J. Moult, K. Fidelis, and A. Kryshtafovych, Torsten Schwede, and Anna Tramontano. Critical assessment of methods of protein structure prediction (CASP)-Round XII, Proteins: Structure, Function, and Bioinformatics, vol.86, pp.7-15, 2018.

D. Cozzetto, A. Kryshtafovych, M. Ceriani, and A. Tramontano, Assessment of predictions in the model quality assessment category, Proteins: Structure, Function, and Bioinformatics, vol.69, issue.S8, pp.175-183, 2007.

J. Lundström, L. Rychlewski, J. Bujnicki, and A. Elofsson, Pcons: A neural-network-based consensus predictor that improves fold recognition, Protein Science, vol.10, issue.11, pp.2354-2362, 2001.

K. Ginalski, A. Elofsson, D. Fischer, and L. Rychlewski, 3D-Jury: a simple approach to improve protein structure predictions, Bioinformatics, vol.19, issue.8, pp.1015-1018, 2003.

K. Olechnovi? and . Venclovas, Voromqa: Assessment of protein structure quality using interatomic contact areas, Proteins: Structure, Function, and Bioinformatics, vol.85, issue.6, pp.1131-1145, 2017.

J. Zhang and Y. Zhang, A novel side-chain orientation dependent potential derived from random-walk reference state for protein fold selection and structure prediction, PloS one, vol.5, issue.10, p.15386, 2010.

M. Karasikov, G. Pagès, and S. Grudinin, Smooth orientation-dependent scoring function for coarse-grained protein quality assessment. Unpublished, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01971128

R. Cao and J. Cheng, Protein single-model quality assessment by feature-based probability density functions, Scientific reports, vol.6, p.23990, 2016.

R. Cao, D. Bhattacharya, J. Hou, and J. Cheng, DeepQA: improving the estimation of single protein model quality with deep belief networks, BMC Bioinformatics, vol.17, issue.1, p.495, 2016.

K. Uziela, D. M. Hurtado, N. Shu, B. Wallner, and A. Elofsson, ProQ3D: improved model quality assessments using deep learning, Bioinformatics, vol.33, issue.10, pp.1578-1580, 2017.

A. Leaver-fay, M. Tyka, M. Steven, . Lewis, F. Oliver et al., Rosetta3: an object-oriented software suite for the simulation and design of macromolecules, Methods in enzymology, vol.487, pp.545-574, 2011.

H. Lee, R. Grosse, R. Ranganath, and A. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, Proceedings of the 26th annual international conference on machine learning, pp.609-616, 2009.

I. Wallach, M. Dzamba, and A. Heifets, AtomNet: A deep convolutional neural network for bioactivity prediction in structure-based drug discovery, 2015.

M. Ragoza, J. Hochuli, E. Idrobo, J. Sunseri, and D. R. Koes, Protein-ligand scoring with convolutional neural networks, Journal of chemical information and modeling, vol.57, issue.4, pp.942-957, 2017.

J. Jiménez, . Doerr, . Martínez-rosell, G. Rose, and . Fabritiis, DeepSite: proteinbinding site predictor using 3D-convolutional neural networks, Bioinformatics, vol.33, issue.19, pp.3036-3042, 2017.

J. L. Raphael, R. Townshend, R. O. Bedi, and . Dror, Generalizable protein interface prediction with end-to-end learning, 2018.

G. Derevyanko, S. Grudinin, Y. Bengio, and G. Lamoureux, Deep convolutional networks for quality assessment of protein folds, Bioinformatics, p.494, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01702857

A. Ray, E. Lindahl, and B. Wallner, Improved model quality assessment using ProQ2, BMC bioinformatics, vol.13, issue.1, p.224, 2012.

K. Olechnovi? and B. Monastyrskyy, Andriy Kryshtafovych, ? Ceslovas Venclovas, and

A. Valencia, Comparative analysis of methods for evaluation of protein models against native structures, Bioinformatics, 2018.

K. Olechnovi?, E. Kulberkyt-?-e, and . Venclovas, CAD-score: A new contact area difference-based function for evaluation of protein structural models, Proteins: Structure, Function, and Bioinformatics, vol.81, issue.1, pp.149-162, 2013.

V. Mariani, M. Biasini, A. Barbato, and T. Schwede, lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests, Bioinformatics, vol.29, issue.21, pp.2722-2728, 2013.

S. J. Daniel-e-worrall, D. Garbin, G. Turmukhambetov, and . Brostow, Harmonic networks: Deep translation and rotation equivariance, Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), vol.2, 2017.

X. David-a-van-dyk and . Meng, The art of data augmentation, Journal of Computational and Graphical Statistics, vol.10, issue.1, pp.1-50, 2001.

D. Clevert, T. Unterthiner, and S. Hochreiter, Fast and accurate deep network learning by exponential linear units (elus), 2015.

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015.

Y. Ioannou, D. Robertson, D. Zikic, P. Kontschieder, J. Shotton et al., Decision forests, convolutional networks and the models inbetween, 2016.

E. Baris, H. Suzek, P. Huang, R. Mcgarvey, C. H. Mazumder et al., Uniref: comprehensive and non-redundant UniProt reference clusters, Bioinformatics, vol.23, issue.10, pp.1282-1288, 2007.

Y. Zhang and J. Skolnick, Scoring function for automated assessment of protein structure template quality, Proteins: Structure, Function, and Bioinformatics, vol.57, issue.4, pp.702-710, 2004.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis et al., Tensorflow: a system for large-scale machine learning, Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation, pp.265-283, 2016.