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ABSTRACT
Electronic voting typically aims at two main security goals: vote

privacy and verifiability. These two goals are often seen as antago-

nistic and some national agencies even impose a hierarchy between

them: first privacy, and then verifiability as an additional feature.

Verifiability typically includes individual verifiability (a voter can

check that her ballot is counted); universal verifiability (anyone

can check that the result corresponds to the published ballots); and

eligibility verifiability (only legitimate voters may vote).

We show that actually, privacy implies individual verifiability. In

other words, systemswithout individual verifiability cannot achieve

privacy (under the same trust assumptions). To demonstrate the

generality of our result, we show this implication in two different

settings, namely cryptographic and symbolic models, for standard

notions of privacy and individual verifiability. Our findings also

highlight limitations in existing privacy definitions in cryptographic

settings.
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1 INTRODUCTION
Electronic voting is often seen as a convenient way for running

elections as it allows voters to vote from any place. Moreover, it

eases the tally and it can therefore often be used for non trivial

counting procedures such as Single Transferable Vote or Condorcet.

Numerous voting systems have been proposed so far, like Helios [4],
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Belenios [15], Civitas [14], Prêt-à-voter [29], or the protocols de-

ployed in Estonia [23] or in Australia [11] to cite a few. On the other

hand, many weaknesses or even attacks have been unveiled [30, 31],

from voting machines [22] to Internet voting [32].

In order to carefully analyse voting systems, security require-

ments have been defined. The two main security properties are:

• privacy: no one should know how I voted;

• verifiability is typically described through the three follow-

ing sub-properties.

– individual verifiability: a voter can check that her ballot is

counted;

– universal verifiability: anyone can check that the results

corresponds to the published ballots;

– eligibility verifiability: only legitimate voters may vote.

These two main properties seem antagonistic and an impossibility

result has even been established between verifiability and uncondi-

tional privacy [13], that is, a notion of privacy that is independent

of the power of the attacker.

The main contribution of this paper is to establish that, in fact,

(computational) privacy implies individual verifiability, that is, guar-
antees that all the honest votes will be counted. This result holds

for arbitrary primitives and voting protocols without anonymous

channels. To show that this implication is not due to a choice of a

very particular definition, we prove this implication in two very

distinct contexts, namely symbolic and cryptographic models. In

symbolic models, messages are represented by terms and the at-

tacker’s behaviour is typically axiomatised through a set of logical

formulas or rewrite rules. Cryptographic models are more precise.

They represent messages as bitstrings and consider attackers that

can be any probabilistic polynomial time Turing machines. Proofs

of security are made by reduction to well accepted security assump-

tions such as hardness of factorisation or discrete logarithm. In

both models, we consider a standard notion of privacy, already

used to analyse several protocols. In both cases, we establish that

privacy implies individual verifiability for a (standard) basic notion

of individual verifiability, namely that the result of the election

must contain the votes of all honest voters.

We now describe the main idea of the result. Actually, we show

the contrapositive implication: if there is an attack against individ-

ual verifiability, then there is an attack against privacy. To explain

the idea, let’s consider a very simple protocol, not at all verifiable.

In this simple protocol, voters simply encrypt their votes with the

public key of the election. The ballot box stores the ballots and, at

the end of the election, it provides the list of recorded ballots to the

talliers, who detain the private key, possibly split in shares. The

talliers compute and publish the result of the election. The ballot

box is not public and no proof of correct decryption is provided

so voters have no control over the correctness of the result. Such
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a system is of course not satisfactory but it is often viewed as a

“basic” system that can be used in contexts where only privacy is a

concern. Indeed, it is typically believed that such a system guaran-

tees privacy provided that the attacker does not have access to the

private key of the election. In particular, the ballot box (that is, the

voting server) seems powerless. This is actually not the case. If the
ballot box aims at knowing how a particular voter, say Alice, voted,

he may simply keep Alice’s ballot in the list of recorded ballots and

then replace all the other ballots by encryptions of valid votes of

his choice, possibly following a plausible distribution, to make the

attack undetected. When the result of the election is published, the

ballot box will know all the votes but Alice’s vote, and will therefore

be able to deduce how Alice voted.

One may argue that such an attack is not realistic: the ballot box

needs to be able to change all ballots but one. Note however that
elections are often split in many small voting stations (sometimes as

small as 20 voters in total [17]). Therefore changing a few ballots can

be sufficient to learn howAlice voted. Maybe more importantly, this

attack highlights the fact that it is not possible to require privacy

without verifiability as sometimes specified by national agencies.

For example, in France, only privacy is required [1]. In Switzerland,

privacy is a pre-requisite and the level of verifiability depend on the

percentage of voters that can vote electronically [2]. Our findings

point out that if voters cannot trust some authorities w.r.t. the fact
that their votewill be counted they cannot trust the same authorities

w.r.t. their privacy, even for entities that do not have access to the

secret keys. Beyond the attack explained on a simple (and naive)

protocol, our proof that privacy implies individual verifiability

shows that as soon as a protocol is not verifiable, then the adversary

can take advantage of the fact that he may modify a vote without

being detected in order to break privacy. Individual verifiability is

only one part of verifiability. It does not account for universal nor

eligibility verifiability. So our result cannot be used to conclude that

a private voting scheme ensures all desirable verifiability properties.

Instead, it demonstrates that there is no hope to design a private

voting system if it does not include some degree of verifiability,

namely individual verifiability at least.

Our results also emphasise issues in existing privacy definitions.

Indeed, if privacy implies individual verifiability, how is it possible

to prove Helios [8] or Civitas [5] without even modelling the verifi-

cation aspects? How can a system that is not fully verifiable like

the Neuchâtel protocol be proved private [21]? As already pointed

out in [9], existing cryptographic definitions of privacy (see [7] for

a survey) implicitly assume an honest voting ballot box: honest bal-

lots are assumed to be properly stored and then tallied. Actually, we

notice that the same situation occurs in symbolic models. Although

the well adopted definition of privacy [20] does not specify how the

ballot box should be modelled, most symbolic proofs of privacy (see

e.g. [5, 17, 18, 20]) actually assume that the votes of honest voters

always reach the ballot box without being modified and that they

are properly tallied. The reason is that the authors were aware of

the fact that if the adversary may block all ballots but Alice’s ballot,

he can obviously break privacy. However, to avoid this apparently

systematic attack, they make a very strong assumption: the ballot

box needs to be honest. This means that previous cryptographic

and symbolic privacy analyses only hold assuming an honest ballot

box while the corresponding voting systems aim at privacy without

trusting the ballot box. This seriously weakens the security analysis

and attacks may be missed, like the attack of P. Roenne [28] on

Helios, for which there is no easy fix.

Why is it so hard to define vote privacy w.r.t. a dishonest ballot
box? Intuitively, vote privacy tries to capture the idea that, no

matter how voters vote, the attacker should not be able to see any

difference. The key issue is that the result of the election does leak
some information (typically the sum of the votes) and the adversary

may notice a difference based on this. This particularity makes vote

privacy differ from privacy in other contexts, where the adversary

really should learn no information. Therefore, most definitions

of vote privacy (roughly) say that, no matter how honest voters

voted, provided that the aggregation of the corresponding votes

remains the same, then the attacker should not see any difference.

However, as soon as the ballot box is dishonest, it may discard

some honest ballots and break privacy, as already discussed. The

first definition of privacy w.r.t. a dishonest ballot box [9] weakens
privacy by requiring that among the ballots that are ready to be

tallied, the (sub-)tally of the honest ones does not change. This

preliminary definition has two limitations. First, it assumes that the

tallied ballots are exactly the same as the cast ones, which is not

the case of all protocols (e.g. in ThreeBallots [27], only a part of the

ballot is published; in BeleniosRF [12], ballots are re-randomised).

Second, it does not model re-voting: the tally process cannot discard

ballots due to some revote policy.

We propose here another approach. Instead of changing the pri-

vacy definition, we now include a model of the verification process:

the ballots should be tallied only if the honest voters have success-

fully performed the tests specified by the protocol. We compare

our definition with [9] and an original definition of privacy [6] on

a selection of well-studied protocols, that have different levels of

verifiability (Helios, Civitas, Belenios, Neuchâtel, and our simple -

non verifiable - protocol). We show again that our notion of privacy,

w.r.t. a dishonest ballot box, implies individual verifiability. We do

not consider our new definition of privacy as final but it opens the

way to a better understanding of privacy in the context of fully

dishonest authorities.

Threat model.We show that privacy implies individual verifia-

bility, under the same trust assumptions, that is, trusting the same

group of authorities, channels, etc. In symbolic models, the pri-

vacy definition does not make prior assumptions on the threat

model. Instead, the encoding of the protocol defines which parties

are trusted. In particular, as already discussed, existing proofs of

privacy [5, 17, 18, 20] often implicitly assume that honest ballots

reach the ballot box without any modification. We show that when-

ever privacy holds then individual verifiability holds, for the same

encoding, hence the same assumptions. In contrast, most crypto-

graphic definitions of privacy implicitly assume an honest ballot

box. Therefore, we first show that privacy implies individual veri-

fiability, assuming an honest ballot box, considering the standard

definition of privacy by Benaloh [6]. Then we show that privacy

still implies individual verifiability, assuming a dishonest ballot box,

considering our novel definition of privacy, that explicitly models

the verification steps.

Related work. As already mentioned, [13] shows an impossibility

result between universal verifiability and unconditional privacy.



We show in contrast that the commonly used (computational) def-

initions of privacy actually imply verifiability. The discrepancy

between the two results comes from the fact that [13] considers

unconditional privacy while most protocols achieve only computa-

tional privacy, that is against a polynomially bounded adversary.

Interestingly, the impossibility result still holds between uncondi-

tional privacy and our notion of individual verifiability. [19] estab-

lishes a hierarchy between privacy, receipt-freeness, and coercion

resistance, while in a quantitative setting, [26] shows that this hi-

erarchy does not hold anymore. [16] recasts several definition of

verifiability in a common setting, providing a framework to com-

pare them. Besides [13], none of these approaches relates privacy

with verifiability. Many privacy definitions have been proposed as

surveyed in [7]. However, they all assume an honest ballot box. To

our knowledge, [9] is the only exception, as already discussed in

details. [17] shows how to break privacy by replaying a ballot. If an

attacker may replay Alice’s ballot and cast it in his own name (or

cast a related ballot), then he introduces a bias in the result, that

leaks some information on Alice’s vote. Note that this replay attack

does not break individual verifiability: honest votes are correctly

counted. We show here another breach for privacy: if an attacker

may remove some honest votes, then he breaks privacy as well.

Roadmap. We first prove that privacy implies individual verifia-

bility in symbolic models, in Section 3, and then in cryptographic

models, in Section 4. These two parts are rather independent. In Sec-

tion 6, we examine a selection of well-studied voting protocols and

compare the effect of different (cryptographic) notions of privacy

when the ballot box is dishonest.

The technical details and proofs omitted due to space constraints

are available in the companion technical report [? ].

2 PRELIMINARIES
Notations: The multiset of elements a,a,b, c is denoted {|a,a,b, c |}.
The union of two multisets S1 and S2 is denoted S1 ⊎ S2.

In both cryptographic and symbolic models, we assume a setV

of votes and a set R of possible results, equipped with an associative

and commutative operator ∗ (e.g. addition of vectors). A counting
function is a function ρ that associates a result r ∈ R to a multiset

of votes. We assume that counting functions have a partial tally
property: it is always possible to count the votes in two distinct

multisets and then combine the results.

∀V ,V ′ ρ(V ⊎V ′) = ρ(V ) ∗ ρ(V ′)
A vote v is said to be neutral if ρ(v) is neutral w.r.t. ∗.

Example 2.1. Consider a finite set of candidates C = {a1, . . . ,ak }.
In case voters should select between k1 and k2 candidates or vote
blank, we can represent valid votes by vectors representing the

selection of candidates

Vk1,k2 =

{
v ∈ {0, 1}k | k1 ≤

k∑
i=0

vi ≤ k2

}
∪ {vblank}

where vblank is the null vector (0, . . . , 0), representing a blank vote.

In a mixnet-based tally, all the individual votes are revealed. Thus

R is the set of multisets of votes in Vk1,k2 and ∗ is the union of

multisets. The corresponding counting function is ρmix (V ) = V ,
where V is a multiset of elements ofVk1,k2 .

In an homomorphic-based tally, the votes are added together.

Thus R = Nk , the set of vectors of k elements, and ∗ is the addition

of vectors. The corresponding counting function is ρhom (V ) =∑
v ∈V v .
Both ρmix and ρhom have the partial tally property. The vote

vblank is a neutral vote w.r.t. ρhom but not ρmix .

The result of the election r may have several representations. For

example, a multiset may be represented by several lists (where the

order changes). In symbolic models, the result will be represented

by abstract terms and we wish our result to be independent of a

particular choice of representation. Therefore, we will simply say

that a representation R is a function that associates to a result r ∈ R
a set of possible representations with an injectivity property:

∀r , r ′. R(r ) ∩ R(r ′) = ∅
Intuitively, a result can be associated to several representations but

a given representation can correspond to at most one result.

For our proofs in a cryptographic setting, we will also assume

that given an election result r and a set of votes V , one can decide

efficiently (in polynomial time) whether r includes all the votes of
V , that is, whether there exists V ′ such that r = ρ(V ⊎ V ′). This
condition is satisfied by ρmix and ρhom and all standard counting

functions.

3 SYMBOLIC MODEL
3.1 Model
In symbolic models, security protocols are often modelled through a

process algebra, in the spirit of the applied pi-calculus [3], that offers

a small, abstract language for specifying communications, where

messages are represented as terms. We present here a calculus

inspired from the calculus underlying the ProVerif tool [10].

3.1.1 Terms. We consider an infinite set of names N that model

fresh values such as nonces and keys. We distinguish the set FN

of free nonces (generated by the attacker) and the set BN of bound

nonces (generated by the protocol agents). We also assume an infi-

nite set of variablesV = X ⊎AX where X contains variables used

in processes (agent’s memory) while AX contains variables used

to store messages (adversary’s memory). Cryptographic primitives

are represented through a set of function symbols, called signa-
ture F . Each function symbol has an arity, that is, the number of its

arguments. We assume an infinite set C ⊆ F of public constants,

which are functions of arity 0.

Example 3.1. The standard primitives, public keys, symmetric

and asymmetric encryption, concatenation, as well as addition, can

be modelled by the following signature.

Fc = {pk/1, enc/2, aenc/2, ⟨·, ·⟩/2,+/2}

The companion primitives (symmetric and asymmetric decryp-

tion, projections) are then represented by the following signature:

Fd = {dec/2, adec/2,π1/1,π2/1}

Given a signature F , a set of names N , a set of variablesV , the

set of terms T(F ,V,N) is the set inductively defined by applying

functions to variables in V and names in N . The set of names

resp. variables) occurring in t is denoted names(t) (resp. vars(t)). A



Processes:

P ,Q ::=

0
| ν n.P for n ∈ BN (n bound in P)
| out(c,M).P
| in(c,x).P for x ∈ X (x bound in P)
| event(M1, . . . ,Mn ).P for event ∈ Ev of arity n
| P | Q
| let x = M in P for x ∈ X (x bound in P)
| if M = N then P else Q
| !P

whereM,N ,M1, . . . ,Mn are messages and c ∈ Ch is a channel.

Figure 1: Syntax for processes.

term is ground if it does not contain any variable. The set of terms

T(F ,AX,FN) represents the attacker terms, that is, terms built

from the messages sent on the network and stored thanks to the

variables in AX.

A substitution σ = {M1/x1, . . . ,Mk/xk } maps variables x1, . . . ,
xk ∈ V to messagesM1, . . . ,Mk . Its domain is denoted dom(σ ) =
{x1, . . . ,xk }. The application of σ to a term t is denoted tσ and is de-

fined as usual. A substitutionσ is ground if its messagesM1, . . . ,Mk
are ground.

The properties of the cryptographic primitives are modelled

through an equational theory E, which is a finite set of equations of

the form M = N where M,N ∈ T (F ,X, ∅) are messages without

names. Equality modulo E, denoted by =E, is defined as the smallest

equivalence relation on terms that is closed under context and

substitution. We denote disequalities modulo E byM ,E N .

Example 3.2. Considering the signature Fc ∪ Fd ∪ C from Ex-

ample 3.1, the following equational theory describes the ability to

decrypt symmetrically, asymmetrically, and to project pairs. It also

characterises + as an associative and commutative operator.

dec(enc(x ,y),y) = x
adec(aenc(x , pk(y)),y) = x

π1(⟨x ,y⟩) = x
π2(⟨x ,y⟩) = y
x + (y + z) = (x + y) + z

x + y = y + x

3.1.2 Processes. The behaviour of protocol parties is described

through processes. Let Ch be an infinite set of channel names, rep-

resenting the channels on which the messages are exchanged. All

channels will be public. We consider different channels nevertheless

to model the fact that an attacker can identify the provenance of a

message. We also consider a finite set Ev of event symbols, given

together with their arity. Events are used to record that partici-

pants have reached a certain step, with some associated knowledge.

Protocols are modelled through a process algebra, whose syntax is

displayed in Figure 1.

As usual, we identify processes up to α-renaming, to avoid cap-

ture of bound names and variables.

A configuration of the system is a triple (E;P;ϕ) where:

• P is a multiset of processes that represents the current active

processes;

• E is a set of names, which represents the private names of

the processes;

• ϕ is a substitution with dom(ϕ) ⊆ AX that represents the

messages sent on the network. We assume ϕ to be ground,

that is for any x ∈ dom(ϕ), ϕ(x) is a ground term.

The semantics of processes is given through a transition relation

α
−−→ provided in Figure 2, where α is the action associated to the

transition. τ denotes a silent action. Events are recorded but will

be invisible to the attacker. Intuitively, process ν n.P creates a fresh

nonce, stored in E, and behaves like P . Process out(c,M).P emitsM
on c and behaves like P . Process in(c,x).P inputs a term computed

by the attacker (that is a term built from ϕ using an attacker term)

on channel c and then behaves like P . Process event(M1, . . . ,Mn ).P
triggers the event event(M1, . . . ,Mn ), and then behaves like P . Pro-
cess P | Q corresponds to the parallel composition of P and Q .
Process let x = M in P behaves like P in which x is replaced with

M . Process if M = N then P else Q behaves like P if M and N
are equal modulo E, and behaves like Q otherwise. The replicated

process !P behaves as an unbounded number of copies of P .

We denote by

w
−−−→∗ the reflexive transitive closure of

α
−−→, where

w is the concatenation of all actions. We also write equality up to

silent actions and events =τ .

A trace of a process P is any possible sequence of transitions

starting from P . Traces correspond to all possible executions in the

presence of an attacker that may read, forge, and send messages.

Formally, the set of traces trace(P) is defined as follows.

trace(P) = {(w, new E .ϕ)|(∅; {P}; ∅)
w
−−−→∗ (E;P;ϕ)}

A sequence of actions t is blocking in a process P if it cannot be

executed.

blocking(t , P)
def
= ∀ϕ . (t ,ϕ) < trace(P).

Example 3.3. Helios [4] is a simple voting protocol used in several

elections, like the election of the recteur of the university of Louvain-

la-Neuve. A voter simply encrypts her vote with the public key of

the election. This encrypted vote forms the ballot, which is sent

to the ballot box. The voter may check that her ballot is on the

ballot box since the ballot box is public. There are two ways for

tallying, either homomorphic tally or mixnet-based tally. We model

here the two options in an abstract way: given the ballots, the

talliers output the aggregation of the decryption of the ballot. This

aggregation could be the addition or just the votes in a random

order. For simplicity, we describe here a simple version with only

two honest voters A and B, a dishonest voterC , and a voting server
S . This protocol can be modelled by the following process.

PHelios(va ,vb ) =
ν kas ,kbs ,kcs ,ke .
(out(c,kcs ).out(c, pk(ke )) |
Voter(A,va , ca , c ′a ,kas ,ke ) | Voter(B,vb , cb , c

′
b ,kbs ,ke ) |

TallyHelios(ca , cb , cc , cs ,kas ,kbs ,kcs ,ke ))

where Voter(a,v, c, c ′,k,ke ) represents voter a willing to vote forv
using the channels c and c ′, the election key ke and the credential k
to authenticate to the server, while TallyHelios represents the voting
server.



(E; {P1 | P2} ∪ P;ϕ)
τ
−−→ (E; {P1, P2} ∪ P;ϕ) Par

(E; {0} ∪ P;ϕ)
τ
−−→ (E;P;ϕ) Zero

(E; {ν n.P} ∪ P;ϕ)
τ
−−→ (E ∪ {n}; {P} ∪ P;ϕ) New

(E; {out(c,M).P} ∪ P;ϕ)
ν axn .out(c,axn )
−−−−−−−−−−−−−−−−→ (E; {P} ∪ P;ϕ ∪ {M/axn }) Out

ifM is a ground term, axn ∈ AX and n = |ϕ | + 1

(E; {in(c,x).P} ∪ P;ϕ)
in(c,R)
−−−−−−−→ (E; {P[Rϕ/x]} ∪ P;ϕ) In

if R is an attacker term such that vars(R) ⊆ dom(ϕ)

(E; {event(M1, . . . ,Mn ).P} ∪ P;ϕ)
event(M1, ...,Mn )
−−−−−−−−−−−−−−−−→ (E; {P} ∪ P;ϕ) Event

if ∀i . Mi is a ground message

(E; {let x = M in P} ∪ P;ϕ)
τ
−−→ (E; {P[M/x]} ∪ P;ϕ) Let-In

ifM is ground

(E; {if M = N then P else Q} ∪ P;ϕ)
τ
−−→ (E; {P} ∪ P;ϕ) If-Then

ifM , N are ground messages such thatM =E N

(E; {if M = N then P else Q} ∪ P;ϕ)
τ
−−→ (E; {Q} ∪ P;ϕ) If-Else

ifM , N are ground messages such thatM ,E N

(E; {!P} ∪ P;ϕ)
τ
−−→ (E; {P , !P} ∪ P;ϕ) Repl

Figure 2: Semantics

Voter(a,v, c, c ′,k,ke ) simply sends an encrypted vote. To model

the fact that voters communicate with the ballot box through an

authenticated channel, we assume that a voter first sends her ballot

privately to the server (using the encryption with k) and then

sends the ballot on a public channel. Note that the key k is just a

modelling artefact to abstract away the underlying password-based

authenticated channel.

Voter(a,v, c, c ′,k,ke ) =
ν r . out(c, enc(aenc(⟨v, r ⟩, pk(ke )),k)). Voted(a,v).

out(c ′, aenc(⟨v, r ⟩, pk(ke )))

The voting server receives ballots from voters A, B, and C and

then outputs the decrypted ballots, after some mixing, modelled

through the + operator.

TallyHelios(ca , cb , cc , cs ,kas ,kbs ,kcs ,ke ) =
in(ca ,x1).in(cb ,x2).in(cc ,x3).
let y1 = dec(x1,kas ) in
let y2 = dec(x2,kbs ) in
let y3 = dec(x3,kcs ) in
if x1 , x2 ∧ x1 , x3 ∧ x2 , x3 then

out(cs ,π1(adec(y1,ke )) + π1(adec(y2,ke ))
+ π1(adec(y3,ke )))

where we omit the null else-branches. ∧ is syntactic sugar for a

succession of tests and if M , N then P is syntactic sugar for

if M = N then 0 else P .

3.1.3 Equivalence. Sent messages are stored in a substitution ϕ
while private names are stored in E. A frame is simply an expres-

sion of the form new E .ϕ where dom(ϕ) ⊆ AX. It represents the
knowledge of an attacker. We define dom(new E .ϕ) as dom(ϕ).

Intuitively, two sequences of messages are indistinguishable to

an attacker if he cannot perform any test that could distinguish

them. This is typically modelled as static equivalence [3].

Definition 3.4 (Static Equivalence). Two ground frames new E .ϕ
and new E ′.ϕ ′ are statically equivalent if and only if they have

the same domain, and for all attacker terms R, S with variables in

dom(ϕ) = dom(ϕ ′), we have

(Rϕ =E Sϕ) ⇐⇒ (Rϕ ′ =E Sϕ ′)

Two processes P and Q are in equivalence if no matter how the

adversary interacts with P , a similar interaction may happen with

Q , with equivalent resulting frames.

Definition 3.5 (Trace Equivalence). Let P , Q be two processes.

We write P ⊑t Q if for all (s,ψ ) ∈ trace(P), there exists (s ′,ψ ′) ∈
trace(Q) such that s =τ s ′ and ψ and ψ ′ are statically equivalent.

We say that P and Q are trace equivalent, and we write P ≈t Q , if
P ⊑t Q and Q ⊑t P .

Note that this definition already includes the attacker’s behaviour,

since processes may input any message forged by the attacker.

Example 3.6. Ballot privacy is typically modelled as an equiva-

lence property [20] that requires that an attacker cannot distinguish

when Alice is voting 0 and Bob is voting 1 from the scenario where

the two votes are swapped.

Continuing Example 3.3, ballot privacy of Helios can be ex-

pressed as follows:

PHelios(0, 1) ≈t PHelios(1, 0)

3.2 Voting protocols
We consider two disjoint, infinite subsets of C: a set A of agent
names or identities, and a setV of votes. We assume given a repre-

sentation R of the result.

A voting protocol is modelled as a process. It is composed of:

• processes that represent honest voters;

• a process modelling the tally;

• possibly other processes, modelling other authorities.



Formally, we define a voting process as follows.

Definition 3.7. A voting process is a process of the form

P = ν
#    „

cred.ν cred1 . . . ν credp . (
Voter(a1,va1 ,

#„c1,
#    „

cred, cred1) | · · · |
Voter(an ,van ,

#„cn ,
#    „

cred, credn )
| Tallyp (

#„c ,
#    „

cred, cred1, . . . , credp )
| Othersp ( #„c ′,

#    „

cred, cred1, . . . , credp ))

where ai ∈ A, vai ∈ V ,
#„ci ,

#„c , #„c ′ are (distinct) channels,
#    „

cred and

credi are (distinct) names.

A voting process may be instantiated by various voters and vote

selections. Given A = {b1, . . . ,bn } ⊆ A a finite set of voters, and

α : A → V that associates a vote to each voter, we define Pα by

replacing ai by bi and vi by α(bi ) in P .
Moreover, P must satisfy the following properties.

• Process Voter(a,va , #„c ,
#    „

cred, cred) models an honest voter

a willing to vote for va , using the channels
#„c , credentials

cred (e.g. a signing key) and election credentials

#    „

cred. It is
assumed to contain an event Voted(a,v) that models that a
has voted for v . This event is typically placed at the end of

process Voter(a,va , #„c ,
#    „

cred, cred). This event cannot appear
in process Tallyp nor Othersp .

• Process Tallyp (
#„c ,

#    „

cred, cred1, . . . , credp ) models the tally. It

is parametrised by the total number of voters p (honest and

dishonest), with p ≥ n. It is assumed to contain exactly one

output action on a reserved channel cr . The term output on

this channel is assumed to represent the final result of the

election.

∀α . ∀(tr ,ϕ) ∈ trace(Pα ). out(cr , r ) ∈ tr ⇒ ∃V . ϕ(r ) ∈ R(ρ(V ))
Tallyp may of course contain input/output actions on other

channels.

• Process Othersp ( #„c ′,
#    „

cred, cred1, . . . , credp ) is an arbitrary

process, also parametrised by p. It models the remaining

of the voting protocol, for example the behaviour of other

authorities. It also models the initial knowledge of the at-

tacker by sending appropriate data (e.g. the public key of the
election or dishonest credentials). We simply assume that

it uses a set of channels disjoint from the channels used in

Voter and Tallyp .

The channel cr used in Tallyp to publish the result is called the

result channel of P .

Example 3.8. The process modelling the Helios protocol, as de-

fined in Example 3.3 is a voting process, where process Othersp
consists in the output of the keys: out(c,kcs ).out(c, pk(ke )).

We can read which voters voted from a trace. Formally, given a

sequence tr of actions, the set of voters Voters(tr ) who did vote in

tr is defined as follows.

Voters(tr ) = {a ∈ A | ∃v ∈ V . Voted(a,v) ∈ tr }.
The result of the election is emitted on a special channel cr . It

should correspond to the tally of a multiset of votes. Formally, given

a trace (t ,ϕ) and a multiset of votes V , the predicate result(t ,ϕ,V )

holds if the election result in (t ,ϕ) corresponds to V .

result(t ,ϕ,V )
def
= ∃x , t ′. t = t ′.out(cr ,x) ∧ ϕ(x) ∈ R(ρ(V )).

3.3 Security properties
Several definitions of verifiability have been proposed. In the lines

of [15, 25], we consider a very basic notion, that says that the result

should at least contain the votes from honest voters.

Definition 3.9 (symbolic individual verifiability). Let P be a voting

process with result channel cr . P satisfies symbolic individual verifi-
ability if, for any trace (t ,ϕ) ∈ trace(Pα ) of the form t ′.out(cr ,x)),
there existsVc such that the result in t corresponds toVa ⊎Vc , that
is result(t ,ϕ,Va ⊎Vc ), where

Va = {|v | ∃a. Voted(a,v) ∈ t |}
Individual verifiability typically guarantees that voters can check

that their ballot will be counted. Our notion of individual verifia-

bility goes one step further, ensuring that the corresponding votes

will appear in the result, even if the tally is dishonest. One of the

first definitions of verifiability was given in [24], distinguishing be-

tween individual, universal, and eligibility verifiability. Intuitively,

our own notion of individual verifiability sits somewhere between

individual verifiability and individual plus universal verifiability as

defined in [24]. A precise comparison is difficult as individual and

universal verifiability are strongly tight together in [24]. Moreover,

[24] only considers the case where all voters are honest and they

all vote.

We consider the privacy definition proposed in [20] and widely

adopted in symbolic models: an attacker cannot distinguish when

Alice is voting v1 and Bob is voting v1 from the scenario where the

two votes are swapped.

Definition 3.10 (Privacy [20]). Let P be a voting process. P satisfies

privacy if, for any subtitution α from voters to votes, for any two

voters a,b ∈ A\dom(α) and any two votes v1,v2 ∈ V , we have

Pα∪{a 7→v1,b 7→v2 } ≈ Pα∪{a 7→v2,b 7→v1 }

3.4 Privacy implies verifiability
We show that privacy implies verifiability under a couple of as-

sumptions, typically satisfied in practice.

First, we assume a light form of determinacy: two traces with the

same observable actions yield the same election result. This excludes

for example cases for voters chose non deterministically how they

vote. Formally, we say that a voting process P with election channel

cr is election determinate if, for any substitution α from voters to

votes, for any two traces t , t ′ such that t =τ t ′, (t .out(cr ,x),ϕ) ∈
trace(Pα ), and (t ′.out(cr ,x),ϕ ′) ∈ trace(Pα ), then

ϕ(x) ∈ R(ρ(V ))) ⇒ ϕ ′(x) ∈ R(ρ(V ))

This assumption still supports some form of non determinism but

may not hold for example in the case where voters use anonymous

channels that even hide who participated in the election.

Second, we assume that it is always possible for a new voter to

vote (before the tally started) without modifying the behaviour of

the protocol.



Formally, a voting proces P is voting friendly if for all voter

a ∈ A, there exists t ′′ (the honest voting trace) such that for all α
satisfying a < dom(α),

• for all (t ,ϕ) ∈ trace(Pα ), such that t = t ′.out(cr ,x) for
some t ′, x , for all v , there exists tr , ψ such that tr =τ t ′′,
Voted(a,v) ∈ tr , (t ′.tr .out(cr ,x),ψ ) ∈ trace(Pα∪{a 7→v }),

and ∀V . ϕ(x) ∈ R(ρ(V )) ⇒ ψ (x) ∈ R(ρ(V ∪{v})). Intuitively,
if a votes normally, her vote will be counted as expected, no

matter how the adversary interfered with the other voters.

• for all t ′, x such that blocking(t ′.out(cr ,x), Pα ), for all v ,
tr ,ψ such that tr =τ t ′′, we have blocking(t ′.tr .out(cr ,x),
Pα∪{a 7→v }). Intuitively, the fact that a voted does not sud-

denly unlock the tally.

In practice, most voting systems are voting friendly since voters vote

independently. In particular, process PHelios modelling Helios, as

defined in Example 3.3, is voting friendly (assuming an honest tally).

The voting friendly property prevents a fully dishonest tally since

the first item requires that unmodified honest ballots are correctly

counted. However, we can still consider a partially dishonest tally

that, for example, discards or modifies ballots that have been flagged

by the attacker.

Moreover, we assume that there exists a neutral vote, which is

often the case in practice. Actually, this is a simplified (sufficient)

condition. Our result also holds as soon as there is a vote that can

be counted separately from the other votes (as formally defined in

a companion technical report [? ]).

Theorem 3.11 (Privacy implies individual verifiability). Let
P be a voting friendly, election determinate voting process.

If P satisfies privacy then P satisfies individual verifiability.

The proof of this result intuitively relies on the fact that in order

to satisfy privacy w.r.t. two voters Alice and Bob, a voting process

has to guarantee that the vote of Alice is, if not correctly counted,

at least taken into account to some extent. Indeed, if an attacker,

trying to distinguish whether Alice voted for 0 and Bob for 1, or

Alice voted for 1 and Bob for 0, is able to make the tally ignore

completely the vote of Alice, the result of the election is then Bob’s

choice. Hence the attacker learns how Bob voted, which breaks

privacy.

Therefore, we first we prove that if a protocol satisfies privacy,

then if we compare an execution (i.e. a trace) where Alice votes 0
with the corresponding execution where Alice votes 1, the resulting

election results must differ by exactly a vote for 0 and a vote for 1.

Formally, we show the following property.

Lemma 3.12. If a voting friendly, election determinate voting pro-
cess P satisfies privacy, then it satisfies

[ t =τ t ′ ∧ (t ,ϕ) ∈ trace(Pα∪{a 7→v1 }) ∧

(t ′,ϕ ′) ∈ trace(Pα∪{a 7→v2 }) ∧

result(t ,ϕ,V ) ∧ result(t ′,ϕ ′,V ′) ] =⇒

ρ(V ′ ⊎ {|v1 |}) = ρ(V ⊎ {|v2 |}).

This lemma is used as a central property to prove the theorem.

Intuitively, we apply this lemma repeatedly, changing one by one

all the votes from honest voters into neutral votes. Let r denote the
result before this operation, and r ′ the result after. Let Va denote

the multiset of honest votes, and Vb the multiset containing the

same number of neutral votes. Thanks to Lemma 3.12, we can show

that r ∗ ρ(Vb ) = r ′ ∗ ρ(Va ). Since Vb only contains neutral votes,

we have r = r ′ ∗ ρ(Va ). This means that r contains all honest votes,
hence the voting process satisfies individual verifiability.

The detailed proof of this theorem can be found in a companion

technical report [? ].

4 COMPUTATIONAL MODEL
Computational models define protocols and adversaries as proba-

bilistic polynomial-time algorithms.

Notation: We may write (id, ∗) ∈ L as a shorthand, meaning that

there exists an element of the form (id,x) in L. If V is a multiset of

elements of the form (id,v), we define ρ(V ) = ρ({|v | (id,v) ∈ V |}).

4.1 Voting system
We assume that the ballot box displays a board BB, that is a list

of ballots. The nature of the ballots depend on the protocol we

consider.

Definition 4.1. A voting scheme consists in six algorithms

(Setup,Credential,Vote,VerifVoter, Tally,Valid)

• Setup(1λ), given a security parameter λ, returns a pair of

election keys (pk, sk).
• Credential(1λ , id) creates a credential cred for voter id, for
example a signing key. The credential may be empty as well.

Registered voters are stored in a list U.
• Vote(id, cred, pk,v) constructs a ballot containing the vote

v for voter id with credential cred, using the election public

key pk.
• VerifVoter(id, cred, L,BB) checks whether the local knowl-
edge L of voter id is consistent with the board BB. For exam-

ple, a voter may check that her (last) ballot appears on the

bulletin board.

• Tally(BB, sk,U) computes the tally of the ballots on the board
BB, using the election secret key sk, assuming a list of reg-

istered voter identities and credentials U. The Tally algo-

rithm first runs some test ValidTally(BB, sk,U) that typically
checks that the ballots of BB are valid. Tally may return

⊥ if the tally procedure fails (invalid board or decryption

failure for example). If Tally(BB, sk,U) , ⊥ then it must cor-

respond to a valid result, that is, there exists V such that

Tally(BB, sk,U) = ρ(V ).
• Valid(id,b,BB, pk) checks that a ballot b cast by a voter id is

valid with respect to the board BB using the election public

key pk. For example, the ballot b should have a valid signa-

ture or valid proofs of knowledge. The ballot b will be added

to BB only if Valid(id,b,BB, pk) succeeds.

We will always assume a correct voting scheme, that is, tal-

lying honestly generated ballots yields the expected result. For-

mally, for all distinct identities U = id1, . . . , idn , and credentials

cred1, . . . , credn , for all votesv1, . . . ,vn , for all election keys (pk, sk),
if BB = [Vote(idi , credi , pk,vi )|i ∈ J1,nK], then

Tally(BB, sk,U) = ρ({|v1, . . . ,vn |})

The tally algorithm typically applies a revote policy. Indeed, if

voters may vote several times, the revote policy states which vote



should be counted. The two main standard revote policies are 1. the

last vote counts or 2. the first vote counts (typically when revote is

forbidden). In what follows, our definitions are written assuming

the last ballot revote policy. However, they can easily be adapted to

the first ballot revote policy and all our results hold in both cases

(as shown in a companion technical report [? ]).
The revote policy is either based on the identities or the cre-

dentials. We say that a voting system is id-based if there exists a

a function openid which, given a ballot b, retrieves the associated
identity. Formally, for any id, cred, pk,v ,

openid (Vote(id, cred, pk,v)) = id

Similarly, we say that a voting system is cred-based if there exists

a function opencred which, given a ballot b, the election secret key

sk, and a list U of registered voters and credentials, retrieves the

credential cred used by the voter to create the ballot. Formally, for

any id, cred, sk, pk,v ,

opencred (Vote(id, cred, pk,v), sk,U ) = cred

Note that some schemes are neither id-based nor cred-based,

in particular when the ballots contain no identifier. Such schemes

typically assume that voters do not revote since there is no means

to identify whether two ballots originate from the same voter.

4.2 Security properties
As usual, an adversary is any probabilistic polynomial time Turing

machine (PPTM). We define verifiability and privacy through game-

based properties.

4.2.1 Verifiability. For verifiability, we propose a simple definition,

inspired from [15, 25]. Intuitively, we require that the election re-

sult contains at least the votes of all honest voters. This notion was

called weak verifiability in [15] but we will call it individual verifi-

ability to match the terminology used in symbolic settings. More

sophisticated and demanding definitions have been proposed, for

example controlling how many dishonest votes can be inserted [15]

or tolerating some variations in the result [25]. The main missing

part (in terms of security) is that our definition does not control

ballot stuffing: arbitrarily many dishonest votes may be added to

the result. The reason is that ballot stuffing seems unrelated to

privacy. Moreover, our definition assumes an honest tally, and thus

does not capture universal verifiability aspects. The main reason is

that existing privacy definitions in computational settings assume

an honest tally and we compare the two notions under the same

trust assumptions. We leave as future work to determine how to

extend these two definitions to a dishonest tally, and whether the

implication still holds.

Verifiability is defined through the game Expverif
A
(λ) displayed

on Figure 4. In a first step, the adversary may use oracles Oreg(id)
and Ocorr(id) (defined on Figure 3) to respectively register a voter

and get her credential (in this case, the voter is said to be corrupted).

Then the adversary may ask an honest voter id to vote for a given

vote v through oracle Ovvote(id,v). In this case, the adversary sees

the corresponding ballot and the fact that id voted forv is registered

in the list Voted. The adversary may also cast an arbitrary ballot

b in the name of a dishonest voter id through oracle Ocast(id,b).
Finally, the adversary wins if the election result does not contain

Oreg(id)

if (id, ∗) ∈ U then

stop

else

credid ← Credential(1λ, id)

U← U∥(id, credid )

Ocorr(id)

if (id, ∗) < U ∨ (id, ∗) ∈ CU then

stop

else

CU← CU∥(id, credid )

return credid
where (id, credid ) ∈ U

Figure 3: Registration and corruption oracles

all the honest votes registered in Voted (where only the last vote is

counted).

Definition 4.2 (Individual verifiability). A voting system is indi-
vidually verifiable if for any adversary A,

P

[
ExpverifA (λ) = 1

]
is negligible.

As mentioned in introduction, [13] shows an impossibility result

between (unconditional) privacy and verifiability. [13] considers

another aspect of verifiability, namely universal verifiability, that

is, the guarantee that the result corresponds to the content of the

ballot, even in presence of a dishonest tally. Interestingly, the same

incompatibility result holds between individual verifiability and

unconditional privacy, for the same reasons. Exactly like in [13],

a powerful adversary (i.e. not polynomial) could tally BB and BB′

where BB′ is the ballot box from which Alice’s ballot has been

removed and infer Alice’s vote by difference. More generally, un-

conditional privacy is lost as soon as there exists a tally function that

is meaningfully related to the result, which is implied by individual

verifiability.

4.2.2 Privacy. For privacy, we consider the old, well established
definition of Josh Benaloh [6]. More sophisticated definitions are

been proposed later (see [7] for a survey and a unifying definition).

They aim in particular at getting rid of the partial tally assumption

(needed in [6]). Note however that they all assume an honest ballot

box. Since we also assume partial tally, the original Benaloh def-

inition is sufficient for our needs. In particular, we do not know

if privacy implies verifiability for counting functions that do not

have the partial tally property. This is left as future work.

Intuitively, a voting system is private if, no matter how honest

voters vote, the adversary cannot see any difference. However, the

adversary always sees the election result, that leaks how the group

of honest voters voted (altogether). Therefore, the election result

w.r.t. the honest voters has to remain the same. More formally, in

a first step, the adversary uses oracles Oreg(id) and Ocorr(id) to
respectively register a voter and get her credential. Then the ad-

versary may request an honest voter id to vote either for v0 or v1
through oracle O

p
vote(id,v0,v1). Voter id will vote vβ depending

on the bit β . The adversary may also cast an arbitrary ballot b in

the name of a dishonest voter id through oracle Ocast(id,b). The
election will be tallied, only if the set V0 of votes v0 yields the

same result than the set V1 of votes v1 (where only the last vote is

counted). Finally, the adversary wins if he correctly guesses β . For-

mally, privacy is defined through the game Exppriv,β
A

(λ) displayed
on Figure 5.



Expverif
A
(λ)

(pk, sk) ← Setup(1λ )

U, CU← []

state← A
Oreg,Ocorr
1

(pk)

BB, Voted← []

A
Ovvote,Ocast
2

(state, pk)

r ← Tally(BB, sk, U)

if r , ⊥ ∧ ∀Vc (finite) . r , ρ({vi }1≤i≤k ⊎Vc ) then

return 1

where Voted = {(id1, v1), . . . , (idk , vk )}

Ovvote(id,v)
if (id, ∗) ∈ U\CU then

b ← Vote(id, credid, pk, v)

BB← BB∥b

Voted← Voted′ ∥(id, credid, v)

return b

where (id, credid ) ∈ U

and Voted′ is obtained from Voted

by removing all previous instances of (id, ∗)

Ocast(id,b)
if (id, ∗) ∈ CU ∧

Valid(id, b, BB, pk)

then

BB← BB∥(id, b)

Figure 4: Verifiability

Definition 4.3 (Privacy [6]). A voting system is private if for any

adversary A,���P [Exppriv,0
A
(λ) = 1

]
− P

[
Exppriv,1
A
(λ) = 1

] ��� is negligible.
4.3 Privacy implies individual verifiability
We show that privacy implies individual verifiability and we first

list here our assumptions. As for the symbolic case, we assume the

existence of a neutral vote. We also require that the tally can be per-

formed piecewise, that is, informally, as soon as two boardsBB1,BB2
are independant then Tally(BB1 ⊎ BB2) = Tally(BB1) ∗ Tally(BB2).
This property is satisfied by most voting schemes. Formally, we

characterize this notion of “independence” depending on whether

a scheme is id-based or cred-based.

An id-based voting scheme has the piecewise tally property if

for any two boards BB1 and BB2 that contain ballots registered for

different agents and such that BB1 ⊎ BB2 is valid, that is, if

ValidTally(BB1 ⊎ BB2, sk,U) ∧
∀b ∈ BB1. ∀b ′ ∈ BB2. openid (b) , openid (b

′),

then their tally can be computed separately:

Tally(BB1 ⊎ BB2, sk,U) = Tally(BB1, sk,U) ∗ Tally(BB2, sk,U). (*)

We also assume that the tally only counts ballots cast with

registered ids, i.e. ∀BB, sk,U. Tally(BB, sk,U) = Tally(BB′, sk,U)
where BB′ = [b ∈ BB | (openid (b), ∗) ∈ U]; and that registering

more voters does not change the tally: if U,U′ have no id in com-

mon and ∀b ∈ BB. (openid (b), ∗) < U′, then Tally(BB, sk,U) =
Tally(BB, sk,U ∪ U′).

Similarly, a cred-based voting scheme has the piecewise tally
property if for any two boards BB1 and BB2 that contain ballots

associated to different credentials, that is

∀b ∈ BB1. ∀b ′ ∈ BB2. opencred (b, sk,U) , opencred (b
′, sk,U)

then their tally can be computed separately (Property (*)).

We also assume that registering more voters does not change the

tally: ifU,U′ share no credentials and∀b ∈ BB. (∗, opencred (b, sk,U∪
U′)) < U′, then Tally(BB, sk,U) = Tally(BB, sk,U ∪ U′).

We say that a (id-based) voting scheme is strongly correct if
whatever valid board the adversary may produce, adding a honestly

generated ballot still yields a valid board. This property is formally

defined through the game ExpValidTally
A

(λ) displayed in Figure 6. A

similar assumption was introduced in [7]. For example, Helios is

strongly correct.

A voter credential typically includes a private part used to gen-

erate a signing key for example. It should not be possible for an

adversary to forge a ballot with an honest credential. Formally, we

say that a voting scheme has non-malleable credentials, if for any
adversary A,

P

[
ExpNMA (λ) = 1

]
is negligible

where ExpNM
A
(λ) is defined on Figure 7. For example, Belenios and

Civitas have non-malleable credentials.

Theorem 4.4 (Privacy implies individual verifiability). Let
V be an id-based, strongly correct, voting scheme that has the piecewise
tally property. If V is private, then V is individually verifiable.

Similarly, letV be a cred-based voting scheme that has the piecewise
tally property and non-malleable credentials. If V is private, then V
is individually verifiable.

The proof of this theorem is inspired by the same intuition as in

the symbolic case: if an attacker manages to break verifiability, that

is, to obtain that not all votes from the honest voters are counted

correctly, then there also exists an attack against privacy. Indeed,

consider a scenario with additional, new voters, whose votes should

compensate those cast by the initial voters. By performing the attack

on verifiability for the initial voters, the attacker reaches a state

where, in the result of the election, they are no longer compensated

by the new votes. This allows the attacker to break privacy.

More precisely, the general idea of the proof is as follows. Con-

sider an attacker A that breaks individual verifiability, i.e. wins
the game Expverif with non negligible probability. We construct

an attacker B that breaks privacy, i.e. wins Exppriv,β . B starts by

registering, and corrupting, the same voters as A, using oracles

Oreg and Ocorr. Let id1, . . . , idn be this first set of voters. B then

registers another set ofn voters id ′
1
, . . . , id ′n , where the id

′
i are fresh

identities, that A does not use.

B then simulatesA, using the oracle O
p
vote to simulateA’s calls

to Ovvote. Specifically, when A calls Ovvote(id,v), B calls the oracle

O
p
vote(id,v,v

blank), where vblank is a neutral vote. Once B is done

simulating A, it triggers the new voters id ′i to vote, by calling



Exppriv,β
A

(λ)

(pk, sk) ← Setup(1λ )

U, CU← []

state1 ← A
Oreg,Ocorr
1

(pk)

BB, V0, V1 ← []

state2 ← A
O
p
vote,Ocast

2
(state1, pk)

if ρ(V0) = ρ(V1) then

r ← Tally(BB, sk, U)

β ′ ← A3(state2, pk, r )

return β ′

O
p
vote(id,v0,v1)

if (id, ∗) ∈ U\CU then

b ← Vote(id, credid, pk, vβ )

BB← BB∥b

V0 ← V′
0
∥(id, v0)

V1 ← V′
1
∥(id, v1)

return b

where (id, credid ) ∈ U

and V′
0
(resp. V′

1
) is obtained from V0 (resp. V1)

by removing all instances of (id, ∗)

Ocast(id,b)
if (id, ∗) ∈ CU ∧

Valid(id, b, BB, pk)

then

BB← BB∥(id, b)

Figure 5: Privacy

ExpValidTally
A

(λ)

(pk, sk) ← Setup(1λ )

U, CU← []

state← A
Oreg,Ocorr
1

(pk)

(BB, id, v) ← A
Ovtvote
2
(state, pk)

b ← Vote(id, credid, pk, v)

where (id, credid ) ∈ U

if (id, ∗) ∈ U\CU ∧

(∀b′ ∈ BB. openid (b′) , id) ∧

ValidTally(BB, sk, U) ∧

¬ValidTally(BB | |b, sk, U) then

return 1

Ovtvote(id,v)
if ∃credid .(id, credid ) ∈ U\CU then

return Vote(id, credid, pk, v)

Figure 6: ValidTally game

ExpNM
A
(λ)

(pk, sk) ← Setup(1λ )

U, CU← []

state← A
Oreg,Ocorr
1

(pk)

L← []

b ← AOc
2
(state, pk)

if b < L ∧

∃(id, credid ) ∈ U\CU.
opencred (b, sk, U ) = credid then

return 1

Oc(id,v)
if (id, ∗) ∈ U\CU then

b ← Vote(id, credid, pk, v)

L← L∥b

return b

where (id, credid ) ∈ U

Figure 7: Credential non-malleability

the oracle O
p
vote(id

′
i ,v

blank,vi ), where vi is the (last) vote cast by
idi . The vote of each id ′i compensates the vote of idi , so that the

condition ρ(V0) = ρ(V1) from Exppriv holds. B then obtains the

result r of the election, which is equal to r1 ∗r2, where r1 is the tally
of the ballots cast by A, and r2 the tally of the additional ballots

cast by B. Then:

• if β = 0: then all the votes cast by the id ′i werev
blank

, and the

result is thus r = r1. Since A breaks individual verifiability,

r1 does not contain the honest votes, i.e., for all multiset Vc
of votes, r , ρ(v1, . . . ,vn ) ∗ ρ(Vc ).
• if β = 1 however, the votes cast by the id ′i were the vi , and
the partial tally r2 is therefore r2 = ρ(v1, . . . ,vn ). Hence, the
result r does contain the honest votes.

Therefore, by observing whether the final result of the election

contains the honest votes, B is able to guess β , and wins Exppriv.

5 PRIVACYWITH A DISHONEST BOARD
Ourmain theorem states that privacy implies individual verifiability.

However, the privacy definition introduced by Benaloh assumes

an honest ballot box, as most existing privacy definitions of the

literature [7]. Therefore, our main theorem shows that whenever a

voting scheme is private w.r.t. an honest ballot box, then it is also

individually verifiable w.r.t. an honest ballot box, which is of course

a rather weak property. However, intuitively, our proof technique

does not rely on the trust assumptions.

As pointed out in introduction, extending cryptographic pri-

vacy definitions to a dishonest ballot box is difficult. Consider the

natural extension of privacy as displayed in Figure 8: the game

is the same than Exppriv,β
A

(λ) except that the adversary arbitrarily

controls the ballot box. Unfortunately, an adversary can always

win this new game. Indeed, he may simply query Odvote(id1, 0, 1)
and Odvote(id2, 1, 0), yielding respectively ballots bid1 and bid2 . Then
the adversary choses BB = bid1 . The tally will return β , hence the
adversary wins. This corresponds to the fact that an adversary may

always isolate a voter and break her privacy.

5.1 Privacy with careful voters
To solve this issue, we choose another approach, which consists in

explicitly modelling the verification steps made by voters: the tally

will be performed only if honest voters have successfully run their

checks (e.g. checking that their ballot belongs to the bulletin board).

Therefore, we extend the privacy game as follows. The adversary

arbitrarily controls the ballot box and may request honest voters to

vote through O
p,c
vote(id,v0,v1) as before. Note that there is no need

for the Ocast oracle since the adversary may add directly his own



Expdis,β
A
(λ)

(pk, sk) ← Setup(1λ )

U, CU← []

state1 ← A
Oreg,Ocorr
1

(pk)

V0, V1 ← []

state2, BB← A
Odvote
2
(state1, pk)

if ρ(V0) = ρ(V1) then

r ← Tally(BB, sk, U)

β ′ ← A3(state2, pk, r )

return β ′

Odvote(id,v0,v1)
if (id, ∗) ∈ U\CU then

b ← Vote(id, credid, pk, vβ )

V0 ← V′
0
∥(id, v0)

V1 ← V′
1
∥(id, v1)

return b

where (id, credid ) ∈ U

and V′
0
(resp. V′

1
)

is obtained from V0 (resp. V1)

by removing all instances

of (id, ∗)

Figure 8: Privacy against a dishonest board (PrivDis-Naive)

ballots in the ballot box. He triggers voters to run their verification

tests through the oracle OhappyBB(id). To run her verification test

(using algorithm VerifVoter), the voter has access to the ballot box

BB forged by the adversary aswell as her local state Lid that contains
in particular her previously generated ballots. The tally is performed

only if all honest voters have successfully performed their test and

if, as previously, the setV0 of left votesv0 yields the same result than

the set V1 of right votes v1. Formally, privacy with careful voters is

defined through the game Exppriv−careful displayed on Figure 9.

Definition 5.1 (Privacy with careful voters). A voting system is

private against a dishonest board with careful voters if for any adver-

sary A,���P [Exppriv−careful,0
A

(λ) = 1

]
− P

[
Exppriv−careful,1
A

(λ) = 1

] ���
is negligible.

While this definition models a dishonest ballot box, it implicitly

assumes that all voters see the same (possibly dishonest) ballot

box. This is a very common assumption in voting, that needs to be

achieved by external means.

Similarly, we extend individual verifiability to individual verifia-
bility against a dishonest board as expected, assuming that the tally

is performed only if all honest voters have successfully performed

their test. The formal definition of individual verifiability against a

dishonest board can be found in a companion technical report [? ].

5.2 Privacy implies individual verifiability
against a dishonest box too

We need to assume that the verification test run by honest voters

(VerifVoter) is consistent with how the voter voted. Namely, if the

voter’s intended ballot is the one that is selected from the board

by the revote policy (e.g. appears last w.r.t. this voter), then this

voter must be satisfied with the board (that is, VerifVoter passes).
Conversely, if the test VerifVoter fails for voter id then adding

ballots unrelated to id (or her credential) will not change this fact

(VerifVoter will still fail). These assumptions are formally stated in

a companion technical report [? ].

Theorem 5.2 (Privacy implies individual verifiability against

a dishonest board). Let V be an id-based, strongly correct voting

Exppriv−careful,β
A

(λ)

(pk, sk) ← Setup(1λ )

U, CU← []

state1 ← A
Oreg,Ocorr
1

(pk)

V0, V1, Lid (for all id in U) ← []

state2, BB← A
O
p,c
vote

2
(state1, pk)

H← []

state3 ← A
OhappyBB
3

(state2)

if ∀id . (id, ∗) ∈ V0, V1 ⇒ id ∈ H

and ρ(V0) = ρ(V1) then

r ← Tally(BB, sk, U)

else

r ← ⊥

β ′ ← A4(state3, pk, r )

return β ′

O
p,c
vote(id,v0,v1)

if (id, ∗) ∈ U\CU then

b ← Vote(id, credid, pk, vβ )

V0 ← V′
0
∥(id, v0)

V1 ← V′
1
∥(id, v1)

Lid ← Lid ∥(b, vβ )

return b

where (id, credid ) ∈ U

and V′
0
(resp. V′

1
) is obtained

from V0 (resp. V1) by

removing all instances

of (id, ∗)

OhappyBB(id)
if (id, credid ) ∈ U\CU then

if VerifVoter(id, credid, Lid, BB)

then H← H∥id

Figure 9: Privacy game against a dishonest board with care-
ful voters (Priv-careful)

scheme that has the piecewise tally property. If V is private against a
dishonest board with careful voters, then V is individually verifiable
against a dishonest board with careful voters.

Similarly, letV be a cred-based voting scheme that has the piecewise
tally property and non-malleable credentials. IfV is private against a
dishonest board with careful voters, then V is individually verifiable
against a dishonest board with careful voters.

6 COMPARING PRIVACY
We compare different notions of privacy, with and without an

honest ballot box, on four standard protocols (Helios, Belenios,

Civitas, and Neuchâtel) as well as on our simple protocol, sketched

in introduction.

To our knowledge, the only other definition of privacy with a

dishonest ballot box is the privacy notion introduced by Bernhard

and Smyth [9]. We first start by discussing this definition.

6.1 PrivacyBS
The privacy notion introduced by Bernhard and Smyth [9] is re-

called in Figure 10 (PrivacyBS). The adversary may request a voter

id to vote for v0 or v1 (depending on the bit β) through the oracle

Obsvote(id,v0,v1). He produces an arbitrary ballot box BB and the

tally will be performed provided that, looking at honest ballots that

appear in BB, counting the corresponding left and right votes yields
the same result.

The main interest of [9] is to highlight the fact that previous def-

initions implicitly assume an honest ballot box. The first attempt at

defining privacy w.r.t. a dishonest ballot box (PrivacyBS) has several
limitations. First, it strongly assumes that the ballots that appear in

the ballot box are exactly the same than the cast ballots. This is not



ExpBS,β
A
(λ)

(pk, sk) ← Setup(1λ )

U, CU← []

state1 ← A
Oreg,Ocorr
1

(pk)

L← []

state2, BB← A
Obsvote
2
(state1, pk)

if ∀v .
| {b |b ∈ BB ∧ ∃v ′. (b, v, v ′) ∈ L} | =
| {b |b ∈ BB ∧ ∃v ′. (b, v ′, v) ∈ L} |
then

r ← Tally(BB, sk, U)

β ′ ← A3(state2, pk, r )

return β ′

Obsvote(id,v0,v1)
if (id, ∗) ∈ U\CU then

b ← Vote(id, credid, pk, vβ )

L← L∥(b, v0, v1)

return b

where (id, credid ) ∈ U

Figure 10: PrivacyBS [9]

the case for example of the ThreeBallots protocol [27] where the

ballot box only contains two shares (out of three) of the original

ballot. It is not applicable either to a protocol like BeleniosRF [12]

where ballots are re-randomised before their publication. Second, it

requires ballots to be non-malleable [9]. This means that, as soon as

a ballot includes a malleable part (for example the voter’s id like in

Helios, or a timestamp), privacy cannot be satisfied. This severely

restricts the class of protocols that can be considered. Third, Pri-
vacyBS does not account for a revote policy. As soon as revote is

allowed (for example in Helios), then PrivacyBS is broken since

some ballots may not be counted. Indeed, an attacker may call

Obsvote(id1, 1, 0), followed by Obsvote(id1, 0, 1), obtaining ballots b1, b
′
1
,

and return the board BB = [b1,b ′
1
]. The equality condition on the

number of ballots in BB produced by Obsvote holds, since for v = 0, 1:

|{b ∈ BB|∃v ′. (b,v,v ′) ∈ L}| = |{b ∈ BB|∃v ′. (b,v ′,v) ∈ L}| = 1

where L = [(b1, 1, 0), (b ′
1
, 0, 1)]. Hence the tally is computed. Ac-

cording to the revote policy, only b ′
1
is counted, and the result is β ,

which lets the attacker win ExpBS.

6.2 Protocols
We consider four standard protocols (Helios, Belenios, Civitas, and

Neuchâtel) as well as our simple protocol, presented in introduction.

We briefly explain each of them in this section. In what follows

E = (gen, enc, dec) denotes an encryption algorithm.

Simple. We detail the simple protocol sketched in introduction.

Recall that voters simply send their encrypted votes to the ballot

box, and, at the end of the voting phase, the tally computes and

publishes the result of the election. No revote is allowed, and the

voters do not have any means of verifying that their vote is taken

into account. Identities and credentials are not used in this protocol.

The corresponding algorithms of this protocol are:

• Vote(id, cred, pk,v) = enc(pk,v)
• VerifVoter(id, cred, L,BB) = true (voters do not make any

checks)

• Tally(BB, sk,U) checks that all the ballots in BB are distinct,

and returns ⊥ if not. The tally performs a random permu-

tation of the ballots, decrypts all of them and returns the

multiset of the votes they contain.

• Valid(id,b,BB, pk) checks thatb does not already occur inBB.

Helios [4] is similar to Simple, except that revote is allowed, and

the last vote cast by each id is counted. To make this revote policy

possible, the ballots contain the id of the voter:Vote(id, cred, pk,v) =
(id, enc(pk,v)). enc(pk,v) here also includes a proof thatv is a valid

vote. Credentials are unused. The tally computes the result of the

election similarly to Simple except that it also features an homomor-

phic mode, where the tally homomorphically computes the sum of

the ballots in BB, decrypts the resulting ciphertext and returns the

result. Moreover, the tally returns a proof of correct decryption. In

addition, the board which will be tallied is made public, allowing

the voters to check that their last ballot is indeed the last ballot

with their id on the board:

VerifVoter(id, cred, Lid ,BB) =
the last element in Lid is the last ballot

registered for id in BB.

Similarly to Simple, the Valid function checks that there is no dupli-

cated ciphertext and also checks that the ballot is submitted under

the right id.

Valid(id, (id ′, c),BB, pk) = (id = id ′) ∧ c does not occur in BB

This models an authenticated channel between the ballot box and

each voter: a voter id may not cast a vote in the name of id ′.

Belenios [15] is similar to Helios, except that voters sign their

encrypted vote thanks to their credential:

Vote(id,k, pk,v) = (id, signElGamal(v, pk,k))

where signElGamal(·, ·, ·) denotes the combination of the (ElGamal)

encryption and the signature. As for Helios, it also includes a proof

that v is a valid vote. Tally checks that there exists a bijection

between the ids and the credentials in the final board, i.e. that the
same id is always associated with the same signature, and vice

versa. The revote policy counts the last ballot corresponding to a

given credential. Voters can verify that their last ballot is indeed

the last one signed by their key on the board.

Civitas [14]. In Civitas, voters privately receive a credential,

that is published encrypted on the bulletin board. To cast a vote, a

voter encrypts her vote, also encrypts her credential, and produces

a proof π of well-formedness that links the two ciphertexts together.

The corresponding ballot is of the form

Vote(id, cred, pk,v) = (enc(pk, cred), enc(pk,v),π ).

The voters can verify that their vote will be taken into account by

checking that it is present on the board that will be tallied.

VerifVoter(id, cred, Lid ,BB) = b ∈ BB

where b is the ballot in Lid . In theory, revote is allowed. However,

we unveil a small discrepancy in how revote should be performed.

Assume for example that the last ballot should be counted. Since

an adversary may recast old ballots generated by an honest voter, a

voter should memorise all the ballots he generated and check that

they appear in the right order on the ballot box. Such a check seems



Protocol Honest board [6] PrivDis-Naive PrivacyBS [9] Priv-careful
Simple (no revote) ✓ ✗ ✓ ✗

Helios ✓ ✗ ✗ ✗

Belenios ✓ ✗ ✗ ✓

Civitas (no revote) ✓ ✗ ✓ ✓

Neuchâtel (no revote) ✓ ✗ ✓ ✗

Figure 11: Comparison of several privacy definitions
(✓: the protocol is private, ✗: there exists an attack on privacy)

highly cumbersome for an average voter and we could not find its

description in [14]. Therefore, we simply assume here that honest

voters do not revote.

Neuchâtel [21]. Voters privately receive a code sheet, where

each candidate is associated to a (short) code. To cast a vote, voters

send their encrypted votes to the ballot box, similarly to Simple or

Helios. The ballot box then provides a return code allowing the voter

to check that the ballot has been received and that it encrypts their

candidate, as intended. This offers a protection against a dishonest

voting client (e.g. if the voter’s computer is corrupted). No revote

is allowed. Since the bulletin board is not published, voters cannot

check that their ballots really belong to the final board (used for

tally), which we model by VerifVoter(id, cred, L,BB) = true . Voters
have to trust the voting server (or other internal components) on

this aspect.

6.3 Attacks

Simple. As described in introduction, a dishonest ballot box may

break ballot privacy of any voter by simply replacing the other

votes by votes of its choice. In other words, even if the ballot box

does not detain any decryption key, it can learn how Alice’s voted.

Neuchâtel. Exactly like the Simple protocol, a dishonest ballot

box may break ballot privacy of any voter by simply replacing the

other votes. This is due to the fact that voters have no control over

the ballots that are actually tallied. Note that the Neuchâtel protocol

actually includes internal mechanisms that render such an attack

difficult. However, from the point of view of a voter, if the ballot

box is compromised, her privacy is no longer guaranteed.

Helios. Helios is also vulnerable to an attack when the ballot box

is compromised. This attack is due to P. Roenne [28]. It involves

two honest voters id1, id2, and a dishonest voter id3. The attacker
may call O

p,c
vote(id1, 0, 1) twice and O

p,c
vote(id2, 1, 0) once, obtaining

ballots (id1,b1), (id1,b ′
1
), (id2,b2). The adversary then returns the

board [(id1,b ′
1
), (id2,b2), (id3,b1)]. All ballots are different, hence

no weeding is needed. The result of the tally is then ρ({|0, 1, 0|}) if
β = 0 and ρ({|1, 0, 1|}) if β = 1. The attacker can therefore observe

the difference in the result, which breaks privacy.

Belenios and Civitas remain private against a dishonest board as

long as voters perform their verification checks. We formally prove

privacy according to our definition Priv-careful.

6.4 Comparison
We summarise our findings in Figure 11. As explained in Section 5,

the naive extension of the privacy definition to a dishonest board

(PrivDis-Naive) is immediately false for any protocol.

All of our five protocols satisfy privacy against an honest ballot

box. We rely here on previous results of the literature, except for

Civitas (and of course the Simple protocol). Indeed, Civitas has been

proved to be coercion-resistant [14] in a rather different setting.

Therefore we show here that it satisfies the Benaloh definition.

PrivacyBS fails to detect the attack on the Neuchâtel protocol

and the Simple protocol since it requires that the tally of the hon-

est ballots present on the final board does not leak information.

Conversely, it cannot prove Belenios private as it does not properly

handle revoting as explained in Section 6.1.

7 CONCLUSION
We show a subtle relation between privacy and verifiability, namely

that privacy implies individual verifiability, which is rather counter-

intuitive. Our result holds in a cryptographic as well as a symbolic

setting, for various trust assumptions. In contrast, privacy does

not seem to imply universal verifiability nor eligibility verifiability.

To show that there is indeed no implication, we plan to exhibit

counter-examples, as simple as possible.

Our result assumes counting functions that have the partial tally

property. Our proof technique does not extend immediately to

more complex counting functions such as STV or Condorcet. We

plan to study how privacy and individual verifiability are related

in this context. Also, our results implicitly discard anonymous

channels: computational models do not account for anonymous

channels while our election determinism assumption discards at

least some use of anonymous channels. Intuitively, in presence of

anonymous channels, an attacker may be able to modify a ballot

without being able to tell which one, hence breaking verifiability

without breaking privacy. It would be interesting to identify which

kind of anonymous channels and more generally, which form of

non determinism, can still be tolerated.

Our findings also highlight a crucial need for a ballot privacy

definition in the context of a dishonest ballot box, in a cryptographic

setting. So far, privacy has only been proved assuming an honest

ballot box, which forms a very strong trust assumption that was

probably never made clear to voters nor election authorities.

We propose a first attempt at modelling privacy against a dis-

honest board, assuming that honest voters checks their ballots as

expected by the voting protocol. We do not see our definition as fi-

nal. In particular, assuming that all voters check their vote is highly



unrealistic. In a realistic setting, it is more likely that a (small) frac-

tion of honest voters perform the required tests while the others

stop after casting their vote. We plan to explore how to adapt our

definition to a quantitative setting, in the lines of [26].
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