N

N

A simple reflective object kernel

Stéphane Ducasse

» To cite this version:

‘ Stéphane Ducasse. A simple reflective object kernel. Published by the author, 2018. hal-01900323

HAL Id: hal-01900323
https://inria.hal.science/hal-01900323
Submitted on 21 Oct 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-01900323
https://hal.archives-ouvertes.fr

A simple reflective object kernel

Stéphane Ducasse

September 2, 2018

Copyright 2017 by Stéphane Ducasse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

* to Share: to copy, distribute and transmit the work,

+ to Remix: to adapt the work,
Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the shabook I5TgX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

1.10

1.1

112

113

114

1.15

1.16

117

1.18

1.19
1.20

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10

2.1

Contents

lllustrations

A class-based reflective minimal kernel

(@] o 1417 o T
ObjVLisp'ssixpostulates o i e
Kerneloverview o o i i e e e
Instances L e e e e e e e
Understanding metaclasses oL
Instance structure v it e e e e e e e e e e e e e e e e
Aboutbehavior L e
Classasanobject i i e
SendingamesSSage i i e e e e e e e e e e e e e e e e e e
Inheritance L e e
Object: defining the minimal behavior of any object
Inheritance and instantiation together
Refresh on self and super semantics
Objectcreation i i i i i e e e e e e
Creation of instances of theclassPoint
Creation of the class Pointinstanceof Class
TheClassclass v i i i i e
DefininganewMetaclass it
Aboutthe6thpostulate
Conclusion . . v v v vt o e e e e e e e e

Building a minimal reflective class-based kernel

Objectives o e e e e e e e e e e
Preparation e e e e e e
Namingconventions o o o v it e e e e e e e e
Inheriting fromclassArray oo
Facilitating objclass classaccess oo
Structureand primitives Lo e e e
Structureofaclass e
Findingthe classofanobject
Accessing object instance variablevalueso
Object allocation and initialization.
Keywords primitives e e e e e

O ooO~N U AN WW =

N N NN 2 O o o0 o o a4 o
NuUubhNWOWwoOououyou ol N O

2.12
213
214
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27

Contents

Objectinitialization e 39
Static inheritance of instancevariables 39
Method management e 40
Message passing and dynamiclookup 42
Method lookup o e e e e 43
Managing SUPer . . . v v v v vt e e e e e e e e e e e e e e e e e 43
Representingsuper v v v v i v it it e e e e 44
Handling notunderstood messages oo v ot 45
Bootstrappingthesystem L Lo e 46
Manually creating ObjClass o v it it 47
Creation of ObjObject v i i ittt 49
Creationof ObjClass o v v i i i st 51
First User Classes: ObjPoint v v v v i o v .. 53
First User Classes: ObjColoredPoint 54
A First User Metaclass: ObjAbstract 55
New features that you could implement 55
Selected definitions 57

1-1
1-2
1-3
1-4
15

1-6
1-7

1-13
1-14
1-15
1-16

1-17
1-18

1-19
1-20

2-1
2-2
2-3
2-4

lllustrations

The ObjVlisp kernel: a minimal class-based kernel.
The kernel with specialized metaclasses.
Understanding metaclasses using message passing.
Chain of instantiation: classes are objectstoo.
Everything is an object. Classes are just objects which can create other
objects and metaclasses are just classes whose instances are classes.
Instances of Workstation have two values: their names and their next node.
Pointclassasanobject.,
Classasanobject. o v v i i i i i i e e e e
Through the prismofobjects.
Sending a message is two step process: method lookup and execution. . . .
Looking for a method is two step process: first go to the class of receiver
thenfollowinheritance.,
When a message is not found, another message is sent to the receiver
supporting reflective operation. oo
Full inheritance graph: Every class ultimately inherits from Object.
Kernel with instantiation and inheritance link.
self always representsthereceiver.
super represents the receiver but the method lookup starts in the
superclass of the class of the method using super.
Metaclass role during instance creation: Applying plain message resolution.
Metaclass role during class creation: Applying plain message resolution -
the self instantiation linkis followed.
Abstract metaclass: its instance (i.e., the class Node) are abstract.
Abstract metaclassatwork. Lo oo

Class structure representation. v v v v v v vt v it ..
Using offset to access information.
Instance variable offset askedtotheclass.

N oo

O

10
"
"

12

13

14
16
17
18

18
20

21

24
25

Illustrations

This book explains the design and the consequence of having a self-described
reflective minimal kernel such as ObjVlisp.

Doing so we will learn about objects, object creation instantiation, message
lookup, delegation, inheritance and much more.

1.1

CHAPTER

A class-based reflective minimal
kernel

"The difference between classes and objects has been repeatedly emphasized. In the
view presented here, these concepts belong to different worlds: the program text only
contains classes; at run-time, only objects exist. This is not the only approach. One of
the subcultures of object-oriented programming, influenced by Lisp and exemplified
by Smalltalk, views classes as object themselves, which still have an existence at run-
time.” B. Meyer Object-Oriented Software Construction

As this quote expresses it, there is a realm where classes are true objects,
instances of other classes. In such systems such as Smalltalk, Pharo, CLOS,
classes are described by other classes and form often reflective architectures
each one describing the previous level. In this chapter we will explore a min-
imal reflective class-based kernel, inspired from ObjVlisp . In the following
chapter you will implement step by step such a kernel in less than 30 meth-
ods.

ObjVlisp

ObjVlisp was published the first time in 1986 when the foundation of object-
oriented programming was still emerging . ObjVlisp has explicit metaclasses
and supports metaclass reuse. It was inspired from the kernel of Smalltalk-
78. The IBM SOM-DSOM kernel is similar to ObjVLisp while implemented in
C++. ObjVlisp is a subset of the reflective kernel of CLOS since CLOS reifies
instance variables, generic functions, and method combination . In compar-
ison to ObjVlisp, Smalltalk or Pharo have implicit metaclasses and no meta-
class reuse except by basic inheritance but it is more stable as explained by
Bouragadi et al .

1.2

A class-based reflective minimal kernel

Studying this kernel is really worth since it has the following properties:

It unifies class and instances (there is only one data structure to repre-
sent all objects, classes included),

It is composed of only two classes Class and Object (It relies on exist-
ing elements such as booleans, arrays, string of the underlying imple-
mentation language),

It raises the question of meta-circularity infinite regression (a class is
instance of another class that is an instance of yet another class ...) and
how to resolve it,

It forces to revisit allocation, class and object initialization, message
passing as well as bootstrap,

It can be implemented in less than 30 methods in Pharo.

Just remember that this kernel is self-described so we will start to explain
some aspects and since everything is linked you may have to read the chap-
ter twice to fully get it.

ObjVLisp’s six postulates

The original ObjVlisp kernel is defined by six postulates . Some of them look
a bit dated by today standards and the 6th postulate is simply wrong as we
will explain later (A solution is simple to design and implement).

Here we report them as stated in the paper for sake of historical perspective.

1.
2.

An object represents a piece of knowledge and a set of capabilities.

The only protocol to activate an object is message passing: a message
specifies which procedure to apply (denoted by its name, the selector)
and its arguments.

. Every object belongs to a class that specifies its data (attributes called

fields) and its behavior (procedures called methods). Objects will be
dynamically generated from this model, they are called instances of
the class. Following Plato, all instances of a class have same structure
and shape, but differ through the values of their common instance
variables.

. A class is also an object, instantiated by another class, called its meta-

class. Consequently (P3), to each class is associated a metaclass which
describes its behavior as an object. The initial primitive metaclass is
the class Class, built as its own instance.

. A class can be defined as a subclass of one (or many) other class(es).

This subclassing mechanism allows sharing of instance variables and
methods, and is called inheritance. The class Object represents the
most common behavior shared by all objects.

1.3

1.3 Kernel overview

Object Class S
class —| Nnew

>
allocate

error
initialize <] initialize

instance of inherits from {>

Figure 1-1 The ObjVlisp kernel: a minimal class-based kernel.

6. If the instance variables owned by an object define a local environ-
ment, there are also class variables defining a global environment
shared by all the instances of a same class. These class variables are de-
fined at the metaclass level according to the following equation: class
variable [an-object] = instance variable [an-object’s class].

Kernel overview

If you do not fully grasp the following overview, do not get worry, this full
chapter is here to make sure that you will understand it. Let us get started.

Contrary to a real uniform language kernel, ObjVlisp does not consider ar-
rays, booleans, strings, numbers or any other elementary objects as part of
the kernel as this is the case in a real bootstrap such as the one of Pharo. Ob-
jVLisp’s kernel focuses on understanding Class/Object core relationships.

Figure 1-1 shows the two core classes of the kernel:

* Object which is the root of the inheritance graph and is instance of
Class.

 Class is the first class and root of the instantiation tree and instance
of itself as we will see later.

Figure 1-2 shows that the class Workstation is an instance of the class Class
since it is a class and it inherits from Object the default behavior objects
should exhibit. The class WithSingleton is an instance of the class Class
but in addition it inherits from Class since this is a metaclass: its instances
are classes. As such, it changes the behavior of classes. The class Special-
Workstation is an instance of the class WithSingleton and inherits from
Workstation since its instances exhibits the same behavior as Workstation.

The two diagrams 1-1 and 1-2 will be explained step by step during all this
chapter.

A class-based reflective minimal kernel

instance of _ Object Class
class > new

Inherits from | error allocate
initialize < initialize Q

: :

WithSingleton

Workstation
originate: aPacket
accept: aPacket

instance/of [SpecialWorkstation |
| |

aWorkstation (BigMac)

Minna

Figure 1-2 The kernel with specialized metaclasses.

Clasosbled ne Class instance of
> W
error <+— allocate inherits from[
initialize ./', |n|t|a||z‘e method Iookup
new o s /N)
L
\A .-
N~ [~
_____ N T
Workstation —
originate: aPacket i | WithSingleton
accept: aPacket j Lnew
4 |
/ / new
instan(z‘ of uniquelnstance isNil

ifTrue: [uniquelnstance := super new].
A uniquelnstance

new

aWorkstaho;{ (BigMac)
—— | SpeclaIWorkstatlon |
\

'\ T

Minna

Figure 1-3 Understanding metaclasses using message passing.

Note The key point to understand such a reflective architecture is that
message passing always looks up methods in the class of the receiver of
the message and then follows the inheritance chain (See Figure 1-3).

Figure 1-3 illustrates two main cases:

» When we send a message to BigMac or Minna, the corresponding method
is looked up in their corresponding classes Workstation or Special-
Workstation and follows the inheritance link up to Object.

» When we send a messsage to the classes Workstation or Special-

1.4

1.4 Instances

Class
superclass
methodDict
na\:Vnc(;rkstatlon / .
nextNode instance of A The class Class
send: aPacket
accept: aPacket Point
The class Workstation X
P1&P3 v
instance of [4istFrom:

instance of A The class Point

10
an instance of Workstation 10@20 20

I'mac1 mac2 |
mac1 := Workstation new Point new setX: 10 setY: 20
name: #mac2 nextNode: nil.

mac1 := Workstation new
name: #mac1 nextNode: mac2

Figure 1-4 Chain of instantiation: classes are objects too.

Workstation, the corresponding method is looked up in their class,
the class Class up to Object.

Instances

In this kernel, there is only one instantiation link, it is applied at all the lev-
els as shown by Figure 1-4:

« Terminal instances are obviously objects: a workstation named mac1 is
an instance of the class Workstation, a point 10820 is instance of the
class Point.

» Classes are also objects instances of other classes: the class Worksta-
tion is an instance of the class Class, the class Point is an instance of
the class Class.

In our diagrams, we represent objects (mainly terminal instances) as round
corner rectangles with the list of instance variable values. Since classes are
objects, when we want to stress that classes are objects we use the same graphical
convention as shown in Figure 1-7.

Handling infinite recursion

A class is an object. Thus it is an instance of another class, its metaclass. This
metaclass is an object too, instance of a metametaclass that is an object too
instance of another a metametametaclass...... To stop this potential infinite
recursion, ObjVlisp uses similar to solutions proposed in many meta circular
systems: one instance is instance of itself.

1.5

1.6

A class-based reflective minimal kernel

A class is an object. Thus, it is an instance of another class, its metaclass. This
metaclass is an object as well, instance of a metametaclass which is itself an
instance of another a metametametaclass...

In ObjVLisp:
« Class is the initial class and metaclass,

+ Class is instance of itself and directly or undirectly all other meta-
classes are instances of Class.

We will see later the implication of this self instantiation at the level of the
class structure itself.

Understanding metaclasses

The model unifies classes and instances. When we follow the instance related
postulates of the kernel we get:

» Every object is instance of a class,
* A class is an object instance of a metaclass, and
+ A metaclass is only a class that generates classes.

At the implementation level there is only one kind of entity: objects. There

is no special treatment for classes. Classes are instantiated following the
same process than terminal instances. There are sent messages the same way
other objects are sent messages too.

This unification between instances and classes does not mean that we do not
distinguish objects and classes. Indeed not all the objects are classes. In par-
ticular, the sole difference between a class and an instance is the ability to
respond to the creation message: new. Only a class knows how to respond to
it. Then metaclasses are just classes whose instances are classes as shown in
Figure 1-5.

Instance structure

The model does not really bring anything new about instance structure when
compared with languages such as Pharo or Java.

Instance variables are an ordered sequence of instance variables defined by
a class. Such instance variables are shared by all instances. The values of
such instance variables are specific to each instance. Figure 1-6 shows that
instances of Workstation have two values: a name and a next node.

In addition we should note that an object has a pointer to its class. As we will
see when we will come to inheritance, every object possesses an instance
variable class (inherited from Object) that points to its class.

1.7

1.7 About behavior

Instances

Classes:
respond to new:
and create instances

Metaclasses:
classes whose
instances
are classes

Figure 1-5 Everything is an object. Classes are just objects which can create
other objects and metaclasses are just classes whose instances are classes.

Workstation
name
nextNode
send: aPacket
accept

A
instance of

maci mac2 mac3
/ mac3 maci

some instances of Workstation

Figure 1-6 Instances of Workstation have two values: their names and their
next node.

Note that this management of class instance variable defined in Object is
specific to the model. In Pharo for example, the class identification is not
managed as a declared instance variable but as an element part of any object.
It is an index in a class-table.

About behavior

Let us continue with basic instance behavior. As in modern class-based lan-
guages, this kernel has to represent how methods are stored and looked up.

Methods belong to a class. They define the behavior of all the instances of
the class. They are stored into a method dictionary that associates a key (the
method selector) and the method body.

Since the methods are stored in a class, the method dictionary should be de-
scribed in the metaclass. Therefore, the method dictionary of a class is the
value of the instance variable methodDict defined on the metaclass Class.
Each class will have its own method dictionary.

1.8

A class-based reflective minimal kernel

The class Point

Class| is instance of Class
'Point'| named Point
Object| inherits from Object
'Xy'| has instance variables
methods...| defines some methods

Figure 1-7 Point class as an object.

Class as an object

Now it is time to ask us about the minimal information that a class should
have. Here is the minimal information required:

« A list of instance variables to describe the values that the instances will

hold,
+ A method dictionary to hold methods,
+ A superclass to look up inherited methods.

This minimal state is similar to the one of Pharo: Pharo Behavior class has a
format (compact description of instance variables), method dictionary, and
superclass link.

In ObjVLisp, we will had a name so that we can identify the class. As an in-
stance factory, the metaclass Class possesses 4 instance variables that de-
scribe a class:

« name the class name,

+ superclass its superclass (we limit to single inheritance),
« i-v the list of its instance variables, and

» methodDict a method dictionary.

Since a class is an object. A class possesses the instance variable class inher-
ited from Object that refers to its class as any object.

Example: class Point

Figure 1-7 shows the instance variable values for the class Point as declared
by the programmer and before class initialization and inheritance take place.

« It is an instance of class Class: indeed this is a class.
e Itisnamed 'Point'.

« It inherits from class Object.

10

1.8 Class as an object

The class Class

Class| is instance of Class
'Class'| named Class
Object| inherits from Object
'name super i-v| has instance variables
methodDict'
methods...| defines some methods

Figure 1-8 Class as an object.

instance of
The class Class
Class
'Class'
The class Workstation Objec t
' C'?SS‘ instance of 'class name super i-v
Workstation methodDict'
Object methods(new
'class name nextNode' allocate..)
methods(accept:
send:.. The class PointT
instance of Class
U int!
Workstation Workstation o'j:;g::tt
mact mac2 ‘class x y'
/ mac3 .
methods(distance:...)
some instances of Workstation

Figure 1-9 Through the prism of objects.

+ It has two instance variables: x and y. After inheritance it will be three
instance variables: class, x, and y.

+ It has a method dictionary.

Example: class Class
Figure 1-8 describes the class Class itself. Indeed it is also an object.
« It is an instance of class Class: indeed this is a class.

+ Itisnamed 'Class’'.

It inherits from class Object

+ It has four locally defined instance variables: name, superclass, i-v,
and methodDict.

« It has a method dictionary.

1

1.9

A class-based reflective minimal kernel

T

i . Node
accept: aPacket =~ id
A aPacket target = id N, [nextNode
- accept:
T 7 L
2- execution on L
. \ \ Workstation
receiver;
\ /
\~\ '/' send:
: /
1+ lookup
\ /
\ /
v/

accept: aPacket

Figure 1-10 Sending a message is two step process: method lookup and execu-
tion.

Everything is an object

Figure 1-9 describes a typical situation of terminal instances, class and meta-
classes when looked at them using an object perspective. We see three level
of instances: terminal objects, instances of Workstation, Workstation and
Point classes which are instances of Class and the metaclass Class which is
instance of itself.

Sending a message
In this kernel, the second postulate states that the only way to perform com-
putation is via message passing.

Sending a message is a two step process as shown by Figure 1-10

1. Method lookup: the method corresponding to the selector is looked up
in the class of the receiver and its superclasses.

2. Method execution: the method is applied to the receiver. It means that
self or this in the method will be bound to the receiver.

Conceptually, sending a message can be described by the following function
composition:

sending a message (receiver argument)
return apply (lookup (selector classof(receiver) receiver)
receiver arguments)

12

1.9 Sending a message

[_Object |
[error: |
class?
iv-ref Node R 2
name X i \
nextNode .~
name A
accept: N~ Workstation ‘_\;\ <
send: \‘ /
instance of accept: 1)
inherits from Iy 7 : /
. 1
method lookup send: aPacket - \// -mac1
T - /1‘ v
- name”

Figure 1-11 Looking for a method is two step process: first go to the class of re-
ceiver then follow inheritance.

Method lookup

Now the lookup process is conceptually defined as follows:

1.
2.

The lookup starts in the class of the receiver.

If the method is defined in that class (i.e., if the method is defined in
the method dictionary), it is returned.

. Otherwise the search continues in the superclass of the currently ex-

plored class.

If no method is found and there is no superclass to explore (if we are in
the class Object), this is an error.

The method lookup walks through the inheritance graph one class at a time
using the superclass link. Here is a possible description of the lookup algo-
rithm that will be used for both instance and class methods.

lookup (selector class receiver):
if the method is found in class

then return it
else if class == Object
then send the message error to the receiver
else lookup (selector superclass(class) receiver)

Handling errors

When the method is not found, the message error is sent as shown in Figure
1-12. Sending a message instead of simply reporting an error using a trace
or an exception is a key design decision. It corresponds to the doesNotUn-
derstand: message in Pharo and it is an important reflective hook. Indeed
classes can define their own implementation of the method error and per-
form specific actions in reaction of messages that are not understood. For
example, it is possible to implement proxies (objects representing other re-
mote objects) or compile code on the fly by redefining locally such message.

13

e ——

A class-ba

sed reflective minimal kernel

[Object | o -— netanceof method ook
:—. —————— \‘ instance of mf—?—-cf):p
error: ~AN inherits from . _>
class? \ \ -
iv-ref Node \ \ / N
T -
name \. .
[. NL .
| nextNode . \, \‘irror.
! name _ . .
[accept: [Workstation \. N,
: send: cousou \
! accept:) /
l . .
1
coucou
| 2% X | mact
7 7z
: // lb/

e

_____________ E——

Figure 1-12 When a message is not found, another message is sent to the re-
ceiver supporting reflective operation.

Now it should be noted that the previous algorithm is not really good be-
cause in case of error there can be a mismatch between the number of argu-
ments of the method we are looking for and the number of arguments of the
error message.

A better way to handle error is to decompose the algorithm differently as
follows:

>lookup (selector class):
if the method is found in class
then return it
else if class
then return
else lookup

== Object
nil
(selector superclass(class))

And then we redefined sending a message as follows:

[sending a message (receiver argument)

methodOrNil = lookup (selector classof(receiver)).

if methodOrNil is nil
then return send the message error to the receiver
else return apply(methodOrNil receiver arguments)

Remarks

This lookup is conceptually the same in Pharo where all methods are pub-
lic and virtual. There is no statically bound method, even class methods are
looked up dynamically. This allows the possibility to define really elegant
and dynamic registration mechanism.

While the look up happens at runtime, it is often cached. Languages usually
have several systems of caches: one global (class, selector), one per call site.

14

1.10

1.1

1.10 Inheritance

Inheritance

There are two aspects of inheritance to consider:

» One static for the state where subclasses get superclass state. This in-
stance variable inheritance is static in the sense that it happens only
once at class creation time i.e., at compilation-time.

» One dynamic for behavior where methods are looked up during pro-
gram execution. There the inheritance tree is walked at run-time.

Let’s look at these two aspects.

Instance variable inheritance

Instance variable inheritance is done at class creation time and from that
perspective static and performed once. When a class C is created, its instance
variables are the union of the instance variables of its superclass with the
instance variables defined locally in class C. Each language defines the exact
semantics of instance variable inheritance, for example if they accept in-
stance variables with the same name or not. In our model, we decide to use
the simplest way: there should be no name duplicates.

instance-variables(aClass) =
union (instance-variables(superclass(aClass)),
local-instance-variables(aClass))

A word about union: when the implementation of the language is based on
offsets to access instance variables, the union should make sure that the lo-
cation of inherited instance variables are kept ordered compared to the su-
perclass because in general we want that methods of the superclass can be
applied to subclasses without copying them down and recompiling them.
Indeed if a method uses a variable at a given position in the instance vari-
able lists, applying this method to instance of subclasses should work. In the
implementation proposed next chapter, we will use accessors and will not
support direct access to instance variables from method body.

Method lookup

As previously described in Section 1.9, methods are looked up at runtime.
Methods defined in superclasses are reused and applied to instances of sub-
classes. Contrary to instance variable inheritance, this part of inheritance is
dynamic, i.e., it happens during program execution.

Object: defining the minimal behavior of any object

Object represents the minimal behavior that any object should understand.
For example, returning the class of an object, being able to handle errors,

15

1.12

A class-based reflective minimal kernel

Object Class
name
error: kj——___ |superclass
class? v
iv-ref methodDict
new
allocate
Node
name _
nextNode Point
accept: X
y

distanceFrom:

Workstation

send:
accept:

Figure 1-13 Full inheritance graph: Every class ultimately inherits from Object.

initializing an object. This is why Object is the root of the hierarchy. De-
pending on language Object can be complex. In our kernel it is kept minimal
as we will show in the implementation chapter.

Figure 1-13 shows the inheritance graph without the presence of instanti-
ation. A Workstation is an object (should at least understand the minimal
behavior), so the class Workstation inherits directly or indirectly from the
class Object. A class is an object (it should understand the minimal behav-
ior) so the class Class inherits from class Object. In particular, the class
instance variable is inherited from Object class.

Remark.

In Pharo, the class Object is not the root of inheritance. It is ProtoObject
and Object inherits from it. Most of the classes still inherit from Object.
The design of ProtoObject is special: the design goal of ProtoObject is to
generate as many as errors as possible. Such errors can be then captured via
doesNotUnderstand: redefinition and can support different scenarios such
as proxy implementation.

Inheritance and instantiation together

Now that we saw independently the instantiation and the inheritance graph
we can look at the complete picture. Figure 1-14 shows the graphs and in
particular how such graph are used during message resolution:

« the instantiation link is used to find the class where to start to look the
method associated with the received message.

« the inheritance link is used to find inherited methods.

16

1.13

1.13 Refresh on self and super semantics

; Class «— Object

error:

new »

instance of > class?
allocate 7 X
Y ~ 4 Liv-ref
./' -
/
| instance|of
i Node
i name
E Workstation / nextNode
! i name
'[send: s accept:
L\ accept: L
new -/ mSt\ﬂnce of instance of

inherits from D

/

Figure 1-14 Kernel with instantiation and inheritance link.

>

This process is also true when we send messages to the classes themselves.
There is no difference between sending a message to an object or a class. The
system always performs the same steps.

Refresh on self and super semantics

Since our experience showed us that even some book writers got key seman-
tics of object-oriented programming wrong, we just refresh some facts that
normally programmers familiar with object-oriented programming should
fully master. For further readings refer to Pharo By Example or the Pharo
Mooc available at http://mooc.pharo.org.

« self (also called this in languages like Java). self always represents the
receiver of the message. The method lookup starts in the class of the
receiver.

« super. super always represents the receiver of the message (and not
the superclass). The method lookup starts in the superclass of the class
containing the super expression (and not in the superclass of the class
of the receiver: this would mean that it loops forever in case of inheri-
tance tree of three classes - We let you to find how).

Looking at Figure 1-15 we see that the key point is that B new bar returns 50
since the method is dynamically looked up and self represents the receiver
i.e., the instance of the class B. What is important to see is that self sends
act as a hook and that subclasses code can be injected in superclass code.

17

http://mooc.pharo.org

A class-based reflective minimal kernel

A foo D]
foo [T ~10
bar e
I bar }
A self foo
foo beeee___ foo
/ A 50

Figure 1-15 self always represents the receiver.

foo
A IS A0
foo I
bar .
---{bar
T A self foo
[B |
“-1bar
M A super bar + self foo
¢ - foo
“““““ A 50

Figure 1-16 super represents the receiver but the method lookup starts in the
superclass of the class of the method using super.

w—>

aB

[A new foo
>>> 10

B new foo
>>> 50

A new bar
>>> 10

B new bar
>>> 50

For super, the situation depicted in Figure 1-16 shows that super represents
the receiver, but that when super is the receiver of a message, the method is
looked up differently (starting from the superclass of the class using super)
hence C new bar returns 100 and not 20 nor 60.

B new bar

>>> 20

C new bar
>>> 100

As a conclusion, we can say that self is dynamic and super static. Let us
explain this view:

» When sending a message to self the lookup of the method begins in
the class of the receiver. self is bound at execution-time. We do not

18

1.14

1.15

1.16

—

1.14 Object creation

know its value until execution time.

» super is static in the sense that while the object it will point to is only
known at execution time, the place to look for the method is known at
compile-time: it should start to look in the class above the one contain-
ing super.

Object creation

Now we are ready to understand the creation of objects. In this model there
is only one way to create instances: we should send the message new to the
class with a specification of the instance variable values as argument.

Creation of instances of the class Point

The following examples show several point instantiations. What we see is
that the model inherits from the Lisp traditional of passing arguments using
keys and values, and that the order of arguments is not important.

Point new :x 24 :y 6
>>> aPoint (24 6)
Point new :y 6 :x 24
>>> aPoint (24 6)

When there is no value specified, the value of an instance variable is initial-
ized to nil. CLOS provides the notion of default instance variable initializa-
tion. It can be added to ObjVlisp as an exercise and does not bring conceptual
difficulties.

Point new
>>> aPoint (nil nil)

When the same argument is passed multiple times, then the implementation
takes the first occurence.

Point new :y 10 :y 15
>>> aPoint (nil 10)

We should not worry too much about such details: The point is that we can
pass multiple arguments with a tag to identify it.

Creation of the class Point instance of Class

Since the class Point is an instance of the class Class, to create it, we should
send the message new to the class as follows:

19

A class-based reflective minimal kernel

Class Class
name name
superclass superclass
iv * iv

of |methodDict ' i of |methodDict
new | new
allocate . allocate
instance ofy l instance ofy

\ Workstation | _ . — Workstation
gy A [accept: accept:

new send: send:
mac1

Figure 1-17 Metaclass role during instance creation: Applying plain message
resolution.

Class new
:name 'Point'
:super 'Object'
:ivs #(x y)

>>> aClass

Here what is interesting to see is that we use exactly the same way to create
an instance of the class Point or the class itself. Note that this single way to
create objects is supported by the argument variable list.

An implementation could have two different messages to create instances
and classes. As soon as the same new, allocate, initialize methods are
involved, the essence of the object creation is similar and uniform.

Instance creation: Role of the metaclass

The following diagram (Figure 1-17) shows that against common expecta-
tions, when we create a terminal instance the metaclass Class is evolved in
the process. Indeed, we send the message new to the class, to resolve this
message, the system will look for the method in the class of the receiver
(here Workstation) which the metaclass Class. The method new is found in
the metaclass and applied to the receiver: the class Workstation. Its effect is
to create an instance of the class Workstation.

The same happens when creating a class. Figure 1-18 shows the process. We
send a message, now this time, to the class Class. The system makes no ex-
ception and to resolve the message, it looks for the method in the class of the
receiver. The class of the receiver is itself, so the method new found in Class
is applied to Class (since it is the receiver of the message), and a new class is
created.

new = allocate and initialize

In fact creating an object is a two step process: Creating an instance is the
composition of two actions: memory allocation allocate message and object

20

1.16 Creation of the class Point instance of Class

1 1

Class Class
name name
superclass superclass
iv R iv

of |methodDict \ of |methodDict
new \ new
allocate I allocate
w4 '~ instance of
s\,
[Class new Workstation
:name 'Workstation' accept:
:superclass Object send:

Giv #()
:methods (send:)]

Figure 1-18 Metaclass role during class creation: Applying plain message resolu-
tion - the self instantiation link is followed.

initialisation message initialize.
In Pharo syntax it means:

[aClass new: args = (aClass allocate) initialize: args

What we should see is that:

¢ The message new is a message sent to a class. The method new is a class
method.

+ The message allocate is a message sent to a class. The method allo-
cate is a class method.

¢ The message initialize: will be executed on any newly created in-
stance. It means that when it will be sent to a class, a class initial-
ize: method will be involved. When it will be sent to a terminal ob-
ject, an instance initialize: method will be executed (defined in
Object).

Object allocation: the message allocate

Allocating an object means allocating enough space to the object state but
not only: it should mark instances with their class name or id. There is a re-
ally strong invariant in the model and in general in object-oriented program-
ming model. Every single object must have an identifier to its class else the
system will break when trying to resolve a message.

Object allocation should return:

+ A newly created instance with empty instance variables (pointing to nil
for example).

« But marked with an identifier to its class.
In our model, the marking of an object as instance of a class is performed by

setting the value of the instance variable class inherited from Object. In

21

A class-based reflective minimal kernel

Pharo this information is not recorded as a instance variable but encoded in
the internal virtual machine object representation.

The allocate method is defined on the metaclass Class. Here are some ex-
amples of allocation.

Point allocate
>>> #(Point nil nil)

A point allocation allocates three slots: one for the class and two for x and y
values.

Class allocate
>>>#(Class nil nil nil nil nil)

The allocation for an object representing a class allocates six slots: one for
class and one for each of the class instance variable: name, super, iv, key-
words, and methodDict.

Object initialization

Object initialization is the process to get the values passed as arguments as

key/value pair and assigned the value to the corresponding instance vari-
able.

The following snippet illustrates it. An instance of class Point is created and
the key/value pairs (:y 6) and (:x 24) are specified. The instance is created
and it received the initialize: messages with the key/value pairs. The
initialize: method is responsible to set the corresponding variables in the
receiver.

Point new :y 6 :x 24

>>> #(Point nil nil) initialize: (:y 6 :x 24)]

>>> #(Point 24 6)

When an object is initialized as a terminal instance, two actions are per-
formed:

+ First we should get the values specified during the creation, i.e., get
that y value is 6 and x value is 24,

» Second we should assign the values to the corresponding instance vari-
ables of the created object.

Class initialization
During its initialization a class should perform several steps:

» First as any it should get the arguments and assigned them to their
corresponding instance variables. This is basically implemented by in-
voking the initialize method of Object via a super call since Object
is the superclass of Class.

22

117 The Class class

« Second the inheritance of instance variables should be performed. Be-
fore this step the class iv instance variable just contains the instance
variables that are locally defined. After this step the instance variable
iv will contain all the instance variables inherited and local. In partic-
ular this is here that the class instance variable inherited from Ob-
ject is added to the instance variables list of the subclass of Object.

» Third the class should be declared to a class pool or namespaces so that
as programmers we can access it via its name.

117 The Class class

Now we get a better understanding of what is the class Class. The class
Class is:

+ The initial metaclass and initial class.
+ It defines the behavior of all the metaclasses.

« It defines the behavior of all the classes.
In particular, metaclasses define three messages related to instance creation.

« The new message creates an initialized instance of the class. It allocates
the instance using the class message allocate and then initializes it
by sending the message initialize: to this instance.

+ The allocate message. As message new it is a class message. It allo-
cates structure for newly created object.

¢ Finally the message initialize:. This message has two definitions
one on Object and one on Class.

There is a difference between the method initialize: executed on any
instance creation and the class initialize: method only executed when
the created instance is a class.

+ The first one is a method defined on the class of the object and poten-
tially inherited from Object. This initialize: method just extracts
the value corresponding to each instance variables from the argument
list and sets them in the corresponding instance variables.

» The class initialize: method is executed when a new instance rep-
resenting a class is executed. The message initialize: is sent to the
newly created object but its specialisation for classes will be found dur-
ing method lookup and it will be executed. Usually this method in-
vokes the default ones because the class parameter should be extracted
from the argument list and set in their corresponding instance vari-
ables but in addition, instance variable inheritance and class declara-
tion in the class namespace is performed.

23

A class-based reflective minimal kernel

inst: f
fnstance o Class <}—— Abstract

new

/ —new
Object 4/ allocate

error:
class?

instance of

Node

name Workstation
accept: Q\

send:
accept:

instance of
SRR

inherits from P

Figure 1-19 Abstract metaclass: its instance (i.e., the class Node) are abstract.

118 Defining a new Metaclass

Now we can study how we can add new metaclasses and see how the system
handles them. To create a new metaclass is simple, it is enough to inherit
from an existing one. May be this is obvious to you but this is what we will
check now.

Abstract

Imagine that we want to define abstract classes. We set the abstractness of
a class as the fact that it cannot create instances. To control the creation

of instances of a class, we should define a new metaclass which forbids it.
Therefore we will define a metaclass whose instances (abstract classes) can-
not create instances.

We create a new metaclass named AbstractMetaclass which inherits from
Class and we redefine the method new in this metaclass to raise an error
(as shown in Figure 1-19). The following code snippet defines this new meta-
class.

[Class new
:name 'AbstractMetaclass’
:super 'Class’

[AbstractMetaclass

addMethod: #new

body: [:receiver :initargs | receiver error: 'Cannot create
instance of class']

Two facts describe the relations between this metaclass and the class Class:
« AbstractMetaclass is a class: It is instance of Class.

« AbstractMetaclass defines class behavior: It inherits from Class.

24

1.19

1.19 About the 6th postulate

instance of
,jl Class — Abstract

/ gﬁc‘:lcate < new
Object 4/ S p4 :
N~
class? PR A self error
- —_— - - ') \
X == \ instance of
' Node

\

name Workstation

accept:

send:

I

1 \
//\/

., accept:
new

e
: s
instance of

e ad ook new - (mact mac2
inherits romE N / macs

Figure 1-20 Abstract metaclass at work.

Now we can define an abstract class Node.

[AbstractMetaclass new :name 'Node' :super 'Object'

Sending a message new to the class Node will raise an error.

Node new
>>> Cannot create instance of class

A subclass of Node, for example Workstation, can be a concrete class by be-
ing an instance of Class instead of AbstractMetaclass but still inheriting
from Node. What we see in Figure 1-20 is that there are two links: instanci-
ation and inheritance and the method lookup follows them as we presented
previously: always start in the class of the receiever and follow the inheri-
tance link.

What is key to understand is that when we send the messsage new to the class
Workstation, we look for methods first in the metaclass Class. When we
send the message new to class Node we look in its class: AbstractMetaclass
as shown in Figure 1-20. In fact we do what we do for any instances: we look
in the class of the receiver.

A class method is just implemented and following the same semantics that
instance methods: Sending the message error to the class Node starts in Ab-
stractMetaclass and since we did not redefine it locally, and it is not found
there, the lookup will continue in the superclass of AbstractClass: the class
Class and then the superclass of class Class, the class Object.

About the 6th postulate

The 6th postulate of ObjVLisp is wrong. Let us read it again: If the instance
variables owned by an object define a local environment, there are also class vari-
ables defining a global environment shared by all the instances of a same class. These

25

A class-based reflective minimal kernel

class variables are defined at the metaclass level according to the following equation:
class variable [an-object] = instance variable [an-object’s class].

It says that class instance variables are equivalent to shared variables be-
tween instances and this is wrong. Let us study this. According to the 6th
postulate, a shared variable between instances is equal to an instance vari-
able of the class. The definition is not totally clear so let us look at an exam-
ple given in the article.

Illustrating the problem

Imagine that we would like the constant character "*’ to be a class variable

shared by all the points of a same class. We redefine the Point class as be-
fore, but metaclass of which (let us call it MetaPoint) specifies this common
character For example if a point has a shared variable named char, this in-
stance variable should be defined in the class of the class Point called Meta-
Point. The author proposes to define a new metaclass MetaPoint to hold a
new instance variable to represent a shared variable between points.

[Class new
:name 'MetaPoint'
:super 'Class’
:ivs #(char)

Then he proposes to use it as follows:

[MetaPoint new
:name Point
:super 'Object’
tivs #(x y)

:char '=*

The class Point can define a method that accesses the character just by go-
ing the class level. So why this is approach is wrong? Because it mixes lev-
els. The instance variable char is not a class information. It describes the
terminal instances and not the instance of the metaclass. Why the metaclass
MetaPoint would need a char instance variable.

The solution

The solution is that the shared variable char should be held in a list of the
shared variables of the class Point. Any point instance can access this vari-
able. The implication is that a class should have an extra information to de-
scribe it: an instance variable sharedvariable holding pairs i.e., variable
and its value. We should be able to write:

26

1.20

1.20 Conclusion

Class new
:name Point
:super 'Object'
tivs #(x y)
:sharedivs {#char -> '+'}

Therefore the metaclass Class should get an extra instance variable named
sharedivs and each of its instances (the classes Point, Node, Object) can
have different values and such values can be shared among their instances by
the compiler.

What we see is that sharedivs is from the Class vocabulary and we do not
need one extra metaclass each time we want to share a variable. This design
is similar to the one of Pharo where a class has a classVariable instance vari-
able holding variable shared in all the subclasses of the class defining it.

Conclusion

We presented a really small kernel composed of two classes Object root of
the inheritance tree and Class the first metaclass root of the instantiation
tree. We revisited all the key points related to method lookup, object and
class creation and initialisation. In the subsequent chapter we propose you
to implement such kernel.

Further readings

The kernel presented in this chapter is a kernel with explicit metaclasses and
as such it is not a panacea. Indeed it raised metaclass composition problems
as explained in Bouraqadi et al. excellent article or .

27

2.1

CHAPTER

Building a minimal reflective
class-based kernel

The objectives of this chapter is to help you to implement step by step the
ObjVlisp model explained in the previous chapter. ObjVlisp was designed
by P. Cointe who got inspired by the kernel of Smalltalk-78. 1t has explicit
metaclasses and it is composed of two classes Object and Class.

Objectives

During the previous chapter, you saw the main points of the ObjVLisp model,
now you will implement it. The goals of this implementation are to give a
concrete understanding of the concepts presented previously. Here are some
of the points you can deeply understand while writing the implementation:

+ What is a possible object structure?

+ What is object allocation and initialization?

+ What is class initialization?

+ What the semantics of the method lookup?

+ What is a reflective kernel?

+ What are the roles of the classes Class and Object?

+ What is the role of a metaclass?

29

Building a minimal reflective class-based kernel

Preparation

In this section we discuss the set up that you will use, the implementation
choices and the conventions that we will follow during all this chapter.

Getting Pharo

You need to download and install Pharo from http://www.pharo.org/. You
need a virtual machine, and the couple image and changes. You can use
http://get.pharo.org to get a script to download Pharo.

The current version that you can use is Pharo 6.1.

[wget -0- get.pharo.org/61+vm | bash

You can use the book Pharo by Example from http://www.pharo.org/PharoByExample/
for an overview of the syntax and the system.

Getting infrastructure definitions

All the necessary definitions are provided as a Monticello package. It con-
tains all the classes, the method categories and the method signatures of the
methods that you have to implement. It provides additional functionality
such as a dedicated inspector and some extra methods that will make your
life easy and help you to concentrate on the essence of the model. It contains
also all the tests of the functionality you have to implement.

To load the code, execute the following expression:

Gofer new
url:
"http://smalltalkhub.com/mc/StephaneDucasse/ObjVLispSkeleton/main';
package: 'ObjVLispSkeleton';
load.

Alternatively, to load the code open a monticello browser,

+ Add a file repository to point to an ObjVLispSkeleton project under
StephaneDucasse in the ObjVLispSkeleton project at http://www.smalltalkhub.
com. Use the following expression in the smalltalkhub repository cre-
ation pop up.

MCSmalltalkhubRepository
owner: 'StephaneDucasse'’
project: 'ObjVLispSkeleton'
user: "'
password:

« Select the latest file and load it.

30

http://www.pharo.org/
http://get.pharo.org
http://www.pharo.org/PharoByExample/
http://www.smalltalkhub.com
http://www.smalltalkhub.com

2.3

2.4

2.3 Naming conventions

Running tests
For each functionality you will have to run some tests.
For example to run a particular test named testPrimitive,

» evaluate the following expression (ObjTest selector: #testPrimi-
tiveStructure) runor

+ click on the icon of the method named testPrimitiveStructure.

Note that since you are developing the kernel, to test it we implemented
manually some mocks of the classes and kernel. This is the setup method

of the test classes that build this fake kernel. Now pay attention because the
setups are often taking shortcuts, so do not copy them blindly.

Naming conventions

We use the following conventions: we name as primitives all the Pharo meth-
ods that participate in the building of ObjVLisp. These primitives are mainly
implemented as methods of the class 0bj. Note that in a Lisp implementation
such primitives would be just lambda expressions, in a C implementation
such primitives would be represented by C functions.

To help you to distinguish between classes in the implementation language
(Pharo) and the ObjVLisp model, we prefix all the ObjVLisp classes by 0bj.
Finally, some of the crucial and confusing primitives (mainly the class struc-
ture ones) are all prefixed by obj. For example the primitive that given an
objInstance returns its class identifier is named objClassId. We also talk
about objInstances, objObjects and objClasses to refer to specific instances,
objects or classes defined in ObjVLisp.

Inheriting from class Array

We do not want to implement a scanner, a parser and a compiler for Ob-
jVLisp but concentrate on the essence of the language. That’s why we chose
to use as much as possible the implementation language, here Pharo. As
Pharo does not support macro definition, we will use as much as possible
the existing classes to avoid extra syntactic problems.

In our implementation, every object in the ObjVLisp world is instance of the
class Obj. The class Obj is a subclass of Array.

Since Obj is a subclass of Array, #(#0bjPoint 10 15) is an objInstance of
the class ObjPoint which is also an array instance of the Pharo class 0bj-
Class.

As we will see:

31

Building a minimal reflective class-based kernel

+ #(#0bjPoint 10 15) represents an objPoint (10,15). It is an objIn-
stance of the class ObjPoint.

* #(#0bjClass #0bjPoint #0bjObject #(class x y) #(:x :y) nil
) is the array that represents the objclass ObjPoint.

About representation choices

You can skip this discussion in a first reading. We could have implemented
ObjVLisp functionality at the class level of a class named 0bj inheriting sim-
ply from Object. However, to use the ObjVlisp primitive (a Pharo method)
objInstanceVariableValue: anObject for: anInstanceVariable that
returns the value of the instance variable in anObject, we would have been
forced to write the following expression:

[Obj objInstanceVariableValue: 'x' for: aPoint

We chose to represent any ObjVLisp object by an array and to define the Ob-
jVLisp functionality in the instance side of the class 0bj (a subclass of Array).
That way we can write in a more natural and readable way the previous func-
tionality as:

[aPoint objInstanceVariablevValue: 'x'.

2.5 Facilitating objclass class access

We need a way to store and access ObjVLisp classes. As a solution, on the
class level of the Pharo class Obj we defined a dictionary holding the defined
classes. This dictionary acts as the namespace for our language. We defined
the following methods to store and access defined classes.

+ declareClass: anObjClass stores the objinstance anObjClass given
as argument in the class repository (here a dictionary whose keys are
the class names and values the ObjVLisp classes themselves).

+ giveClassNamed: aSymbol returns the ObjVLisp class named aSym-
bol if it exists. The class should have been declared previously.

With such methods we can write code like the following one that looks for
the class of the class ObjPoint.

Obj giveClassNamed: #0bjPoint
>>> #(#0bjClass 'ObjPoint' #ObjObject #(class x y) #(:x :y) ...)

To make class access less heavy, we also implemented a shortcut: We trap
messages not understood sent to Obj and look into the defined class dictio-
nary. Since ObjPoint is an unknown message, this same code is then written
as:

32

2.6 Structure and primitives

Obj ObjPoint
>>> #(#0bjClass 'ObjPoint' #0ObjObject #(class x y) #(:x :y) ...)

Now you are ready to start.

Structure and primitives

The first issue is how to represent objects. We have to agree on an initial rep-
resentation. In this implementation we chose to represent the objinstances
as arrays (instances of Obj a subclass of Array). In the following we use the
terms array for talking about instances of the class 0bj.

Your job.

Check that the class Obj exists and inherits from Array.

Structure of a class
The first object that we will create is the class ObjClass. Therefore we focus
now on the minimal structure of the classes in our language.

An objinstance representing a class has the following structure: an identifier
to its class, a name, an identifier to its superclass (we limit the model to sin-
gle inheritance), a list of instance variables, a list of initialization keywords,
and a method dictionary.

For example the class ObjPoint has then the following structure:
[#(#ObjClass #0bjPoint #0bjObject #(class x y) #(:x :y) nil)

It means that ObjPoint is an instance of ObjClass, is named #0bjPoint,

inherits from a class named ObjObject, has three instance variables, two

initialization keywords and an uninitialized method dictionary. To access
this structure we define some primitives as shown in Figure 2-1.

Your job.

The test methods of the class RawObjTest that are in the categories 'stepl-
tests-structure of objects' and 'step2-tests-structure of classes'
give some examples of structure accesses.

RawObjTest >> testPrimitiveStructureObjClassId
"(self selector: #testPrimitiveStructureObjClassId) run"

self assert: (pointClass objClassId = #0bjClass).

33

Building a minimal reflective class-based kernel

#0bjClass offsetForClass (1)
#0ObjPoint offsetForName (2)
#0bjObject offsetForSuperclass (3)
#(class X y) offsetForlVs (4)

#(:x 1y) offsetForKeywords (5)

nil offsetForMethodDict (6)

Figure 2-1 Class structure representation.

#(Class 'Point' 'Object' '(x y))

name superclass instancevariables

objName
A self at: self offsetForName

Figure 2-2 Using offset to access information.

RawObjTest >> testPrimitiveStructureObjIVs
"(self selector: #testPrimitiveStructureObjIVs) run"

self assert: ((pointClass objIVs) = #(#class #x #y)).

Figure 2-2 shows how offsets are used to access in an controlled manner the
raw objclass information.

Implement the primitives that are missing to run the following tests test-
PrimitiveStructureObjClassId, testPrimitiveStructureObjIVs, test-
PrimitiveStructureObjKeywords, testPrimitiveStructureObjMethod-
Dict, testPrimitiveStructureObjName, and testPrimitiveStructure-
ObjSuperclassId.

You can execute them by selecting the following expression (RawObjTest
selector: #testPrimitiveStructureObjClassId) run. Note that arrays
start at 1 in Pharo. Below is the list of the primitives that you should imple-
ment.

Implement in protocol 'object structure primitives' the primitives
that manage:

+ the class of the instance represented as a symbol. objClassId, obj-

34

2.8

2.8 Finding the class of an object

ClassId: aSymbol. The receiver is an objObject. This means that
this primitive can be applied on any objInstances to get its class identi-
fier.

Implement in protocol 'class structure primitives' the primitives that
manage:

the class name: objName, objName: aSymbol. The receiver is an obj-
Class.

the superclass: objSuperclassId, objSuperclassId: aSymbol. The
receiver is an objClass.

the instance variables: objIVs, 0bjIVs: anOrderedCollection. The
receiver is an objClass.

the keyword list: objKeywords, objKeywords: anOrderedCollec-
tion. The receiver is an objClass.

the method dictionary: objMethodDict, objMethodDict: anIdenti-
tyDictionary. The receiver is an objClass.

Finding the class of an object

Every object keeps the identifier of its class (its name). For example an in-
stance of ObjPoint has then the following structure: #(#0bjPoint 10 15)
where #0bjPoint is a symbol identifying the class ObjPoint.

Your job.

Using the primitive giveClassNamed: aSymbol defined at the class level

of Obj, define the primitive objClass in the protocol 'object-structure
primitive' that returns the objInstance that represents its class (Classes are
objects too in ObjVLisp).

Make sure that you execute the test method: testClassAccess

RawObjTest >> testClassAccess
"(self selector: #itestClassAccess) run"

self assert: (aPoint objClass = pointClass)

Now we will be ready to manipulate objInstances via proper API. We will now
use the class ObjTest for more elaborated tests.

35

Building a minimal reflective class-based kernel

#(
#0DbjClass
#0DbjPoint
#0ObjObject
#(class X'Y) offsetFromClassOfinstanceVariable: #x
#(:x 1y)
nil
) >>> 2

Figure 2-3 Instance variable offset asked to the class.

2.9 Accessing object instance variable values

A first simple method.

The following test illustrate the behavior of the message of fsetFromClas-
sOfInstanceVariable:

EObjTest >> testIVOffset
"(self selector: #testIVOffset) run"

self assert: ((pointClass offsetFromClassOfInstanceVariable: #x)

=2).
self assert: ((pointClass offsetFromClassOfInstanceVariable:
#lulu) = 0)
Your job.

In the protocol 'iv management' define a method called offsetFromClas-
sOfInstanceVariable: aSymbol that returns the offset of the instance
variable represented by the symbol given in parameter. It returns 0 if the
variable is not defined. Look at the tests #testIVOffset of the class Ob-
jTest.

Hints: Use the Pharo method index0f:. Pay attention that such a primitive
is applied to an objClass as shown in the test.

Make sure that you execute the test method: testIVOffset

A second simple method.

The following test illustrates the expected behavior

ObjTest >> testIVOffsetAndValue
"(self selector: #testIVOffsetAndvValue) run"

self assert: ((aPoint offsetFromObjectOfInstanceVariable: #x) =
2).

36

2.10 Object allocation and initialization

#(#0bjClass #ObjPoint #0bjObject #(class
xXy) #(:x :y) nil)

#(Point 100 200)

offsetFromObjectOfinstanceVariable: #x
>>> 2

Figure 2-4 Instance variable offset asked to the instance itself.

L self assert: ((aPoint valueOfInstanceVariable: #x) = 10)

Your job.
Using the preceeding method, define in the protocol 'iv management'

1. the method of fsetFromObjectOfInstanceVariable: aSymbol that
returns the offset of the instance variable. Note that this time the
method is applied to an objInstance presenting an instance and not a
class (as shown in Figure 2-4).

2. the method valueOfInstanceVariable: aSymbol that returns the
value of this instance variable in the given object as shown in the test
below.

Note that for the method of fsetFromObjectOfInstanceVariable: you can
check that the instance variable exists in the class of the object and else raise
an error using the Pharo method error:.

Make sure that you execute the test method: testIVOffsetAndvalue and it
passes.

2.10 Object allocation and initialization
The creation of an object is the composition of two elementary operations:
its “allocation’ and its initialization.

We now define all the primitives that allow us to allocate and initialize an
object. Remember that

1. the allocation is a class method that returns a nearly empty structure,
nearly empty because the instance represented by the structure should
at least knows its class and

37

Building a minimal reflective class-based kernel

2. the initialization of an instance is an instance method that given a
newly allocated instance and a list of initialization arguments fill the

instance.

Instance allocation

As shown in the class ObjTest, if the class ObjPoint has two instance vari-
ables: ObjPoint allocateAnInstance returns #(#0bjPoint nil nil).

newInstance

Your job.

self assert:
self assert:
self assert:
self assert:
self assert:

[ObjTest >> testAllocate
"(self selector: #testAllocate) run"
| newInstance |

:= pointClass

(newInstance
(newInstance
(newInstance
(newInstance
(newInstance

allocateAnInstance.
at: 1) = #0ObjPoint.
size) = 3.

at: 2) isNil.

at: 3) isNil.

objClass = pointClass)

In the protocol 'instance allocation' implement the primitive called
allocateAnInstance that sent to an objClass returns a new instance whose
instance variable values are nil and whose objClassId represents the objClass.

Make sure that you execute the test method: testAllocate

211 Keywords primitives

The original implementation of ObjVLisp uses the facility offered by the Lisp
keywords to ease the specification of the instance variable values during in-
stance creation. It also provides an uniform and unique way to create ob-
jects. We have to implement some functionality to support keywords. How-
ever as this is not really interesting that you lose time we give you all the
necessary primitives.

Your job.

All the functionality for managing the keywords are defined into the pro-
tocol 'keyword management'. Read the code and the associated test called
testKeywords in the class ObjTest.

ObjTest >> testKeywords
"(self selector: #testKeywords) run"

| dummyObject |

dummyObject
self assert:

38

:= 0bj new.

212

2.13

2.12 Object initialization

((dummyObject generateKeywords: #(#titi #toto #lulu))
= #(#titi: #toto: #lulu:)).
self assert:
((dummyObject keywordValue: #x
getFrom: #(#toto 33 #x 23)
ifAbsent: 2) = 23).
self assert:
((dummyObject keywordValue: #x
getFrom: #(#toto 23)
ifAbsent: 2) = 2).
self assert:
((dummyObject returnValuesFrom: #(#x 22 #y 35)
followingSchema: #(#y #yy #x #y))

= #(35 nil 22 35))

Make sure that you execute the test method: testKeywords and that it passes.

Object initialization

Once an object is allocated, it may be initialized by the programmer by spec-
ifying a list of initialization values. We can represent such list by an array
containing alternatively a keyword and a value like #(#toto 33 #x 23)
where 33 is associated with #toto and 23 with #x.

Your job.

Read in the protocol 'instance initialization' the primitive initial-
izeUsing: anArray that sent an object with an initialization list returns an
initialized object.

[ObjTest >> testInitialize
"(self selector: #testInitialize) run"

| newInstance |

newInstance := pointClass allocateAnInstance.

newInstance initializeUsing: #(#y: 2 #z: 3 #t: 55 #x: 1).
self assert: (newInstance at: 1) equals: #ObjPoint.

self assert: (newInstance at: 2) equals: 1.

self assert: (newInstance at: 3) equals: 2.

Static inheritance of instance variables

Instance variables are statically inherited at the class creation time. The sim-
plest form of instance variable inheritance is to define the complete set of

instance variables as the ordered fusion between the inherited instance vari-
ables and the locally defined instance variables. For simplicity reason and as

39

Building a minimal reflective class-based kernel

most of the languages, we chose to forbid duplicated instance variables in the
inheritance chain.

Your job.

In the protocol 'iv inheritance', read and understand the primitive com-
puteNewIVFrom: superIVOrdCol with: localIVOrdCol.

The primitive takes two ordered collections of symbols and returns an or-
dered collection containing the union of the two ordered collections but with
the extra constraint that the order of elements of the first ordered collection
is kept. Look at the test method testInstanceVariableInheritance below
for examples.

Make sure that you execute the test method: testInstancevariableInher-
itance and that is passes.

[ObjTest >> testInstanceVariableInheritance
"(self selector: #testInstanceVariableInheritance) run"

"a better choice would be to throw an exception if there are
duplicates"
self assert:
((Obj new computeNewIVFrom: #(#a #b #c #d) asOrderedCollection
with: #(#a #z #b #t) asOrderedCollection)
= #(#a #b #c #d #z #t) asOrderedCollection).
self assert:
((Obj new computeNewIVFrom: #() asOrderedCollection
with: #(#a #z #b #t) asOrderedCollection)
= #(#a #z #b #t) asOrderedCollection)

Side remark

You could think that keeping the same order of the instance variables be-
tween a superclass and its subclass is not an issue. This is partly true in this
simple implementation because the instance variable accessors compute
each time the corresponding offset to access an instance variable using the
primitive of fsetFromClassOfInstancevVariable:. However, the structure
(instance variable order) of a class is hardcoded by the primitives. That’s
why your implementation of the primitive computeNewIVFrom:with: should
take care of that aspect.

2.14 Method management

A class stores the behavior (expressed by methods) shared by all its instances
into a method dictionary. In our implementation, we represent methods by
associating a symbol to a Pharo block a kind of anonymous method. The block
is then stored in the method dictionary of an objClass.

40

2.14 Method management

In this implementation we do not offer the ability to access directly instance
variables of the class in which the method is defined. This could be done by
sharing a common environment among all the methods. The programmer
has to use accessors or the setIV and getIV objMethods defined on 0bjob-
ject to access the instance variables. You can find the definition of such
methods in the bootstrap method on the class side of 0bj.

In our ObjVLisp implementation, we do not have a syntax for message pass-
ing. Instead we call the primitives using the Pharo syntax for message pass-
ing (using the message send:withArguments:).

The following expression objself getIV: x isexpressed in ObjVLisp as
objself send: #getIV withArguments: #(#x).

The following code describes the definition of the accessor method x de-
fined on the objClass ObjPoint that invokes a field access using the message
getIV.
ObjPoint

addUnaryMethod: #accessInstanceVariableX

withBody: 'objself send: #getIV withArguments: #(#x)'.

As a first approximation this code will create the following block that will
get stored into the class method dictionary. [:objself | objself send:
#tgetIV withArguments: #(#x) 1. Asyou may notice, in our implemen-
tation, the receiver is always an explicit argument of the method. Here we
named it objself.

Defining a method and sending a message

As we want to keep this implementation as simple as possible, we define only
one primitive for sending a message: it is send :withArguments:. To see the

mapping between Pharo and ObjVlisp ways of expressing message sent, look

at the comparison below:

[Pharo Unary: self odd
ObjVLisp: objself send: #odd withArguments: #()

Pharo Binary: a + 4
ObjVLisp: a send: #+ withArguments: #(#(4))

Pharo Keyword: a max: &
| ObjVLisp: a send: #max: withArguments: #(4)

While in Pharo you would write the following method definition:

[bar: x
self foo: x

In our implementation of ObjVlisp you write:

41

Building a minimal reflective class-based kernel

anObjClass
addMethod: #bar:

args: 'x
withBody: 'objself send: #foo: withArguments: #x'.

Your job.

We provide all the primitives that handle with method definition. In the pro-
tocol 'method management' look at the methods addMethod: aSelector
args: aString withBody: aStringBlock, removeMethod: aSelector
and doesUnderstand: aSelector. Implement bodyOfMethod: aSelector.

Make sure that you execute the test method: testMethodManagement

EObjTest >> testMethodManagement

"(self selector: #testMethodManagment) run"

self assert: (pointClass doesUnderstand: #x).

self assert: (pointClass doesUnderstand: #xx) not.

pointClass
addMethod: #xx
args: "'
withBody: 'objself valueOfInstanceVariable: #x
self assert: (((pointClass bodyOfMethod: #xx) value: aPoint) =
10).
self assert: (pointClass doesUnderstand: #xx).
pointClass removeMethod: #xx.
self assert: (pointClass doesUnderstand: #xx) not.
self assert: (((pointClass bodyOfMethod: #x) value: aPoint) = 10)

1

2.15 Message passing and dynamic lookup

Sending a message is the result of the composition of method lookup and exe-
cution. The following basicSend:withArguments:from: primitive just im-
plements it. First it looks up the method into the class or superclass of the
receiver then if a method has been found it execute it, else Tookup: returned
nil and we raise a Pharo error.

[0bj >> basicSend: selector withArguments: arguments from: aClass

"Execute the method found starting from aClass and whose name is
selector.

The core of the sending a message, reused for both a normal send
or a super one."

| methodOrNil |

methodOrNil := aClass lookup: selector.

* methodOrNil

ifNotNil: [methodOrNil valueWithArguments: (Array with: self)

, arguments]

42

216 Method lookup

i ifNil: [Error signal: 'Obj message' , selector asString,
L not understood']
Based on this primitive we can express send:withArguments: and super:with-
Arguments: as follows:

[0bj >> send: selector withArguments: arguments
"send the message whose selector is <selector> to the receiver.
The arguments of the messages are an array <arguments>. The
method is looked up in the class of the receiver. self is an
objObject or a objClass."”
* self basicSend: selector withArguments: arguments from: self
objClass

2.16 Method lookup

The primitive Lookup: selector applied to an objClass should return
the method associated to the selector if it found it, else nil to indicate that
it failed.

Your job.

Implement the primitive Lookup: selector that sent to an objClass with a
method selector, a symbol and the initial receiver of the message, returns the
method-body of the method associated with the selector in the objClass or its
superclasses. Moreover if the method is not found, nil is returned.

Make sure that you execute the test methods: testNilWhenErrorInLookup
and testRaisesErrorSendWhenErrorInLookup whose code is given below:

[ObjTest >> testNilWhenErrorInLookup
"(self selector: #testNilWhenErrorInLookup) run"

self assert: (pointClass lookup: #zork) isNil.
"The method zork is NOT implement on pointClass"

[ObjTest >> testRaisesErrorSendWhenErrorInLookup
"(self selector: #testRaisesErrorSendWhenErrorInLookup) run"

self should: [pointClass send: #zork withArguments: { aPoint }
] raise: Error.
"Open a Transcript to see the message trace"

2.17 Managing super

To invoke a superclass hidden method, in Java and Pharo you use super,
which means that the lookup up will start above the class defining the method

43

Building a minimal reflective class-based kernel

containing the super expression. In fact we can consider that in Java or Pharo,
super is a syntactic sugar to refer to the receiver but changing where the
method lookup starts. This is what we see in our implementation where we
do not have syntactic support.

Let us see how we will express the following situation.

bar: x

super foo: x

In our implementation of ObjVlisp we do not have a syntactic construct to
express super, you have to use the super:withArguments: Pharo message
as follows.

anObjClass
addMethod: #bar:
args: 'x'
withBody: 'objself super: #foo: withArguments: #(#x) from:
superClassOfClassDefiningTheMethod'.

Note that superClass0fClassDefiningTheMethod is a variable that is bound
to the superclass of anObjClass i.e., the class defining the method bar (see
later).

[Pharo Unary: super odd
ObjVLisp: objself super: #odd withArguments: #() from:
superClassOfClassDefiningTheMethod

Pharo Binary: super + 4
ObjVLisp: objself super: #+ withArguments: #(4) from:
superClassOfClassDefiningTheMethod

Pharo Keyword: super max: 4
0bjVlisp: objself super: #max: withArguments: #(4) from:
superClassOfClassDefiningTheMethod

2.18 Representing super

We would like to explain you where the superClass0fClassDefiningTh-
eMethod variable comes from. When we compare the primitive send:with-
Arguments:, for super sends we added a third parameter to the primitive
and we called it super:withArguments:from:.

This extra parameter corresponds to the superclass of class in which the
method is defined. This argument should always have the same name, i.e.,
superClassOfClassDefiningTheMethod. This variable will be bound when
the method is added in the method dictionary of an objClass.

If you want to understand how we bind the variable, here is the explanation:
In fact, a method is not only a block but it needs to know the class that de-

a4

2.19

2.19 Handling not understood messages

fines it or its superclass. We added such information using currification. (a
currification is the transformation of a function with n arguments into func-
tion with less argument but an environment capture: f(x,y)= (+ x y)is
transformed into a function f(x)=f(y)(+ x y) that returns a function of a
single argument y and where x is bound to a value and obtain a function gen-
erator). For example, f(2,y) returns a function f(y)=(+ 2 y) that adds its
parameter to 2. A currification acts as a generator of function where one of
the argument of the original function is fixed.

In Pharo we wrap the block representing the method around another block
with a single parameter and we bind this parameter with the superclass of
the class defining the method. When the method is added to the method
dictionary, we evaluate the first block with the superclass as parameter as
illustrated as follows:
method := [:superClassOfClassDefiningTheMethod |
[:objself :otherArgs |

... method code ...

11
method value: (Obj giveClassNamed: self objSuperclassId)
So now you know where the superClass0fClassDefiningTheMethod vari-
able comes from. Make sure that you execute the test method: testMethod-
Lookup and that is passes.

Your job.

Now you should be implement super: selector withArguments: ar-
guments from: aSuperclass using the primitive basicSend:withArgu-
ments:from:.

Handling not understood messages

Now we can revisit error handling. Instead of raising a Pharo error, we want
to send an ObjVlisp message to the receiver of the message to give him a
chance to trap the error.

Compare the two following versions of basicSend: selector withAr-
guments: arguments from: aClass and propose an implementation of
sendError: selector withArgs: arguments.

EObj >> basicSend: selector withArguments: arguments from: aClass

"Execute the method found starting from aClass and whose name is
selector.”

"The core of the sending a message, reused for both a normal send
or a super one."

| methodOrNil |

methodOrNil := (aClass lookup: selector).

* methodOrNil

45

Building a minimal reflective class-based kernel

ifNotNil: [methodOrNil valueWithArguments: (Array with: self)
, arguments]

ifNil: [Error signal: 'Obj message' , selector asString,
not understood']

EObj >> basicSend: selector withArguments: arguments from: aClass
"Execute the method found starting from aClass and whose name is
selector.”
"The core of the sending a message, reused for both a normal send
or a super one."
| methodOrNil |
methodOrNil := (aClass lookup: selector).
* methodOrNil
ifNotNil: [methodOrNil valueWithArguments: (Array with: self)
, arguments]
ifNil: [self sendError: selector withArgs: arguments]

It should be noted that the objVlisp method is defined as follows in the Ob-
jobject class (see the bootstrap method on the class side of Obj). The obj
error method expects a single parameter: an array of arguments whose first
element is the selector of the not understood message.

[objobject

addMethod: #error

args: 'arrayOfArguments’

withBody: 'Transcript show: ''error
"'error '', arrayOfArguments first'.

, arrayOfArguments first.

[0bj >> sendError: selector withArgs: arguments

"send error wrapping arguments into an array with the selector as
first argument. Instead of an array we should create a message
object."

" self send: #error withArguments: {(arguments copyWithFirst:

selector)}

Make sure that you read and execute the test method: testSendErrorRais-
esErrorSendwhenErrorInLookup. Have a look at the implementation of the
#error method defined in ObjObject and in the assembleObjectClass of
the ObjTest class.

2.20 Bootstrapping the system

Now you have implemented all the behavior we need, you are ready to boot-
strap the system: this means creating the kernel consisting of Objobject
and ObjClass classes from themselves. The idea of a smart bootstrap is to
be as lazy as possible and to use the system to create itself by creating fast a
fake but working first class with which we will build the rest.

Three steps compose the ObjVlisp bootstrap,

46

2.21 Manually creating ObjClass

1. we create by hand the minimal part of the objClass ObjClass and then
2. we use it to create normally ObjObject objClass and then
3. we recreate normally and completely ObjClass.

These three steps are described by the following bootstrap method of Obj
class. Note the bootstrap is defined as class methods of the class Obj.

[0bj class >> bootstrap
"self bootstrap"

self initialize.

self manuallyCreateObjClass.
self createObjObject.

self createObjClass.

To help you to implement the functionality of the objClasses ObjClass and
Objobject, we defined another set of tests in the class ObjTestBootstrap.
Read them.

2.21 Manually creating ObjClass

The first step is to create manually the class ObjClass. By manually we mean
create an array (because we chose an array to represent instances and classes
in particular) that represents the objClass ObjClass, then define its meth-
ods. You will implement/read this in the primitive manuallyCreateObj-
Class as shown below:

EObj class >> manuallyCreateObjClass
"self manuallyCreateObjClass"

| class |

class := self manualObjClassStructure.

Obj declareClass: class.

self defineManualInitializeMethodIn: class.
self defineAllocateMethodIn: class.

self defineNewMethodIn: class.

~ class

For this purpose, you have to implement/read all the primitives that com-
pose it.

Your job.

At the class level in the protocol 'bootstrap objClass manual' read or
implement: the primitive manualObjClassStructure that returns an objOb-
ject that represents the class ObjClass.

Make sure that you execute the test method: testManuallyCreateObj-
ClassStructure

47

Building a minimal reflective class-based kernel

» Asthe initialize of this first phase of the bootstrap is not easy we
give you its code. Note that the definition of the objMethod initial-
ize is done in the primitive method defineManualInitializeMethodIn:.

EObj class >> defineManualInitializeMethodIn: class

class
addMethod: #initialize
args: 'initArray'
withBody:
'| objsuperclass |
objself initializeUsing: initArray. "Initialize a class as an
object. In the bootstrapped system will be done via super"
objsuperclass := Obj giveClassNamed: objself objSuperclassId
ifAbsent: [nil].
objsuperclass isNil
ifFalse:
[objself
objIVs: (objself computeNewIVFrom: objsuperclass objIVs
with: objself objIVs)]
ifTrue:
[objself objIVs: (objself computeNewIVFrom: #(#class)
with: objself objIVs)].
objself
objKeywords: (objself generateKeywords: (objself objIVs
copyWithout: #class)).
objself objMethodDict: (IdentityDictionary new: 3).
Obj declareClass: objself.
objself"’

Note that this method works without inheritance since the class Objobject
does not exist yet.

The primitive defineAllocateMethodIn: anObjClass defines in anObj-
Class passed as argument the objMethod allocate. allocate takes only one
argument: the class for which a new instance is created as shown below:

defineAllocateMethodIn: class

class
addUnaryMethod: #allocate
withBody: 'objself allocateAnInstance'

Following the same principle, define the primitive defineNewMethodIn:
anObjClass that defines in anObjClass passed as argument the objMethod
new. new takes two arguments: a class and an initargs-list. It should invoke
the objMethod allocate and initialize.

48

2.22

2.22 Creation of ObjObject

Your job.

Make sure that you read and execute the test method: testManuallyCre-
ateObjClassAllocate

Remarks
Read carefully the following remarks below and the code.

+ In the objMethod manualObjClassStructure, the instance variable
inheritance is simulated. Indeed the instance variable array contains
#class that should normally be inherited from Objobject as we will
see in the third phase of the bootstrap.

Note that the class is declared into the class repository using the method
declareClass:.

+ Note the method #initialize is method of the metaclass ObjClass:
when you create a class the initialize method is invoked on a class! The
initialize objMethod defines on ObjClass has two aspects: the first
one dealing with the initialization of the class like any other instance
(first line). This behavior is normally done using a super call to invoke
the initialize method defined in ObjObject. The final version of the
initialize method will do it using perform. The second one dealing
with the initialization of classes: performing the instance variable in-
heritance, then computing the keywords of the newly created class.
Note in this final step that the keyword array does not contain the
#class: keyword because we do not want to let the user modify the
class of an object.

Creation of ObjObject

Now you are in the situation where you can create the first real and normal
class of the system: the class ObjoObject. To do that you send the message
new to class ObjClass specifying that the class you are creating is named
#0bjobject and only have one instance variable called class. Then you will
add the methods defining the behavior shared by all the objects.

Your job: objObjectStructure

Implement/read the following primitive objObjectStructure that creates
the Objobject by invoking the new message to the class ObjClass:

0Obj class >> objObjectStructure
~ (self giveClassNamed: #ObjClass)

send: #new
withArguments: #(#(#name: #0bjObject #iv: #(#class)))

49

Building a minimal reflective class-based kernel

The class ObjObject is named ObjObject, has only one instance variable
class and does not have a superclass because it is the inheritance graph
root.

Your job: createObjObject

Now implement the primitive createObjObject that calls objObjectStruc-
ture to obtain the objObject representing objObject class and define
methods in it. To help you we give here the beginning of such a method

[0bj class >> createObjObject
| objObject |
objObject := self objObjectStructure.
objObject addUnaryMethod: #class withBody: 'objself objClass'.
objObject addUnaryMethod: #isClass withBody: 'false’.
objObject addUnaryMethod: #isMetaclass withBody: 'false'.

* objObject
Implement the following methods in ObjObject

+ the objMethod class that given an objInstance returns its class (the
objInstance that represents the class).

the objMethod isClass that returns false.

the objMethod isMetaClass that returns false.

the objMethod error that takes two arguments the receiver and the
selector of the original invocation and raises an error.

the objMethod getIV that takes the receiver and an attribute name,
aSymbol, and returns its value for the receiver.

the objMethod setIV that takes the receiver, an attribute name and a
value and sets the value of the given attribute to the given value.

the objMethod initialize that takes the receiver and an initargs-
list and initializes the receiver according to the specification given by
the initargs-list. Note that here the initialize method only fill the
instance according to the specification given by the initargs-list. Com-
pare with the initialize method defined on ObjClass.

Make sure that you read and execute the test method: testCreateObjob-
jectStructure

In particular notice that this class does not implement the class method new
because it is not a metaclass but does implement the instance method ini-
tialize because any object should be initialized.

50

2.23

2.23 Creation of ObjClass

Your job: run the tests

+ Make sure that you read and execute the test method: testCreateOb-
jObjectMessage

+ Make sure that you read and execute the test method: testCreateOb-
jObjectInstanceMessage

Creation of ObjClass

Following the same approach, you can now recreate completely the class
ObjClass. The primitive createObjClass is responsible to create the fi-
nal class ObjClass. So you will implement it and define all the primitive it
needs. Now we only define what is specific to classes, the rest is inherited
from the superclass of the class ObjClass, the class ObjoObject.

[0bj class >> createObjClass
"self bootstrap"

| objClass |

objClass := self objClassStructure.

self defineAllocateMethodIn: objClass.

self defineNewMethodIn: objClass.

self defineInitializeMethodIn: objClass.

objClass
addUnaryMethod: #isMetaclass
withBody: 'objself objIVs includes: #superclass'.

"an object is a class if is class is a metaclass. cool"

objClass
addUnaryMethod: #isClass
withBody: 'objself objClass send: #isMetaclass
withArguments:#()'.

A

objClass

To make the method createObjClass working we should implement the
method it calls. Implement then:

» the primitive objClassStructure that creates the ObjClass class by
invoking the new message to the class ObjClass. Note that during this
method the ObjClass symbol refers to two different entities because
the new class that is created using the old one is declared in the class
dictionary with the same name.

Your job.

Make sure that you read and execute the test method: testCreateObj-
ClassStructure. Now implement the primitive createObjClass that starts

51

Building a minimal reflective class-based kernel

as follow:
EObj class >> createObjClass

| objClass |

objClass := self objClassStructure.

self defineAllocateMethodIn: objClass.
self defineNewMethodIn: objClass.

self defineInitializeMethodIn: objClass.

A

objClass

Also define the following methods:
+ the objMethod isClass that returns true.
+ the objMethod isMetaclass that returns true.

EobjC1ass
addUnaryMethod: #isMetaclass
withBody: 'objself objIVs includes: #superclass'.

"an object is a class if is class is a metaclass. cool"

EobjCIass
addUnaryMethod: #isClass
withBody: 'objself objClass send: #isMetaclass withArguments:#()'.

+ the primitive defineInitializeMethodIn: anObjClass that adds
the objMethod initialize to the objClass passed as argument. The
objMethod initialize takes the receiver (an objClass) and an initargs-
list and initializesthe receiver according to the specification given by
the initargs-list. In particular, it should be initialized as any other ob-
ject, then it should compute its instance variable (i.e., inherited in-
stance variables are computed), the keywords are also computed, the
method dictionary should be defined and the class is then declared as
an existing one. We provide the following template to help you.

[0bj class>>defineInitializeMethodIn: objClass

objClass
addMethod: #initialize
args: 'initArray'
withBody:
'objself super: #initialize withArguments: {initArray} from:
superClassOfClassDefiningTheMethod.
objself objIVs: (objself
computeNewIVFrom:
(0bj giveClassNamed: objself
objSuperclassId) objIVs
with: objself objIVs).
objself computeAndSetKeywords.

52

2.24

2.24 First User Classes: ObjPoint

objself objMethodDict: IdentityDictionary new.
0bj declareClass: objself.
objself"’

EObj class >> defineInitializeMethodIn: objClass

objClass
addMethod: #initialize
args: 'initArray'
withBody:
'objself super: #initialize withArguments: {initArray}
from: superClassOfClassDefiningTheMethod.
objself objIVs: (objself
computeNewIVFrom: (Obj giveClassNamed: objself
objSuperclassId) objIVs
with: objself objIVs).
objself computeAndSetKeywords.
objself objMethodDict: IdentityDictionary new.
Obj declareClass: objself.

objself’

Your job.
Make sure that you execute the test method: testCreateObjClassMessage.
Note the following points:

» The locally specified instance variables now are just the instance vari-
ables that describe a class. The instance variable class is inherited
from ObjoObject.

+ The initialize method now does a super send to invoke the initial-
ization performed by ObjoObject.

First User Classes: ObjPoint

Now that ObjVLisp is created and we can start to program some classes. Im-
plement the class ObjPoint and ObjColoredPoint. Here is a possible imple-
mentation.

You can choose to implement it at the class level of the class Obj or even bet-
ter in class named ObjPointTest.

Pay attention that your scenario covers the following aspects:
« First just create the class ObjPoint.
+ Create an instance of the class ObjPoint.

+ Send some messages defined in ObjObject to this instance.

53

Building a minimal reflective class-based kernel

Define the class ObjPoint so that we can create points as below (create a
Pharo method to define it).

[objClass send: #new
withArguments: #((#name: #0bjPoint #iv: #(#x y) #superclass:
#0bjObject)).

[aPoint := pointClass send: #new withArguments: #((#x: 24 #y: 6)).
aPoint send: #getIV withArguments: #(#x).

aPoint send: #setIV withArguments: #(#x 25).

aPoint send: #getIV withArguments: #(#x).

Then add some functionality to the class ObjPoint like the methods x, x:,
display which prints the receiver.

[0bj ObjPoint

addUnaryMethod: #givex

withBody: 'objself valueOfInstanceVariable: #x
0bj ObjPoint

addUnaryMethod: #display

withBody:
'Transcript cr;
show: ''aPoint with x = "'
Transcript show: (objself send: #givex withArguments: #())
printString;
cr'.

Then test these new functionality.

[aPoint send: #x withArguments: #().
aPoint send: #x: withArguments: #(33).
| aPoint send: #display withArguments: #().

2.25 First User Classes: ObjColoredPoint

Following the same idea, define the class ObjColored.
Create an instance and send it some basic messages.

[aColoredPoint := coloredPointClass
send: #new
withArguments: #((#x: 24 #y: 6 #color: #blue)).

[aColoredPoint send: #getIV withArguments: #(#x).
aColoredPoint send: #setIV withArguments: #(#x 25).
aColoredPoint send: #getIV withArguments: #(#x).

| aColoredPoint send: #getIV withArguments: #(#color).

54

2.26 A First User Metaclass: ObjAbstract

Your job.

Define some functionality and invoke them: the method color, implement
the method display so that it invokes the superclass and adds some informa-
tion related to the color. Here is an example:

[coloredPointClass addUnaryMethod: #display
withBody:
'objself super: #display withArguments: #() from:
superClassOfClassDefiningTheMethod.
Transcript cr;
show: '' with Color =
Transcript show: (objself send: #giveColor withArguments: #())
printString; cr'.

[aColoredPoint send: #x withArguments: #().
aColoredPoint send: #color withArguments: #().
| aColoredPoint send: #display withArguments: #()

2.26 A First User Metaclass: ObjAbstract

Now implement the metaclass ObjAbstract that defines instances (classes)
that are abstract i.e., that cannot create instances. This class should raise an
error when it executes the new message.

Then the following shows you a possible use of this metaclass.

[objAbstractClass
send: #new
withArguments: #(#(#name: #ObjAbstractPoint
#iv: #()
#superclass: #0bjPoint)).

ObjAbstractPoint send: #new
withArguments: #(#(#x: 24 #y: 6)) "should raise an error"

You should redefine the new method. Note that the ObjAbstractClass is an
instance of ObjClass because this is a class and inherits from it because this
is a metaclass.

2.27 New features that you could implement

You can implement some simple features:

» define a metaclass that automatically defines accessors for the speci-
fied instances variables.

« avoid that we can change the selector and the arguments when calling
a super send.

55

Building a minimal reflective class-based kernel

Shared Variables

Note that contrary to the proposition made in the 6th postulate of the orig-
inal ObjVLisp model, class instance variables are not equivalent of shared
variables. According to the 6th postulate, a shared variable will be stored
into the instance representing the class and not in an instance variable of the
class representing the shared variables. For example if a workstation has a
shared variable named domain. But domain should not be an extra instance
variable of the class of Workstation. Indeed domain has nothing to do with
class description.

The correct solution is that domain is a value hold into the list of the shared
variable of the class Workstation. This means that a class has an extra infor-
mation to describe it: an instance variable sharedvariable holding pairs. So
we should be able to write

Obj Workstation getIV: #sharedVariable

or

Obj Workstation sharedVariableValue: #domain

and get
#((domain 'inria.fr'))

introduce shared variables: add a new instance variable in the class Ob-
jClass to hold a dictionary of shared variable bindings (a symbol and a
value) that can be queried using specific methods: sharedvariablevalue:,
sharedvariableValue:put:.

56

CHAPTER

Selected definitions

Smith was the first to introduce reflection in a programming language with
3Lisp . He defines reflection as:

* An entity’s integral ability to represent, operate on, and otherwise deal
with itself in the same way that it represents, operates on and deals
with its primary subject matter.

In the context of meta-object protocols, Bobrow refines the definition as fol-
lows:

» Reflection is the ability of a program to manipulate as data something
representing the state of the program during its own execution. There
are two aspects of such manipulation: introspection and intercession (...)
Both aspects require a mechanism for encoding execution state as data;
providing such an encoding is called reification.

Maes proposed some definitions for reflexive programming :

* A computational system is something that reasons about and acts upon
some part of the world, called the domain of the system.

* A computational system may also be causally connected to its domain.
This means that the system and its domain are linked in such a way
that if one of the two changes, this leads to an effect upon the other.

* A meta-system is a computational system that has as its domain another
computational system, called its object-system. (...) A meta-system has
a representation of its object-system in its data. Its program speci-
fies meta-computation about the object-system and is therefore called
a meta-program.

* Reflection is the process of reasoning about and/or acting upon oneself.

57

58

Selected definitions

A reflective system is a causally connected meta-system that has as object-
system itself. The data of a reflective system contain, besides the rep-
resentation of some part of the external world, also a causally con-
nected representation of itself, called self-representation of the system.
[...] When a system is reasoning or acting upon itself, we speak of reflec-
tive computation.

A language with a reflective architecture is a language in which all sys-
tems have access to a causally connected representation of themselves.

A programming environment has a meta-level architecture if it has an
architecture which supports meta-computation, without supporting
reflective computation.

The meta-object of an object X represents the explicit information about
X (e.g. about its behavior and its implementation). The object X itself
groups the information about the entity of domain it represents.

	Illustrations
	A class-based reflective minimal kernel
	ObjVlisp
	ObjVLisp's six postulates
	Kernel overview
	Instances
	Handling infinite recursion

	Understanding metaclasses
	Instance structure
	About behavior
	Class as an object
	Example: class Point
	Example: class Class
	Everything is an object

	Sending a message
	Method lookup
	Handling errors
	Remarks

	Inheritance
	Instance variable inheritance
	Method lookup

	Object: defining the minimal behavior of any object
	Remark.

	Inheritance and instantiation together
	Refresh on self and super semantics
	Object creation
	Creation of instances of the class Point
	Creation of the class Point instance of Class
	Instance creation: Role of the metaclass
	new = allocate and initialize
	Object allocation: the message allocate
	Object initialization
	Class initialization

	The Class class
	Defining a new Metaclass
	Abstract

	About the 6th postulate
	Illustrating the problem
	The solution

	Conclusion
	Further readings

	Building a minimal reflective class-based kernel
	Objectives
	Preparation
	Getting Pharo
	Getting infrastructure definitions
	Running tests

	Naming conventions
	Inheriting from class Array
	About representation choices

	Facilitating objclass class access
	Structure and primitives
	Your job.

	Structure of a class
	Your job.

	Finding the class of an object
	Your job.

	Accessing object instance variable values
	A first simple method.
	Your job.
	A second simple method.
	Your job.

	Object allocation and initialization
	Instance allocation
	Your job.

	Keywords primitives
	Your job.

	Object initialization
	Your job.

	Static inheritance of instance variables
	Your job.
	Side remark

	Method management
	Defining a method and sending a message
	Your job.

	Message passing and dynamic lookup
	Method lookup
	Your job.

	Managing super
	Representing super
	Your job.

	Handling not understood messages
	Bootstrapping the system
	Manually creating ObjClass
	Your job.
	Your job.
	Remarks

	Creation of ObjObject
	Your job: objObjectStructure
	Your job: createObjObject
	Your job: run the tests

	Creation of ObjClass
	Your job.
	Your job.

	First User Classes: ObjPoint
	First User Classes: ObjColoredPoint
	Your job.

	A First User Metaclass: ObjAbstract
	New features that you could implement
	Shared Variables

	Selected definitions

