E. Becache, P. Joly, and J. Rodríguez, Space-time mesh refinement for elastodynamics. Numerical results, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.2-5, pp.355-366, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00983048

E. Bécache, J. Rodríguez, and C. Tsogka, A Fictitious Domain Method with Mixed Finite Elements for Elastodynamics, SIAM Journal on Scientific Computing, vol.29, issue.3, pp.1244-1267, 2007.

E. Bécache, J. Rodríguez, and C. Tsogka, Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition, ESAIM: Mathematical Modelling and Numerical Analysis, vol.43, issue.2, pp.377-398, 2009.

H. B. Dhia, Problèmes mécaniques multi-échelles: la méthode Arlequin, Comptes Rendus de l'Académie des Sciences-Series IIB-Mechanics-PhysicsAstronomy, vol.326, issue.12, pp.899-904, 1998.

H. , B. Dhia, and G. Rateau, Mathematical analysis of the mixed Arlequin method, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, vol.332, issue.7, pp.649-654, 2001.

H. , B. Dhia, and G. Rateau, The Arlequin method as a flexible engineering design tool, International Journal for Numerical Methods in Engineering, vol.62, issue.11, pp.1442-1462, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00018915

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer series in computational mathematics, vol.15, 1991.

J. Chabassier and S. Imperiale, Stability and dispersion analysis of improved time discretization for simply supported prestressed Timoshenko systems. Application to the stiff piano string, Wave Motion, vol.50, issue.3, pp.456-480, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00738233

G. C. Cohen, Higher-order numerical methods for transient wave equations, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01166961

G. Cohen, P. Joly, J. E. Roberts, and N. Tordjman, Higher order triangular finite elements with mass lumping for the wave equation, SIAM Journal on Numerical Analysis, vol.38, issue.6, pp.2047-2078, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01010373

R. Dautray and J. L. Lions, Mathematical analysis and numerical methods for science and technology, 1992.

A. Ghanem, M. Torkhani, N. Mahjoubi, T. N. Baranger, and A. Combescure, Arlequin framework for multi-model, multi-time scale and heterogeneous time integrators for structural transient dynamics, Computer Methods in Applied Mechanics and Engineering, vol.254, pp.292-308, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00824399

D. Komatitsch and J. Tromp, Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophysical Journal International, vol.139, issue.3, pp.806-822, 1999.

Y. Maday and A. T. Patera, Spectral element methods for the incompressible Navier-Stokes equations, State-of-the-art surveys on computational mechanics, (A9047176 21-64), pp.71-143, 1989.

P. Monk, Finite Element Methods for Maxwell's Equations, 2003.

H. Qiao, Q. D. Yang, W. Q. Chen, and C. Z. Zhang, Implementation of the Arlequin method into ABAQUS: Basic formulations and applications, Advances in Engineering Software, vol.42, pp.197-207, 2011.

T. Rylander and A. Bondeson, Stability of Explicit-Implicit Hybrid TimeStepping Schemes for Maxwell's Equations, Journal of Computational Physics, vol.179, issue.2, pp.426-438, 2002.

A. J. Wathen, An analysis of some element-by-element techniques, Computer Methods in Applied Mechanics and Engineering, vol.74, issue.3, pp.271-287, 1989.

V. Doleana, H. Fahs, L. Fezoui, and S. Lanteri, Locally implicit discontinuous Galerkin method for time domain electromagnetics, Journal of Computational Physics, vol.229, issue.2, pp.512-526, 2010.

S. Descombes, S. Lanteri, and L. Moya, Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell's equations, Journal of Scientific Computing, vol.56, issue.1, pp.190-218, 2013.
DOI : 10.1007/s10915-012-9669-5

G. Derveaux, P. Joly, and J. Rodriguez, Effective computational methods for wave propagation, Chap 13 : Space time mesh refinement methods, 2008.

W. C. Mclean, Strongly Elliptic systems and Boundary Integral equations, 2000.

H. B. Dhia, Further insights by theoretical investigations of the multiscale arlequin method, International Journal for Multiscale Computational Engineering, vol.6, issue.3, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00751336

H. , B. Dhia, and C. Zammali, Level-sets and arlequin framework for dynamic contact problems, vol.13, pp.403-414, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00606777

H. , B. Dhia, and C. Zammali, Level-sets fields, placement and velocity based formulations of contact-impact problems, International journal for numerical methods in engineering, vol.69, issue.13, pp.2711-2735, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00280798

C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements, SIAM Journal on Numerical Analysis, vol.35, issue.5, pp.1893-1916, 1998.
DOI : 10.1137/s0036142995293766

URL : https://hal.archives-ouvertes.fr/hal-01793439

H. , B. Dhia, and R. Guillaume, Application of the Arlequin method to some structures with defects, vol.11, pp.291-304, 2002.

B. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition, Lecture Notes on Computational Science and Engineering, vol.17, 2001.
DOI : 10.1007/978-3-642-56767-4

M. J. Gander and C. Japhet, Algorithm 932: PANG: software for nonmatching grid projections in 2D and 3D with linear complexity, ACM Transactions on Mathematical Software (TOMS), vol.40, issue.1, p.6, 2013.
DOI : 10.1007/978-3-642-02677-5_19

URL : https://hal.archives-ouvertes.fr/hal-00933643