problem, both based on creating ε-approximating polytopes and answer-
ing membership on them. Any convex body is ε-approximated by a polytope
with O(1/ε(d−1)/2) facets, which is asymptotically tight in the worst case [6].
This leads to a membership data structure with space and query complexity
in O(1/ε(d−1)/2). Using a d-dimensional grid, membership takes constant time
(assuming a model of computation that supports the floor function) and space
grows to O(1/εd−1) [7].

A relevant line of work on approximate membership in fixed d uses space-time
trade-offs [8,9] to achieve a space of O(1/ε(d−1)(1−(2blog tc−2)/t)) with query time
O(log(1/ε)/ε(d−1)/t), for trade-off parameter t ≥ 4. In [10], again for fixed d,
they opt for a hierarchy of ellipsoids selected by a sampling process on classical
structures from the theory of convexity defined on the polytope. They achieve
space O(1/ε(d−1)/2) with an optimal query time of log(1/ε).

We present state-of-the-art approaches to ANN as we build atop of those for
our oracles. There are many solutions to this problem, but in principle, methods
that scale polynomially with d belong to two categories. First, the well studied
Locality Sensitive Hashing (LSH) [11]. The other category focuses on random
projections [12], then uses fast algorithms in fixed dimension. Both achieve sub-



linear query time with (near-)linear storage, while scaling polynomially in d, and
both have a probability of success p.

Our contribution. We describe a simple constructive reduction from the polytope
membership problem to ANN, then show under which conditions this reduction
holds for the respective approximate versions of the problems. This gives us the
flexibility to exploit advances in the research of ANN in order to offer, the first
(as far as the authors are aware) practical approximate polytope membership
data structure in high dimension with complexity bounds polynomial in the
dimension d and sublinear in the number of inequalities n. This is our main
result, in Theorem 5. We also present an application of this membership data
structure for creating boundary data structures for H-polytopes. We implement
and experimentally examine our algorithms; we illustrate that they scale well as
dimension and number of facets grow larger. Our implementation is linked to
the software of [5] for polytope volume, so as to provide faster oracles.

The rest of the paper is organized as follows. The next section discusses
(approximate) membership and the reduction to ANN. Section 3 considers the
boundary data structures. The implementation and experiments are in Section
4. We conclude with open questions.

2 Approximate Polytope Membership

We assume that the given H-polytope P is full dimensional and that its repre-
sentation is minimal, i.e. that it does not contain redundant inequalities.

We denote the i-th (in)equality of P as aix ≤ bi, 1 ≤ i ≤ n. We associate
each facet of the polytope with a corresponding (in)equality and denote it as
Fi. Formally: Fi = {x ∈ P | aix = bi}, 1 ≤ i ≤ n. The hyperplanes that define
non-empty Fi’s, i.e. for which Fi 6= ∅ are called non-redundant or supporting
and we extend that label to their inequalities. We denote as ∂P the boundary
of P : ∂P = {x ∈ P | ∃i, 1 ≤ i ≤ n s.t. x ∈ Fi}.

2.1 Exact Polytope Membership Oracle

A reduction from the exact polytope membership problem to the exact nearest
neighbor problem was established in [13], where it was shown that there is a
connection between the boundaries of polytopes in Rd and power diagrams in
Rd−1. Power diagrams define a partition of the Euclidean space into a cell com-
plex based on a set of spheres. Each sphere identifies a specific cell and that cell
consists of all the points whose power distance is minimized for that sphere. The
power diagram is a generalized Voronoi diagram, and coincides with the Voronoi
diagram of the sphere centers if all spheres have equal radii.

Theorem 1. [13, Thm.4] For any polyhedron P ∈ Rd, which is expressible as
the intersection of upper halfspaces, there exists an affinely equivalent power
diagram in hyperplane h0 : xd = 0.



A cell complex C and a polyhedron P ⊂ Rd+1 are said to be affinely equivalent if
there exists a central or parallel projection φ such that, for each face f of C, f =
φ(g) holds for some face g of P . This provides a reduction from ray shooting in
a polyhedron to point location in a polyhedral complex. In the case of polytope
membership, the polyhedral complex becomes a single cell (the polytope) and
the power diagram becomes a Voronoi diagram. This provides a reduction from
polytope membership to Nearest neighbor.

Corollary 2 Let P ⊂ Rd be a convex polytope described as the intersection
of n non-redundant halfspaces. For every point p∗ ∈ P \ ∂P it is possible to
compute a set S of n + 1 points such that, p∗ ∈ S and, given a query point q,
the exact Polytope Membership test for a query point q reduces to finding the
Nearest Neighbor of q among these n+ 1 points.

Proof. We initialize S = {p∗}. We will describe for completeness the procedure
to compute the remaining n points of S such that the corresponding Voronoi
diagram of these n points and p∗ will have the polytope P as the voronoi cell of
p∗. These n+ 1 points will be the points of the corollary.

For each facet Fi and its corresponding hyperplane Hi := aix = bi, 1 ≤ i ≤ n,
we compute the projection of p∗ on Hi and denote it as fi. Then, we compute the
point pi, 1 ≤ i ≤ n, such that the line segment (p∗, p) is perpendicular to Hi and
d(p∗, Hi) = ||p∗ − fi||2 = d(pi, Hi), where d(p, S) = min

x∈S
||p− x||2. Equivalently,

pi = fi + (fi − p∗).
We now have a set of points S = {p∗, p1, . . . , pn} of n+1 points that have the

following property. In the Voronoi diagram of S, by construction, the cell that
corresponds to p∗ is precisely the input polytope P . By the Voronoi property, the
following holds: q ∈ P ⇔ ||p∗ − q||2 ≤ ||q − s||2, ∀s ∈ S. Polytope membership
returns “YES” iff the nearest neighbor of q is p∗. ut

Remark. A nearest neighbor computation or data structure on these n +
1 points of corollary 2 provides us with an exact Membership Oracle for the
polytope P . We also emphasize that the choice of p∗ ∈ P is arbitrary. This
means that a set S satisfying the Corollary can be computed for each point
p∗ ∈ P \ ∂P .

2.2 Approximate Polytope Membership Oracle

Let us consider the following relaxation.

Definition 3 (Approximate Polytope Membership Problem) Given a con-
vex polytope P ⊂ Rd and an approximation parameter ε ∈ (0, 1), an ε-approximate
polytope membership query decides whether a query point q ∈ Rd lies inside or
outside of P , but may return either answer if q’s distance from the boundary of
P is at most ε · diam(P ).

We define P−ε = {x ∈ P | d(x, ∂P ) > ε · diam(P )}. Obviously the afore-
mentioned problem makes sense only when P−ε 6= ∅. Otherwise, we can always
return “NO” for a query point q and be correct.



Fig. 1. A conceptual presentation of the constructive proof in the case of d=2. Each
pi corresponds to the symmetric point of p∗ about the facet Fi.

Theorem 4 (Approximate Membership Oracle (AMO)). Approximate
Polytope Membership for an H-polytope P and an approximation parameter ε,
such that P−ε 6= ∅, reduces to the ANN problem on the pointset S = {p∗, pi :
1 ≤ i ≤ n}, where p∗ ∈ P−ε and the remaining pi are computed as in the proof
of Corollary 2.

Proof. Let p∗ ∈ P−ε and S be the corresponding pointset of Lemma 2 for P .
Let ∆(P ) = max

pi∈S\{p∗}
||pi− p∗||2. By construction, the following holds for ∆(P ):

2ε · diam(P ) < ∆(P ) < 2diam(P ). Let q ∈ Rd be a query point such that

||q − p∗|| < ∆(P )
2ε . For any other q′ ∈ Rd, we return “NO”, because ||q′ − p∗||2 ≥

∆(P )
2ε ⇒ ||q

′−p∗|| > diam(P )⇒ q′ /∈ P . We distinguish two cases when q ∈ P−ε
and q ∈ {Rd | q /∈ P ∧ d(q, ∂P ) > ε · diam(P )}.
– Let q ∈ P−ε, we wish to select an ε′ for the ANN problem such that:

(1 + ε′) < ||pi − q||2/||p∗ − q||2 (1)

Essentially, this would imply that p∗ is the nearest neighbor of q, while every
pi ∈ S \ {p∗} is not an ε′-NN of q.

Let ri = d(p∗, Hi) ≥ ε · diam(P ), where Hi is the hyperplane defining facet
Fi. By construction, d(p∗, Hi) = d(pi, Hi). It follows that the segment p∗pi has
length 2ri, as it is perpendicular to Hi.

Next, we define the projection of q on the line spanned by the segment p∗pi as
qi = (pi−p∗)·q/||pi−p∗||2 and its distance fromHi as ai = d (qi, Hi) ≥ ε·diam(P )

Obviously now, as depicted in Fig. 2:

||pi − qi||2 = ri + ai, ||p∗ − qi||2 = ri − ai



Therefore,

||pi − q||22 = ||pi − qi||22 + ||q − qi||22 = (ri + ai)
2 + k2i

||p∗ − q||22 = ||p∗ − qi||22 + ||q − qi||22 = (ri − ai)2 + k2i ,

where ki = ||q − qi||22 < diam(P ). It follows that,

||pi − q||22
||p∗ − q||22

=
(ri + ai)

2 + k2i
(ri − ai)2 + k2i

= 1 +
4riai

(ri − ai)2 + k2i
≥

≥ 1 +
4ε2(diam(P ))2

(ri − ai)2 + k2i
≥ 1 +

4ε2(diam(P ))2

2(diam(P ))2
≥ 1 + 2ε2

Substituting in (1), yields: (1 + ε′) <
√

1 + 2ε2 ⇒ ε′ <
√

1 + 2ε2 − 1.

– Let q ∈ {Rd | q /∈ P ∧ d(q, ∂P ) > ε ·diam(P )}. Assume the nearest neighbor
of q is pi ∈ S \ {p∗}. Similarly, we are looking for an ε′ such that:

(1 + ε′) < ||p∗ − q||2/||pi − q||2

This means p∗ cannot be an ANN of q. Now, like before:

||p∗ − q||22
||pi − q||22

=
(ri + ai)

2 + k2i
(ri − ai)2 + k2i

= 1 +
4riai

(ri − ai)2 + k2i
≥

≥ 1 +
4(ε · diam(P ))2

(ri − ai)2 + k2i
≥ 1 +

4(ε · diam(P ))2

2
(

2∆(P )
2ε

)2 ≥

≥ 1 +
4ε4 · diam2(P )

2∆2(P )
> 1 +

4ε4 · diam2(P )

4 · diam(P )
>

> 1 + e4 · diam(P )

It follows that, ε′ <
√
e4 · diam(P )− 1.

Choosing ε′ = min{
√
e4 · diam(P ) − 1,

√
1 + 2ε2 − 1} and answering ε′-ANN

queries on this set solves the original problem, because if a query point q ∈ P−ε,
then we have ensured that the ε′-ANN data structure will correctly identify p∗ as
the only approximate nearest neighbor of q. Similarly in a symmetric argument,
for every q /∈ P , such that d(q, ∂P ) > ε ·diam(P ), p∗ will not be an approximate
nearest neighbor of q. Lastly, if d(q, ∂P ) ≤ ε · diam(P ) the response from the
ANN data structure does not matter. Therefore, the reduction is complete. ut

We now employ approaches for high-dimensional ANN to obtain a polynomial
bound on the dimension by introducing a probability of success. Below, Õ omits
logarithmic factors.

Theorem 5. [AMO in High Dimension] For an H-polytope P ⊂ Rd and an
approximation parameter ε, such that P−ε 6= ∅, we can solve the Approximate
Polytope membership problem on P by building a data structure on P answering
queries in Õ(dnρ+o(1)) time and using Õ(n1+ρ+o(1) + dn) space, with a high
probability of success, where ρ = 1/(2(1+ε′)2−1) and ε′ = min{

√
e4 · diam(P )−

1,
√

1 + 2ε2 − 1}.



Fig. 2. pi corresponds to the symmetric point of p∗ about the facet Fi. We decompose
the distances ||p∗ − q||2 and ||pi − q||2 and express them in terms of ai and ki. Notice
how q ∈ P−ε ⇒ ai ≥ ε · diam(P ) and how ki < diam(P ), as q cannot be a vertex.

Proof. The Chebyshev center of a polytope P is the center of the largest inscribed
ball. Formally: arg min

x∈P
max
y∈P
||x − y||22. Let c be the Chebyshev center of P with

radius r and assume c /∈ P−ε, in order to deduce an absurdity.

c /∈ P−ε ⇒ r < ε · diam(P ) (2)

Take a point c′ ∈ P−ε, as P−ε 6= ∅.

d(c′, Fi) ≥ ε · diam(P ), 1 ≤ i ≤ n⇒ B(c′, ε · diam(P )) ⊂ P (3)

Combining (2) and (3) produces an absurdity as we have found a larger inscribed
ball in P , contradicting the property of c. Therefore, c ∈ P−ε. We use p∗ = c as
the starting point of the construction of the pointset S in the proof of Theorem 4.
Answering ANN queries on S using the LSH data structure of [14], completes
this proof. ut

Remark. Any high-dimensional ANN solution can be utilized in the last step of
Theorem 3 and we can inherit its complexity and its properties.

3 Application to Polytope Boundary Problem

The polytope boundary problem consists of creating a data structure for an H-
polytope P such that, given a query ray emanating from inside the polytope,
we can efficiently compute the point p = r ∩ ∂P . It is possible to achieve query
time in O(log n) by using space in O(nd/ logbd/2c n) [15]. The boundary oracle is
dual to finding the extreme point in a given direction among a known pointset.
This is ε-approximated through ε-coresets for measuring extent, in particular
(directional) width, but requires a subset of O((1/ε)(d−1)/2) points [16]. The
exponential dependence on d or the linear dependence on n make these methods
of little practical use in high dimensions. Ray shooting has been studied in
practice only in low dimensions, as well.



Fig. 3. An example of the boundary oracle converging to a solution. The query ray is
r = (s,v) and t4 = r ∩ ∂P is the solution. t1, t2, t3, t4 were computed in sequence.

Exact Polytope Boundary Oracle. We now describe an iterative procedure for P
based on an exact nearest neighbor data structure E MEM defined on the pointset
S of Corollary 2 that we described in section 2.2. This exact nearest neighbor
data structure will act as the exact membership oracle for the polytope P . We
call this algorithm BoundaryOracle.

Finding the starting point. The first step is to find a starting point t1 such
that t1 ∈ r and t1 /∈ P . We may use the intersection of r with a bounding box
around P . A bounding box of P can be readily computed by solving 2d linear
programs to compute the farthest points on P along the coordinate directions.

Finding the intersection point. We obtain an efficient method following a
derivative-like approach. Given starting point t1 /∈ P : let pi be the nearest
neighbor of t1 using the data structure defined for membership: pi = E MEM(t1).
Let Hi be the hyperplane supporting the facet Fi used to define pi; Fi separates
the cell of pi from P in the Voronoi diagram. Let t2 = (Hi ∩ r). Iterate by
computing t3, t4, . . ., until membership decides tn ∈ P .

Lemma 6 (Correctness of algorithm BoundaryOracle) BoundaryOracle al-
ways converges to a solution for the boundary problem for a given polytope P .

The proof of this lemma is presented in the Appendix A.1.

Approximate Polytope Boundary Oracle. Now, we define an approximate version
of the polytope boundary problem.

Definition 7 (Approximate Polytope Boundary Problem) Given a con-
vex H-polytope P ⊂ Rd and an approximation parameter ε ∈ (0, 1), prepro-
cess P into a data structure such that, given a query ray r ⊂ Rd emanating



from inside P , it is possible to efficiently compute a point r∗ ∈ r such that
d(r∗, ∂P ) ≤ ε · diam(P ).

We make two additional changes to the algorithm presented in the previous
section. First, we compare ti’s and ti+1’s distance from the ray’s source point s.
If the distance is not improved, then we discard the current ti+1 and set it as
ti+1 = (ti − s) − v

||v||2 ε. In other words, in this case we take an ε-step from ti
towards the ray’s apex. The second change concerns termination. Now we stop
when the approximate membership oracle identifies a point ti as being inside
the polytope, or when the point ti lies in the opposite direction of the ray.

Algorithm 1. Approximate Boundary Oracle

Input: H-polytope P ⊂ Rd, ray r (pair (s, v)), ε

Output: t ∈ Rd s.t. t ∈ r and d(t, ∂P ) ≤ εdiam(P )

A_MEM = approximate membership oracle for P
Q = bounding_box(P )

t = Q ∩ r;
do

pi = A_MEM(t);

if pi==p then return t+ v
||v||2 ε; end

tprev = t
H = Hi // facet corresponding to pi

t = H ∩ r
if ||t− s||2 ≥ ||tprev − s||2 then t = (tprev − s)− v

||v||2 ε; end

if (t− s) · v < 0 then return s+ v
||v||2 ε; end

while True;

Lemma 8 (Correctness of Algorithm 1) Algorithm 1 always converges to a
solution for the approximate boundary problem.

We present the proof of this lemma in the Appendix A.1.

4 Implementation and Experiments

Implementation. All of our code3 is linked to the software of [5]. It is written
in C++11 based on using the CGAL4 library for the readily available data
structures of d-dimensional objects, Eigen3 for some linear algebra computations
and FALCONN[17] for the approximate nearest neighbor data structure. We
remind the reader at this point that for a polytope P (d, n, i) we compute n+ 1
points, out of which one point p∗ ∈ P while all remaining n points pi /∈ P, 1 ≤ i ≤
n. FALCONN offers LSH only for angular distances so in order to take advantage

3 https://github.com/van51/volume_approximation
4 http://www.cgal.org/

https://github.com/van51/volume_approximation
http://www.cgal.org/


of that we use it in the following manner. We consider our pointset already
centered around the internal point, in our case the origin. We build a FALCONN
data structure using the Hyperplane LSH family and setting k = 11, l = 1,
number of probes=40, when the number of facets n ≥ 10000. Otherwise, we set
them to l = 1, k = 8 and number of probes=150. l corresponds to the number of
hash tables built, k corresponds to the number of hash functions used per hash
table and number of probes is a parameter for the multi-probe LSH scheme [18].
The data structure is built for every computed point besides the internal one.
Then, assuming that for a query q FALCONN returns an approximate nearest
neighbor guess xi, we compare d(xi, q) to d(p∗, q) and return the point closest
to q out of xi, p

∗. The parameters for FALCONN were selected manually, while
trying to maintain a 90% success rate for membership.

Datasets. We experiment on a synthetic dataset consisting of high-dimensional
polytopes with a large number of facets. In particular, for the following set of
possible dimensions d = {40, 100, 500, 1000} and the following set of possible
number of facets n = {5000, 10000, 20000, 50000, 100000, 500000, 1000000}, we
generate 5 polytopes for every combination of d×n. Each polytope P (d, n, i), d ∈
d, n ∈ n, i ∈ {1, 2, 3, 4, 5} lives in a d-dimensional Euclidean space and is de-
scribed by n inequalities of the form: ajx ≤ 1000, 1 ≤ j ≤ n, where aj ∼
mod(U(0, 32767), 1000). The notation U(i, j) denotes the uniform real distribu-
tion over [i, j]. By construction, each polytope contains the origin 0, which we
use as the internal point needed by the approximate membership oracle. If that
assumption was not satisfied, we could have computed an internal point either
by solving a linear program or by computing an important point of the polytope,
like the Chebyshev center.

Evaluation protocol. For both oracles we report pre-processing time, total
query time, and success rate vs n and d as n and d vary in their respective
sets n,d. Specifically for the boundary oracle we also report the average num-
ber of steps that it required in order to reach a solution and we also compute
the min,max and average distances of the point returned from our approximate
boundary oracle to the actual point that the exact ray shooting problem should
have computed. We compare the query time to the naive approach of checking
all n facets of P . For the membership oracle we sample 1000 query points in-
side the polytope via the popular hit-and-run paradigm and then move these
points sufficiently far from the origin so that they lie outside the polytope. This
generates another 1000 points to form a total of 2000 points. Similarly for the
boundary oracle we use 1000 query points in total.

Results. Table 1 depicts the total time in seconds for creating the approximate
membership oracle on random polytopes for different values of d, n. Figure 4
depicts total time in seconds for all queries to be completed. Parameters were
tuned such that the membership oracle achieved an accuracy of > 90%, i.e. at
least 9 out of 10 queries succeed on average. The results matched our expectations
with regards to the behaviour of the oracles in high dimension, where we can
see a huge difference in the query time, especially as the number of facets grows
larger as well.



Table 1. Preprocessing time in seconds for membership oracle. This includes comput-
ing the n+ 1 pointset and creating the ANN data structure on top of it.

Number of facets
5000 10000 20000 50000 100000 500000 1000000

Dimension

40 0.006s 0.013s 0.027s 0.057s 0.125s 0.518s 0.795s
100 0.015s 0.035s 0.057s 0.121s 0.230s 1.005s 1.885s
500 0.055s 0.108s 0.193s 0.419s 0.717s 3.396s 6.744s
1000 0.101s 0.192s 0.342s 0.783s 1.470s 5.500s 10.770s

Fig. 4. Average timing results for 2000 queries for varying n and d. Half of the queries
were inside the random polytopes and half were outside.
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A Appendix

A.1 Proofs of section 3

Proof of lemma 6.

Proof. Let t1, t2, . . . denote the sequence of successive points computed on the
ray r by the above algorithm. Let x1, x2, . . . be a sequence of points in S, each
representing the nearest neighbor of the point ti. This means that the nearest
neighbor of ti was xi at the i-th step. We assume without loss of generality that
each ti has a single nearest neighbor, because otherwise it would mean that ti
falls on the intersection of a line (the ray), a Voronoi facet and a supporting
hyperplane which is highly degenerate. However, even in that case we could con-
sider every nearest neighbor of the point and take the one that improves the
distance the most. For correctness, assume that we have reached the i-th step.
There are two cases for ti+1. Either it lies on ∂P in which case the member-
ship data structure E MEM will identify it as being inside and the algorithm will
terminate. Otherwise, by convexity of the cell of xi, ti+1 lies between ∂P and
ti, since ti+1 lies on an “extension” of the facet (meaning on Hi \ Fi) between
the cell of xi and P . Since Hi \ Fi cannot belong to a Voronoi facet, ti+1 will
always belong to a new Voronoi cell. Therefore the sequence xi will not have any
repeating points and the algorithm will eventually reach ∂P where the iteration
will stop and return ∂P ∩ r.

Proof of lemma 8.

Proof. Observe that the successive points ti lying on the ray r are always im-
proving the distance to the ray’s apex, by a factor of at least ε. Additionally,
by definition, the ray’s apex always lies inside P . We separate two cases for the
ray’s apex, which we will from now on denote as s.

1. d(s, ∂P ) > ε · diam(P ) + ε



2. d(s, ∂P ) ≤ ε · diam(P ) + ε

In case 1, the algorithm will eventually reach a point ti, after performing a
number of ε-steps, such that ti ∈ P and d(ti, ∂P ) ≥ ε · diam(P ). Since the
ray’s apex s is at distance > ε · diam(P ) + ε from ∂P this will happen while
(ti− s) · v > 0. In this case we return point ti + v

||v||2 ε which lies within distance

ε · diam(P ) from ∂P .
In case 2, the point ti will either reach d(ti, ∂P ) > ε · diam(P ) and will be

identified as being inside and in which case the algorithm will correctly return
point ti + v

||v||2 ε. Alternatively, it will take an ε-step and move to the opposite

direction of the ray. In that case, s is identified as lying at distance at most
εdiam(P ) + ε from ∂P and in which case we return point s + v

||v||2 ε which lies

in r at distance < ε · diam(P ) from ∂P .
Eventually, the algorithm returns point t: t ∈ P and d(t, ∂P ) ≥ ε · diam(P ).
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