Sparse weakly supervised models for object localization in road environment

Abstract : We propose a novel weakly supervised localization method based on Fisher-embedding of low-level features (CNN, SIFT), and model sparsity at the component level. Fisher-embedding provides an interesting alternative to raw low-level features, since it allows fast and accurate scoring of image subwindows with a model trained on entire images. Model sparsity reduces overfitting and enables fast evaluation. We also propose two new techniques for improving performance when our method is combined with nonlinear normalizations of the aggregated Fisher representation of the image. These techniques are i) intra-component metric normalization and ii) first-order approximation to the score of a normalized image representation. We evaluate our weakly supervised localization method on real traffic scenes acquired from driver's perspective. The method dramatically improves the localization AP over the dense non-normalized Fisher vector baseline (16 percentage points for zebra crossings, 21 percentage points for traffic signs) and leads to a huge gain in execution speed (91× for zebra crossings, 74× for traffic signs).
Type de document :
Article dans une revue
Computer Vision and Image Understanding, Elsevier, 2018, pp.1-13. 〈10.1016/j.cviu.2018.10.004〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01900418
Contributeur : Thoth Team <>
Soumis le : mardi 30 octobre 2018 - 19:33:19
Dernière modification le : mercredi 14 novembre 2018 - 13:39:13

Fichier

manuscript.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Valentina Zadrija, Josip Krapac, Siniša Šegvić, Jakob Verbeek. Sparse weakly supervised models for object localization in road environment. Computer Vision and Image Understanding, Elsevier, 2018, pp.1-13. 〈10.1016/j.cviu.2018.10.004〉. 〈hal-01900418〉

Partager

Métriques

Consultations de la notice

36