S. David, A. Goodsell, and . Olson, Structural symmetry and protein function, Annual Review of Biophysics and Biomolecular Structure, vol.29, 2000.

K. Usdin, The biological effects of simple tandem repeats: lessons from the repeat expansion diseases, Genome Research, vol.18, pp.1011-1019, 2008.

J. Anthony and . Hannan, Tandem repeats mediating genetic plasticity in health and disease, Nature Reviews Genetics, vol.19, pp.286-298, 2018.

L. Doyle, J. Hallinan, J. Bolduc, F. Parmeggiani, D. Baker et al., Rational design of ?-helical tandem repeat proteins with closed architectures, Nature, vol.528, issue.7583, p.585, 2015.
DOI : 10.1038/nature16191

URL : http://europepmc.org/articles/pmc4727831?pdf=render

R. D. Arnout, D. Voet, . Simoncini, R. H. Jeremy, K. Tame et al., Evolutioninspired computational design of symmetric proteins, Computational Protein Design, pp.309-322, 2017.

S. Jacob-b-bale, Y. Gonen, W. Liu, D. Sheffler, C. Ellis et al., Accurate design of megadalton-scale two-component icosahedral protein complexes, Science, vol.353, issue.6297, pp.389-394, 2016.

G. Pagès, E. Kinzina, and S. Grudinin, Analytical symmetry detection in protein assemblies. I. Cyclic symmetries, Journal of Structural Biology, vol.203, issue.2, pp.142-148, 2018.

G. Pagès and S. Grudinin, Analytical symmetry detection in protein assemblies. II. Dihedral and cubic symmetries, Journal of Structural Biology, vol.203, issue.3, pp.185-194, 2018.

. Andrey-v-kajava, Tandem repeats in proteins: from sequence to structure, Journal of Structural Biology, vol.179, issue.3, pp.279-288, 2012.

C. Kian-guan-lim, L. Y. Keong-kwoh, A. Hsu, and . Wirawan, Review of tandem repeat search tools: a systematic approach to evaluating algorithmic performance, Briefings in Bioinformatics, vol.14, issue.1, pp.67-81, 2012.

M. Pellegrini, Tandem repeats in proteins: prediction algorithms and biological role, Frontiers in Bioengineering and Biotechnology, vol.3, p.143, 2015.
DOI : 10.3389/fbioe.2015.00143

URL : https://www.frontiersin.org/articles/10.3389/fbioe.2015.00143/pdf

G. Benson, Tandem repeats finder: a program to analyze DNA sequences, Nucleic Acids Research, vol.27, issue.2, p.573, 1999.
DOI : 10.1093/nar/27.2.573

URL : https://academic.oup.com/nar/article-pdf/27/2/573/6268426/27-2-573.pdf

W. Adalberto-t-castelo, G. Martins, and . Gao, TROLL-tandem repeat occurrence locator, Bioinformatics, vol.18, issue.4, pp.634-636, 2002.

R. Kolpakov, G. Bana, and G. Kucherov, mreps: Efficient and flexible detection of tandem repeats in dna, Nucleic Acids Research, vol.31, issue.13, pp.3672-3678, 2003.
DOI : 10.1093/nar/gkg617

URL : https://hal.archives-ouvertes.fr/inria-00099597

M. Aaron, J. Newman, and . Cooper, Xstream: a practical algorithm for identification and architecture modeling of tandem repeats in protein sequences, BMC Bioinformatics, vol.8, issue.1, p.382, 2007.

B. Kevin, W. R. Murray, J. Taylor, and . Thornton, Toward the detection and validation of repeats in protein structure, Proteins: Structure, Function, and Bioinformatics, vol.57, issue.2, pp.365-380, 2004.

S. C. Edward, M. Shih, and . Hwang, Alternative alignments from comparison of protein structures, Proteins: Structure, Function, and Bioinformatics, vol.56, issue.3, pp.519-527, 2004.

A. Abraham, P. C. Eduardo, J. Rocha, and . Pothier, Swelfe: a detector of internal repeats in sequences and structures, Bioinformatics, vol.24, issue.13, pp.1536-1537, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00336123

D. Myers-turnbull, S. E. Bliven, . Peter-w-rose, K. Zaid, P. Aziz et al., Systematic detection of internal symmetry in proteins using ce-symm, Journal of Molecular Biology, vol.426, issue.11, pp.2255-2268, 2014.

C. Kim, J. Basner, and B. Lee, Detecting internally symmetric protein structures, BMC Bioinformatics, vol.11, issue.1, p.303, 2010.
DOI : 10.1186/1471-2105-11-303

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-11-303

P. D. Viet, A. V. Daniel-b-roche, and . Kajava, TAPO: A combined method for the identification of tandem repeats in protein structures, FEBS Letters, vol.589, issue.19, pp.2611-2619, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01883461

T. Di-domenico, E. Potenza, I. Walsh, G. Parra, M. Giollo et al., RepeatsDB: a database of tandem repeat protein structures, Nucleic Acids Research, vol.42, issue.D1, pp.352-357, 2013.

L. Paladin, L. Hirsh, D. Piovesan, M. A. Andrade-navarro, A. V. Kajava et al., RepeatsDB 2.0: improved annotation, classification, search and visualization of repeat protein structures, Nucleic Acids Research, vol.45, issue.D1, pp.308-312, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01875237

L. Hirsh, L. Damiano-piovesan, S. Paladin, and . Tosatto, Identification of repetitive units in protein structures with ReUPred, Amino Acids, vol.48, issue.6, pp.1391-1400, 2016.

M. Christopher and . Bishop, Pattern Recognition and Machine Learning, 2006.

D. Raviv, A. M. Bronstein, R. Michael-m-bronstein, and . Kimmel, Full and partial symmetries of non-rigid shapes, International Journal of Computer Vision, vol.89, issue.1, pp.18-39, 2010.

M. Ovsjanikov, J. Sun, and L. Guibas, Global intrinsic symmetries of shapes, Computer Graphics Forum, vol.27, issue.5, pp.1341-1348, 2008.

J. Niloy, M. Mitra, M. Pauly, D. Wand, and . Ceylan, Symmetry in 3D geometry: Extraction and applications, Computer Graphics Forum, vol.32, issue.6, pp.1-23, 2013.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, pp.1097-1105, 2012.

R. Cao, D. Bhattacharya, J. Hou, and J. Cheng, DeepQA: improving the estimation of single protein model quality with deep belief networks, BMC Bioinformatics, vol.17, issue.1, p.495, 2016.

S. Wang, S. Sun, Z. Li, R. Zhang, and J. Xu, Accurate de novo prediction of protein contact map by ultra-deep learning model, PLoS Computational Biology, vol.13, issue.1, p.1005324, 2017.

B. Adhikari, J. Hou, and J. Cheng, DNCON2: Improved protein contact prediction using two-level deep convolutional neural networks, Bioinformatics, vol.34, issue.9, pp.1466-1472, 2018.

B. Hui-y-xiong, . Alipanahi, J. Leo, H. Lee, D. Bretschneider et al., The human splicing code reveals new insights into the genetic determinants of disease, Science, vol.347, issue.6218, p.1254806, 2015.

J. Zhou, . Olga, and . Troyanskaya, Predicting effects of noncoding variants with deep learning-based sequence model, Nature Methods, vol.12, issue.10, p.931, 2015.

T. Kristof, F. Schütt, S. Arbabzadah, K. R. Chmiela, A. Müller et al., Quantum-chemical insights from deep tensor neural networks, Nature Communications, vol.8, p.13890, 2017.

S. Chmiela, A. Tkatchenko, E. Huziel, I. Sauceda, . Poltavsky et al., Machine learning of accurate energy-conserving molecular force fields, Science Advances, vol.3, issue.5, p.1603015, 2017.

S. Justin, O. Smith, A. E. Isayev, and . Roitberg, ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost, Chemical Science, vol.8, issue.4, pp.3192-3203, 2017.

G. Derevyanko, S. Grudinin, Y. Bengio, and G. Lamoureux, Deep convolutional networks for quality assessment of protein folds, Bioinformatics, p.494, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01702857

G. Pagès, B. Charmettant, and S. Grudinin, Protein model quality assessment using 3D oriented convolutional neural networks. bioRxiv, p.432146, 2018.

W. Torng and R. B. Altman, 3D deep convolutional neural networks for amino acid environment similarity analysis, BMC Bioinformatics, vol.18, issue.1, p.302, 2017.

J. Luna, M. Skalic, G. Martinez-rosell, and G. Fabritiis, KDEEP: Protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks, Journal of Chemical Information and Modeling, vol.58, issue.2, pp.287-296, 2018.

J. Hochuli, A. Helbling, T. Skaist, M. Ragoza, and D. R. Koes, Visualizing convolutional neural network protein-ligand scoring, Journal of Molecular Graphics and Modelling, vol.84, pp.96-108, 2018.

J. Jiménez, . Doerr, . Martínez-rosell, G. Rose, and . Fabritiis, DeepSite: protein-binding site predictor using 3D-convolutional neural networks, Bioinformatics, vol.33, issue.19, pp.3036-3042, 2017.

A. Amidi, S. Amidi, D. Vlachakis, V. Megalooikonomou, N. Paragios et al., EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation, 2017.

K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, Proceedings of the IEEE International Conference on Computer Vision, pp.1026-1034, 2015.

J. Milgram, Immersing projective spaces, Annals of Mathematics, pp.473-482, 1967.

K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Neural networks, vol.2, issue.5, pp.359-366, 1989.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat et al., The Protein Data Bank, Nucleic Acids Research, vol.28, pp.235-242, 2000.

K. Schütt, P. Kindermans, H. Felix, S. Chmiela, A. Tkatchenko et al., SchNet: A continuous-filter convolutional neural network for modeling quantum interactions, Advances in Neural Information Processing Systems, pp.992-1002, 2017.

N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li et al., Tensor field networks: Rotation-and translation-equivariant neural networks for 3D point clouds, 2018.

S. J. Daniel-e-worrall, D. Garbin, G. Turmukhambetov, and . Brostow, Harmonic networks: Deep translation and rotation equivariance, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.2, 2017.

C. Simon, I. W. Lovell, B. Davis, P. Arendall, M. Bakker et al., Structure validation by C? geometry: ?, ? and c? deviation, Proteins: Structure, Function, and Bioinformatics, vol.50, issue.3, pp.437-450, 2003.

K. Perlin, An image synthesizer, ACM Siggraph Computer Graphics, vol.19, issue.3, pp.287-296, 1985.

N. Geoffrey-e-hinton, A. Srivastava, I. Krizhevsky, . Sutskever, and . Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, 2012.

P. Diederik, J. Kingma, and . Ba, Adam: A method for stochastic optimization, 2014.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis et al., Tensorflow: a system for large-scale machine learning, Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation, pp.265-283, 2016.