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Influences between logic programming and proof theory
by Dale Miller, Inria-Saclay, January 1, 2018

The earliest and most popular use of logic in computer science views computation as
something that happens independent of logic: e.g., registers change, tokens move in a Petri
net, messages are buffered and retrieved, and a tape head advances along a tape. Logics
(often modal or temporal logics) are used to make statements about such computations.
Model checkers and Hoare proof systems employ this computation-as-model approach.

Early in the 20th century, some logicians invented various computational systems, such as
Turing machines, Church’s A-calculus, and Post correspondence systems, which were shown
to all compute the same set of recursive functions. With the introduction of high-level
programming languages, such LISP, Pascal, Ada, and C, it was clear that any number of ad
hoc computation systems could be designed to compute these same functions. Eventually,
the large number of different programming languages were classified via the four paradigms
of imperative, object-oriented, functional, and logic programming. The latter two can be
viewed as an attempt to make less ad hoc computational systems by relying on aspects
of symbolic logic. Unlike most programming languages, symbolic logic is a formal language
that has well-defined semantics and which has been studied using model theory [17], category
theory [8, 9], recursion theory [5, 6], and proof theory [3, 4]. The computation-as-deduction
approach to programming languages takes as its computational elements objects from logic,
namely, terms, formulas, and proofs. This approach has the potential to allow the direct
application of logic’s rich metatheory to proving properties of specific programs and entire
programming languages.

The influence of proof theory on logic programming

The first thing that proof theory has offered to the logic programming paradigm is a clean
and straightforward means to differentiate itself from functional programming. From the
proof theory perspective, functional programs correspond to proofs (usually in natural de-
duction), and computation corresponds to proof normalization: that is, programs correspond
to non-normal proofs and computation is seen as a series of normalization steps (using ei-
ther S-convergence or cut-elimination). This programs-as-proof correspondence is known as
the Curry-Howard isomorphism [16]. In contrast, proof search is a good charactorization of
computation in logic programming. Here, quantificational formulas are used to encode both
programs and goals (think about the rules and queries in database theory). Sequents are used
to encode the state of a computation and (cut-free) proofs are used to encode computation
traces: changes in sequents model the dynamics of computation. Although cut-elimination
is not part of computation, it can be used to reason about computation. Also. the proof-
theoretic notions of inference rule, schematic variable, proof checking, and proof search are
directly implementable. The proof-normalization and the proof-search styles of computa-
tional specification remain distinct even in light of numerous recent developments in proof
theory: for example, linear logic, game semantics, and higher-order quantification have all
served to illustrate differences and not similarities between these two styles.



In the early days of logic programming, say from 1972-1985, the entire logic programming
paradigm was described using just one particular logic: that of the first-order Horn theories in
classical logic [7]. Also, the process of proof search was paradoxically described as refutation
(using the resolution rule). Gentzen invented the sequent calculus for the explicit purpose of
unifying proofs in classical and intuitionistic logic. Girard showed that the sequent calculus
can naturally account for linear logic proofs as well [14, 13]. As a result of this unity, the
sequent calculus provided logic programming a natural framework in which proof-search
could be described for much richer logics (first-order and higher-order versions of classical,
intuitionistic, and linear logics) than that underlying Prolog.

Another feature of the sequent calculus is its support for abstraction: that is, it provides
mechanism for allowing some aspects of a program’s specification to be hidden while other
aspects are made explicit. The cut-elimination theorem can be used to match abstractions
from actual implementations. In programming language terminology, such abstractions pro-
vide logic programming with modularity, abstract datatypes, and higher-order programming.
The use of abstractions can significantly aid in establishing formal properties of programs.

The influence of logic programming on proof theory

Logic programming has also influenced proof theory. To explain Prolog’s operational be-
haviour, resolution was restricted to SLD-resolution [2]. Similarly, sequent calculus proofs
were restricted to goal-directed (or uniform) proofs in order to provide a general framework
for logic programming. Such goal-directed programs were structured with alternating phases
of inference rules: one phase reduced the goal formula (using right-introduction rules), and
one phase performed backchaining steps (using left-introduction rules) [11, 14]. The result-
ing sequent calculus framework provided justifications for the design of logic programming
languages within both classical and intuitionistic logics. After Girard’s introduction of linear
logic [4] in 1987, Andreoli defined focused linear logic proofs [1] in which cut-free proofs were
restricted to alternating phases but this time, such proofs applied to all of linear logic. The
completeness of focused proofs provided a complete analysis of which subsets of linear logic
made good logic programming languages [13]. Several subsequent efforts have been made to
provide flexible, focused proof systems for classical and intuitionistic logic all of which are
captured by the LKF and LJF focused proofs system [10].

Logic programming makes heavy use of term structures and quantification. Thus a com-
prehensive analysis of the proof theory of logic programs forced proof theory to look beyond
its usual concentration on propositional connectives and to look hard at quantification. For
example, Skolemization is seldom a natural and efficient means for addressing quantifier al-
ternation in a proof theory setting. Instead, the sequent calculus supports the concept of
mobility of binders [12] in which term-level bindings are capable of moving to formula-level
quantifiers which are then capable of moving to proof-level eigenvariables. Furthermore,
the proof-theoretic treatment of inductive reasoning applied to logic programming specifi-
cations has lead to the appearance of the V-quantifier that is capable of capturing generic
quantification [15].
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