Machine Learning Models for YouTube QoE and User Engagement Prediction in Smartphones

Abstract : Measuring and monitoring YouTube Quality of Experience is a challenging task, especially when dealing with cellular networks and smartphone users. Using a large-scale database of crowdsourced YouTube-QoE measurements in smartphones, we conceive multiple machine-learning models to infer different YouTube-QoE-relevant metrics and user-behavior-related metrics from network-level measurements, without requiring root access to the smartphone, video-player embedding, or any other reverse-engineering-like approaches. The dataset includes measurements from more than 360 users worldwide, spanning over the last five years. Our preliminary results suggest that QoE-based monitoring of YouTube mobile can be realized through machine learning models with high accuracy, relying only on network-related features and without accessing any higher-layer metric to perform the estimations.
Type de document :
Communication dans un congrès
Workshop on AI in Networks (WAIN) 2018, Dec 2018, Toulouse, France
Liste complète des métadonnées

https://hal.inria.fr/hal-01898083
Contributeur : Sarah Wassermann <>
Soumis le : jeudi 18 octobre 2018 - 02:59:20
Dernière modification le : vendredi 19 octobre 2018 - 01:13:10

Fichier

WAIN_2018_camera_ready_paper_1...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01898083, version 1

Collections

Citation

Sarah Wassermann, Nikolas Wehner, Pedro Casas. Machine Learning Models for YouTube QoE and User Engagement Prediction in Smartphones. Workshop on AI in Networks (WAIN) 2018, Dec 2018, Toulouse, France. 〈hal-01898083〉

Partager

Métriques

Consultations de la notice

30

Téléchargements de fichiers

25