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Abstract15

In this paper, we introduce the first verification method which is able to provide weakly-hard16

real-time guarantees for tasks and task chains in systems with multiple resources under parti-17

tioned scheduling with fixed priorities. Existing weakly-hard real-time verification techniques are18

restricted today to systems with a single resource. A weakly-hard real-time guarantee specifies19

an upper bound on the maximum number m of deadline misses of a task in a sequence of k20

consecutive executions. Such a guarantee is useful if a task can experience a bounded number of21

deadline misses without impacting the system mission. We present our verification method in the22

context of switched networks with traffic streams between nodes, and demonstrate its practical23

applicability in an automotive case study.24
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1 Introduction33

Modern embedded systems often have a distributed hardware platform, where the individual34

processing resources are linked by data buses or switched networks. A software application,35

which is mapped to such a platform, consists of a set of communicating tasks and has often36

to provide results within a limited response time. Timely communication between sender37

and receiver tasks is therefore a critical aspect in design and verification. In this paper, we38

concentrate on the timing behavior of traffic streams in switched networks like Switched39

Ethernet. By traffic stream we understand an infinite sequence of data transmissions between40

a sender and a receiver node of the network.41
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15:2 Verifying Weakly-Hard Real-Time Properties of Traffic Streams in Switched Networks

If the classical hard real-time paradigm is applied to a traffic stream, then the duration of42

a data transmission over the network must not violate a given end-to-end deadline. However,43

with increasing functionality and growing bandwidth demand of data transmission in modern44

embedded systems in the automotive or industrial domain, it becomes more and more difficult45

to fulfill the end-to-end deadlines of all traffic streams in unfavorable scheduling scenarios. A46

promising option is the shift to the weakly-hard real-time paradigm [1] which relaxes these47

timing requirements. Here a traffic stream is feasible from a timing perspective, if it does48

not exceed a certain budget of end-to-end deadline misses. For instance, a traffic stream may49

not miss more than m end-to-end deadlines in any k consecutive transmissions. The traffic50

stream is said to be (m, k)-constrained.51

The practical justification of weakly-hard real-time paradigm in the context of communic-52

ation builds on the observed robustness of many real-time software systems. In the field of53

image processing, a late transmission may result in a skipped frame. Given that the number54

and distribution of frame skips is appropriately bounded, it will not be noticeable to the55

human eye. In the field of control, an end-to-end deadline miss may cause the calculation of56

the control law to fail at time instant k so that no new control input is sent to the actuator57

at this instant. Several works could show that under given (m, k)-constraints the required58

control performance could be maintained [15] [9] [8] . Blind et al. [2] could show stability59

in the classical sense of Lyapunov for a networked control system, where the network is60

unreliable in the (m,k)-sense.61

So far, verification techniques have been developed which allow to derive (m, k)-guarantees62

for tasks which are executed on a system with a single service-providing resource. A switched63

network, however, comprises several service-providing resources as detailed in Section 2.64

In this paper, we therefore provide a compositional verification method which is able to65

provide (m,k)-guarantees for multi-resource problems. The main challenge in extending an66

existing (m,k)-verification method to the multi-resource setting is to deal with inter-resource67

dependencies. Our approach builds on both68

1. Compositional Performance Analysis (CPA). CPA [11] is a compositional framework to69

verify classical hard real-time properties, e.g., worst case response times. It deals with70

inter-resource dependencies by the formulation of a fixed-point problem.71

2. Typical Worst Case Analysis (TWCA) TWCA [21] is one of the existing (m,k)-verification72

techniques for single resource systems.73

We adapt and extend CPA and TWCA, calling the resulting procedure TypicalCPA. The74

paper is structured as follows. We begin by defining our system model, and then introduce75

the CPA approach. We continue by explaining the basic principle of TWCA, and reason how76

CPA and TWCA can be coupled. Finally, we perform and discuss experiments. An overview77

of related work is given before the conclusion.78

2 Network Model79

The system model represents a real-time network setting with unicast, multicast and broadcast80

streams and is depicted in Figure 1. The scope of the model includes, for instance, Switched81

Ethernet but is not limited to it. The main components of the network model are switches82

and nodes. A pair of nodes may communicate by sending frames over the network which83

are forwarded by the switches using appropriate output ports. The service of output ports84

for frame transmission is scarce and has to be arbitrated according to a static priority85
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non-preemptive (SPNP) scheduling policy. The output ports therefore represent the service-86

providing resources Rk in the system [6].87

An infinite sequence of frames between a source node and 1 [a subset of resp. all]88

destination node(s) is called a unicast [multicast resp. broadcast] stream. A unicast [multicast89

resp. broadcast] stream si is modeled as a linear [forked] chain of N tasks, where each task90

represents a hop in the route and is mapped to the output port of the respective switch. We91

call the set of N tasks contained in the stream si Tsi
= {τi,1, τi,2, . . . τi,N} and define the92

respective precedence constraints, e.g. for a unicast stream as τi,1 ≺ τi,2 ≺ . . . ≺ τi,N . The93

first task in the stream si, is activated by an external event source. All successor tasks are94

activated by the termination events of their respective predecessor task in the chain. Each95

task τi,j in stream si has a non-unique priority pi. The best case execution time (BCET)96

resp. worst case execution time (WCET) of task τi,j , denoted as C−i,j resp. C
+
i,j , represents97

the minimum resp. maximum frame delay in the switch plus the constant wire transmission98

time, and is independent of other traffic in the network. Dynamic delays resulting from99

contention at the switch output ports are considered in the response time computation of100

tasks. The maximum response time of a task τi,j is constrained by the relative deadline101

di,j , while the maximum network traversal time w.r.t. a stream si should not exceed the102

end-to-end deadline Di =
∑
j di,j .103

We describe the occurrence of activation events over time w.r.t. a task τi,j by the concept104

of event flows as well as by minimum and maximum event models.105

I Definition 1 (Event flow). An event flow ei,j(t) is a function which returns the number of106

events which activate task τi,j within the time interval [0, t) in a given execution run.107

I Definition 2 (Event model). The minimum and maximum event models η−i,j(∆t) and108

η+
i,j(∆t) indicate a lower and upper bound, respectively, on the number of activation events109

for task τi,j in any time interval [t, t + ∆t). Any event flow ei,j(t) of task τi,j is therefore110

constrained by111

∀t1, t2 : t1 ≤ t2 : η−i,j(t2 − t1) ≤ ei,j(t2)− ei,j(t1) ≤ η+
i,j(t2 − t1).112

113

If convenient, we also use the pseudo-inverses of event models, i.e., the event distance114

functions. The event distance function δ−i,j(n) [δ+
i,j(n)] is the pseudo-inverse of event model115

η+
i,j(∆t) [η−i,j(∆t)].116

I Definition 3 (Event distance functions). The minimum and maximum distance functions117

δ−i,j(n) and δ+
i,j(n) indicate a lower and upper bound, respectively, on the temporal distance118

between the first and the last event of a sequence of n activation events for task τi,j . For the119

special case n ∈ {0, 1}, the definition δ−i,j(n) = δ+
i,j(n) = 0 applies.120

3 Compositional Performance Analysis121

CPA [11] is a verification framework which derives lower and upper bounds on the timing122

properties of distributed real-time software systems with partitioned scheduling. Computed123

timing properties include in particular the best case response times (BCRTs) and worst case124

response times (WCRTs) of tasks. CPA is implemented in Python as pyCPA [4], the basic125

libraries of pyCPA are available on-line [5]. The CPA method breaks the verification problem126

down into a set of local, i.e. resource-related, analysis problems. A subsequent analysis step127

then relates the local verification problems such that inter-resource dependencies are taken128

into account and a global fixed point problem is formulated.129

ECRTS 2018
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Figure 1 Network model. The figure illustrates a network with six nodes and two switches. The
output ports of a switch are named after the points of the compass. Four exemplary unicast streams
are represented.

I Definition 4 (Attributes local & global). The attribute «local» refers to parameters,130

properties etc. of a specific resource Rk and the associated (mapped) task set TRk
.131

The attribute «global» refers, on the contrary, to parameters, properties etc. of the processing132

platform P =
⋃
k Rk and the entire task set T =

⋃
k TRk

.133

3.1 Local Analysis134

The local analysis focuses on the isolated resource Rk and derives the timing properties of135

the associated task set TRk
. The analysis objective is in particular to compute (a) the BCRT136

and WCRT for each task τi,j ∈ TRk
, and (b) the output event model of each task τi,j ∈ TRk

.

Port E
scope of local analysis

input event models: output event models:

Figure 2 Scope and interface of the local CPA. The figure shows as an example the output port
E of switch 1 with mapped tasks.

137

3.1.1 Computation of Response Times138

In the following, we very briefly sketch the response time analysis for a task τi,j which is139

mapped to an SPNP-scheduled resource Rk. For a detailed presentation, please refer to [7].140

To find the WCRT of task τi,j , a scheduling scenario has to be known which induces the141
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longest response time of task τi,j . This worst case scenario is often called the maximum142

level-τi,j busy period. It is known to start if τi,j ∪hsp(τi,j)1are activated synchronously and a143

task in lp(τi,j), which has just been activated before, causes the maximum blocking delay [3].144

It closes as soon as the resource becomes idle w.r.t. τi,j and hsp(τi,j)-tasks. The processing145

behavior of task τi,j within the maximum level-τi,j busy period can be described by the so146

called multiple event busy times B+
i,j(q).147

I Definition 5. The maximum q-event busy time B+
i,j(q) indicates the processing time of q148

consecutive activation events of task τi,j within the maximum level-τi,j busy period. B+
i,j(q)149

always starts with the beginning of the maximum level-τi,j busy period [17].150

The busy times B+
i,j(q) depend on the input event models and WCETs of the tasks TRk

. It151

has been shown that the WCRT R+
i,j of task τi,j is among its response times in the maximum152

level-τi,j busy period, such that we can write153

R+
i,j = max

1≤q≤Ki,j

{
B+
i,j(q)− δ

−
i,j(q)

}
(1)154

155

where Ki,j is the maximum number of jobs of task τi,j contained in the maximum level-τi,j156

busy period. The BCRT of task τi,j can be approximated by its BCET R−i,j = C−i,j .157

3.1.2 Computation of Output Event Distance Functions and Output158

Event Models159

The local analysis problems are linked because precedence relations extend over tasks on160

different resources as illustrated in Figure 1. According to the synchronous task chain161

semantics, a termination event of a task τi,j is interpreted as an activation event by the162

successor task τi,j+1. This interaction between tasks τi,j and τi,j+1 can be quantified by163

the distance functions δ+
i,j+1(n) resp. δ−i,j+1(n) indicating the maximum resp. minimum164

number of distance between any n consecutive termination events of task τi,j or, equivalently,165

activation events of task τi,j+1. Firstly, let us present safe, easy-to-interpret bounds for the166

distance functions with n ≥ 2 using the jitter method [16]167

δ−i,j+1(n) ≥ max
{

(n− 1) · C−i,j , δ
−
i,j(n)− J+

i,j

}
(2)168

δ+
i,j+1(n) ≤ δ+

i,j(n) + J+
i,j (3)169

170

Eq. 2 expresses that, in the worst case, n termination events at the output of task τi,j are171

closer by the maximum response time jitter J+
i,j = R+

i,j − R
−
i,j than n activation events at172

the input of the same task. Also, the density of activation events increases with every stage173

of the task chain due to the accumulation of response jitter. Eq. 3 describes that, in the174

best case, the distance of n termination events grows with every stage of a task chain by the175

jitter J+
i,j . Secondly, we introduce more accurate but less intuitive bounds which have been176

derived in [18] (busy window method)177

δ−i,j+1(n) ≥max{B−i,j(n− 1), min
1≤q≤q+

i,j

{
δ−i,j(n+ q − 1)−B+

i,j(q)
}

+B−i,j(1)} (4)178

δ+
i,j+1(n) ≤ max

1≤q≤q+
i

{
δ+
i,j(n− q + 1) +B+

i,j(q)
}
−B−i,j(1)}. (5)179

180

1 We use hsp(τi,j) to denote the set of tasks which have higher or same priority than task τi,j ∈ TRk

and are mapped to the same resource Rk. Likewise we write lp(τi,j) to denote the set of tasks which
have lower priority than task τi,j ∈ TRk

and are mapped to the same resource Rk.

ECRTS 2018
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According to the rules of network calculus [12], the event distance function δ−i,j+1(n) resp.181

δ+
i,j+1(n) can even be more improved in accuracy if replaced by its superadditive closure182

δ̄−i,j+1(n) resp. subadditive closure δ̄+
i,j+1(n). In the following, we continue to write δ−i,j+1(n)183

resp. δ+
i,j+1(n) (without bar) stating explicitly when we make use of the superadditivity184

property (δ−i,j+1(m+ n) ≥ δ−i,j+1(m) + δ−i,j+1(n)) or subadditivity property (δ+
i,j+1(m+ n) ≤185

δ+
i,j+1(m) + δ+

i,j+1(n)). Note again that the output event models η+
i,j+1(∆t), η−i,j+1(∆t) can186

be obtained from the output event distance functions by pseudo-inversion.187

It is desirable for efficiency reasons to have a finite representation of event distance188

functions, meaning that it is possible to construct the event distance functions for every n189

on the basis of a limited number of l known points. This can be achieved by approximat-190

ing δ−i,j+1(n), δ+
i,j+1(n) by bounds with a repetitive behavior. The approximation is very191

acceptable with regard to accuracy, if the repetition period is chosen large enough. In the192

particular context of this paper, repetitive bounds restrict the value range that needs to be193

processed by the algorithm given in Theorem 23. We concentrate in the following on δ−(n)194

and its pseudo-inverse η+(∆), but analogous rules can be applied to δ+(n) and η−(∆).195

I Lemma 6 (Repetitive extension of an event distance function). Given the superadditive event196

distance function δ−(n) for 1 ≤ n ≤ l, an l-repetitive extension δ̂−(n) is defined by197

δ̂−(n) =
{

0 for 0 ≤ n ≤ 1⌊
n−2
l

⌋
· δ−(l) + δ−(n−

⌊
n−2
l

⌋
· l) for n ≥ 2.

.198

199

The l-repetitive extension δ̂−(n) is a lower bound for δ−(n), s.t. ∀n : δ̂−(n) ≤ δ−(n).200

Proof. We have δ̂−(n) = δ−(n) = 0 for n ∈ {0, 1}, and δ̂−(n) = δ−(n) for 2 ≤ n ≤ l + 2.201

For n > l + 2, we make use of the superadditivity property δ−(n1) + δ−(n2) ≤ δ−(n1 + n2)202

and set x =
⌊
n−2
l

⌋
: δ̂−(n) = x · δ−(l) + δ−(n− x · l) ≤ δ−(x · l) + δ−(n− x · l) ≤ δ−(n). J203

I Lemma 7 (Repetitive extension of an event model). Given the subadditive event model204

function η+(∆t), a T -repetitive extension η̂+
l (∆t) is defined by205

η̂+
l (∆t) =

⌊
∆t
T

⌋
· η+(T ) + η+(∆t−

⌊
∆t
T

⌋
· T ).206

207

If δ̂−(n) is l-repetitive, then its pseudo-inverse η̂+
l (∆t) must be T = δ̂−(l)-repetitive.208

Proof. This results from the symmetry of function inversion. J209

3.2 Global Analysis210

The global analysis now couples the local analysis problems according to the following iterative211

procedure, which is also depicted in Figure 3 (box entitled “original CPA”). Firstly, each212

header task of a stream τi,1 has a known activation behavior bounded by η−i,1(∆t), η+
i,1(∆t)213

and imposed by external event sources. Since initially no event models are available for214

successor tasks in the stream, i.e. for τi,j with j > 1, they are initialized with the event model215

assigned to the header task τi,1. The local analysis is then performed for each resource, such216

that response time bounds and output event models are obtained. The computed output217

event models are then propagated to the direct successor tasks, where they are interpreted as218

input event models. The local analysis is then repeated with the updated event models. If219

all propagated event models are identical to the event models used in the previous analysis220

run, a global fixed point is reached and the analysis terminates.221
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Derive initial input event models

Perform local analysis

Compare computed output event 
models with those from the 
previous iteration. Convergence? 

Propagate
Output Event Models

yes

no

Output final analysis results:
 BCRT and WCRT
 converged event models

Perform 
local
TWCA

Perform 
local
TWCA

Perform 
local
TWCA

Perform local analysis
Perform local analysis

original CPA

TWCA

typicalCPA

Derive initial typical input event models

Perform local analysis

Compare computed output event 
models with those from the 
previous iteration. Convergence? 

Propagate
Output Event Models

yes

no

Output final analysis results:
 typical BCRT and WCRT
 converged typical event models

Perform local analysis
Perform local analysis

CPA

Perform 
local
TWCA

Perform 
local
TWCA

Derive 
overload 
event 
models

extended CPA

Figure 3 TypicalCPA. The extended CPA also derives typical and overload event models as
detailed in Section 5, which are then processed by a TWCA for each component. New or adapted
elements of CPA and TWCA are marked in red.

4 Typical Worst Case Analysis222

Typical Worst Case Analysis (TWCA) models and analyzes systems with a single service-223

providing resource Rk under transient overload conditions. It provides weakly-hard real-time224

guarantees for tasks TRk
. In this section, we firstly present which extensions to the CPA225

system model presented in Section 2 are necessary to apply TWCA. Then the TWCA226

procedure is introduced together with a needed generalization of a schedulability criterion.227

4.1 Extended System Model228

The system model of CPA presented in Section 2 is a subset of the TWCA system model.229

The important extension of the CPA model by TWCA is that each task τi,j may be activated230

by events of two distinct classes, namely by typical and overload events. The idea is that231

in the exclusive presence of typical events, the task set TRk
is schedulable. In contrast, the232

supplementary overload events are a potential cause for transient overload.233

I Definition 8 (Local typical worst case). If every task τi,j ∈ TRk
is only activated by typical234

ECRTS 2018



15:8 Verifying Weakly-Hard Real-Time Properties of Traffic Streams in Switched Networks

Port E
scope of TWCA

input event models: output event models:

Figure 4 Scope and interface of TWCA.

events, then the task set TRk
is schedulable even in the most unfavorable scheduling scenario235

(local typical worst case).236

I Definition 9 (Local worst case). If every task τi,j ∈ TRk
is activated by both typical and237

overload events, then in the most unfavorable scheduling scenario (local worst case) the task238

set TRk
is possibly unschedulable.239

The occurrence of typical or overload activation events over time w.r.t. a task τi,j is also240

modeled by the concept of event flows, while the minimum and maximum frequency of typical241

and overload event arrival is described by event models. The corresponding definitions are242

given below, while Figure 4 shows the extended system model with the additional event243

models.244

I Definition 10 (Typical and overload event flows). A typical event flow e
(t)
i,j (t), resp. overload245

event flow e
(o)
i,j (t), is a function which returns the number of typical, resp. overload, events246

which activate task τi,j within the time interval [0, t) in a given execution run.247

I Definition 11 (Typical and overload event models). The event models η−,(t)i,j (∆t), η+,(t)
i,j (∆t),248

resp. η−,(o)i,j (∆t), η+,(o)
i,j (∆t), indicate a lower and an upper bound on the number of typical,249

resp. overload, events which activate task τi,j within ∆t.250

I Definition 12 (Decomposition). Any observed event flow of task τi,j which satisfies the251

lower and upper bounds η−i,j(∆t), η
+
i,j(∆t) can be partitioned in252

(1) an event flow of typical events satisfying η−,(t)i,j (∆t), η+,(t)
i,j (∆t) and253

(2) an event flow of overload events satisfying η−,(o)i,j (∆t), η+,(o)
i,j (∆t).254

This implies that the maximum event model η+
i,j(∆t) is decomposable, s.t. η+

i,j(∆t) ≤255

η
+,(t)
i,j (∆t) + η

+,(o)
i,j (∆t). If η+

i,j(∆t) = η
+,(t)
i,j (∆t) + η

+,(o)
i,j (∆t) holds, then the maximum event256

model is said to be exactly decomposable. Please refer for illustration to Figure 5c.257

The intuition related to the system model is that a computing platform may be designed258

to provide sufficient processing service for a typical workload. For instance, if all tasks have259

a periodic (= typical) activation pattern, then the task set is schedulable. If, however, some260

tasks experience additional sporadic (= overload) activations, then the task set may become261

unschedulable in unfavorable scheduling scenarios.262
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4.2 Basic Procedure263

The objective of TWCA is to determine weakly-hard real-time guarantees for all tasks in the264

task set. More precisely, a deadline miss model (DMM) is obtained for every task τi,j ∈ TRk
.265

I Definition 13 (Deadline miss model). A deadline miss model for a task τi,j is a function266

dmmi,j : N→ N with the property that out of any k consecutive jobs of task τi,j , at most267

dmmi,j(k) might miss their deadline di,j .268

To compute dmmi,j(k) under SPNP scheduling, TWCA quantifies the impact of overload269

activations. We summarize the procedure in the following steps.270

1. Firstly TWCA derives the maximum impact which a single overload activation of a task271

τm,n ∈ hsp(τi,j) can have on the task τi,j . The impact is counted by the maximum272

number jobs of task τi,j which can miss their deadline due to this overload activation,273

and is denoted as Ni,j .274

2. It is computed how many overload activations of task τm,n can at most influence the275

k-sequence of task τi,j . This number is given by η+,(o)
m,n (∆T i,jk ), where ∆T i,jk describes the276

maximum time interval during which a k-sequence of task τi,j is sensitive to overload277

events.278

3. The overall impact of task τm,n is then derived as the product Ni,j · η+,(o)
m,n (∆T i,jk ).279

4. Finally, the impact of all τm,n tasks which may interfere with task τi,j is summed.280

Interfering tasks have higher or same priority (hsp) than task τi,j .281

Thus we have282

dmmi,j(k) =
∑

τm,n∈hsp(τi,j)

Ni,j · η+,(o)
m,n (∆T i,jk ) (6)283

where284

Ni,j = #
{
q ∈ N+|1 ≤ q ≤ Ki,j ∧ di,j < R+

i,j(q)
}

(7)285

∆T i,jk ≤ B
+
i,j(Ki,j) + δ+

i,j(k) + (R+
i,j − C

+
i,j) (8)286

287

Please refer for a detailed explanation to [10].288

4.3 Improved Procedure289

The presented basic TWCA assumes that every isolated overload activation of a task τm,n290

which interferes with task τi,j causes at most Ni,j deadline misses. The approach presented291

in [21] improves over the basic TWCA by considering that often actually the combined effect292

of overload from several interferer tasks is required to cause a deadline miss of task τi,j . We293

introduce therefore the following definitions.294

I Definition 14 (Combination). A local combination C ⊆ TRk
is a set of tasks which may295

experience both typical as well as overload activation events, whereas the tasks of the296

complementary set, TRk
\ C, experience only typical activation events.297

I Definition 15 (Unschedulable combinations). R+,C
i,j denotes the longest response time of298

task τi,j ∈ TR, assuming that only tasks in C experience overload activations. A combination299

C is said to be schedulable w.r.t. to task τi,j , if R+,C
i,j ≤ di,j , otherwise it is unschedulable.300

The set of unschedulable combinations w.r.t. to task τi,j is called Ui,j .301
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Note that special local combinations are C = ∅ and C = TRk
. In this context, R+,TRk

i,j is the302

usual worst case response time and R+,∅
i,j is called typical worst case response time.303

The improved TWCA [21] is now based on the fact that the sensitivity interval ∆T i,jk of304

the k-sequence of task τi,j can be divided into a sequence of busy periods [13]. The timing305

behavior of busy periods is mutually independent, because of the idle times which separate306

them. Within in any such busy period, an unschedulable combination is necessary to cause307

at most Ni,j deadline misses of task τi,j within this interval. A single task τm,n can be part308

of unschedulable combinations at most Ωm,n = η
+,(o)
m,n (∆T i,jk ) times, which corresponds to309

the maximum number of overload activations in ∆T i,jk .310

Let xC ∈ N count the number of busy periods in ∆T i,jk , which suffer from an unschedulable311

combination C ∈ Ui,j . Then the DMM can be obtained by solving the following optimization312

problem313

dmmi,j(k) = max Ni,j
∑

C: C∈Ui,j

xC (9)314

s.t.
∑

C,(m,n)

xC ≤ Ωm,n (10)315

with C, (m,n) : (τm,n ∈ hsp(τi,j) ∪ τi,j) ∧ (τm,n ∈ C) ∧ (C ∈ Ui,j)316
317

To determine whether a combination C is schedulable or not, a fast schedulability criterion318

is required. We rely on the criterion presented in [21], but generalize it for (1) non-unique319

priorities, and (2) the general relation where the maximum event models are not exactly320

decomposable. The generalization is presented in Theorem 16; notation and explanations of321

the theorem contents are given in the corresponding proof and Figure 5.322

I Theorem 16 (Generalized schedulability criterion). Equation 11 formulates a schedulability323

criterion for task τi,j under a given combination C.324

∀l ∈ Ki,j :
∑

∀τm,n:τm,n∈hsp(τi,j)∪τi,j∧τm,n /∈C

wl(m,n),l
over ≥ Λli,j − Γli,j . (11)325

326

The following abbreviations are used327

Λli,j = B+
i,j(l)− δ

−
i,j(l)− di,j328

Γli,j =
∑

τm,n∈hp(τi,j)

C+
m,n · [η+

m,n(B+
i,j(l)− C

+
i,j)− η

+
m,n(∆tli,j)]329

∆tli,j = δ−i,j(l) + di,j − C+
i,j330

wl(m,n),l
over =

C
+
m,n ·

(
η+
m,n(∆tli,j)− η

+,(t)
m,n (∆tli,j)

)
for τm,n ∈ hp(τi,j)

C+
m,n ·

(
η

+]
m,n(δ−i,j(l))− η

+],(t)
m,n (δ−i,j(l))

)
for τm,n ∈ sp(τi,j) ∪ τi,j

331

332

Proof. Let us verify the schedulability of task τi,j under a given combination C, i.e. we verify333

whether R+,C
i,j ≤ di,j is true. We start from the unschedulable local worst case with C ′ = TRk

,334

which is represented by the maximum level-τi,j busy period which contains Ki,j jobs of task335

τi,j (cf. Figure 5a). If the task τi,j is schedulable in the local worst case, then it schedulable336

for every combination and the problem is solved. If, however, task τi,j is unschedulable in337

the local worst case, then some of the Ki,j jobs of task τi,j miss their deadline. The lth job338

of τi,j exceeds its deadline in the local worst case by (cf. also Figure 5)339

Λli,j = R+
i,j(l)− di,j = B+

i,j(l)− δ
−
i,j(l)− di,j .340

341
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If its deadline is enforced by removing overload, an amount of workload Γli,j will disappear342

automatically. Namely the workload from interfering activations which occur after the343

deadline but before the non-preemptive execution of the lth job. Jobs of tasks with the same344

priority (sp) as τi,j do not contribute to Γli,j , because they influence the response time of the345

lth job only if they have arrived earlier than or simultaneously with this job.346

Γli,j =
∑

τm,n∈hp(τi,j)

C+
m,n · [η+

m,n(B+
i,j(l)− C

+
i,j)− η

+
m,n(δ−i,j(l) + di,j − C+

i,j)]347

348

The RHS of inequality 11 describes the smallest amount of overload of interfering tasks that349

needs removed for sufficient schedulability of the lth job of τi,j in the maximum busy period.350

The LHS of Eq. 11 describes how much overload is removed compared to the local worst351

case, if we assume combination C (cf. Figure 5b for C = ∅). Under combination C, all tasks352

τm,n /∈ C experience only typical activations and their overload is not present. In other353

words, the tasks τm,n /∈ C follow their event model η+,(t)
m,n (∆t). In particular, an amount of354

overload per task τm,n355

wl(m,n),l
over =

C
+
i,j ·

(
η+
m,n(∆tli,j)− η

+,(t)
m,n (∆tli,j)

)
for τm,n ∈ hp(τi,j)

C+
i,j ·

(
η

+]
m,n(δ−i (l))− η+],(t)

m,n (δ−i (l))
)

for τm,n ∈ sp(τi,j) ∪ τi,j
356

357

is removed which impacts the response time of the lth job of task τi,j . Namely, the interfering358

overload of hp(τi,j)-tasks until the timely nonpreemptive execution of job τi,j(l) is absent.359

Likewise, the overload of all sp(τi,j)-jobs and overload jobs of τi,j are absent, which interfere360

if they arrive before or simultaneously with job τi,j(l).2 J361

5 Typical Compositional Performance Analysis362

The new framework TypicalCPA, which we develop in this paper, combines CPA and TWCA363

such that weakly-hard real-time guarantees can be given for tasks in a multi-resource system.364

More concretely, the local analysis method TWCA will performed for each component after365

an extended CPA has terminated. This is illustrated in Figure 3. To apply TWCA as a366

local analysis method, for each task minimum and maximum event models together with367

the corresponding minimum and maximum typical and overload event models have to be368

provided. The state-of-the-art CPA, however, computes as a result, besides BCRT and369

WCRT, so far only the converged minimum and maximum event models of each task (not370

their typical and overload variants) and thus has to be extended.371

In the following we assume that the complete set of event models – (η−i,1(∆t), η+
i,1(∆t)),372

(η−,(t)i,1 (∆t), η+,(t)
i,1 (∆t)) and (η−,(o)i,1 (∆t), η+,(o)

i,1 (∆t)) – is given for the header tasks τi,1, since373

they are activated by external event sources. The problem to be addressed is how to derive374

these event models for all successor tasks in the context of CPA such that they can be used375

for the subsequent TWCA.376

5.1 Basic Definitions377

We begin by introducing the concept of a global combination describing the activation behavior378

of each task τi,j contained in the global task set T . Due to the existing precedence constraints379

2 The notation η+](∆t) expresses that the maximum event model refers to the closed time interval [0, t].
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(a) Local worst case busy window with C = Tk,
Ki,j = 1

(b) Local typical worst case busy window with
C = ∅

(c) Exemplary decomposition of the maximum event model η+
m,n(∆t) in the maximum overload

event model η+,(o)
m,n (∆t) and the maximum typical event model η+,(t)

m,n (∆t) for task τm,n

Figure 5 Theorem 16: Generalized schedulability criterion

in a stream si, the activation behavior of any task τi,j with j > 1 is fully determined by380

the respective predecessor task and therefore in the end by the header task τi,1. It is thus381

sufficient to include the activation behavior of the header tasks in the definition of a global382

combination.383

I Definition 17 (Global combination). A global combination Cg ⊆ {τi,1| ∀i : τi,1 ∈ T } is a384

set of header tasks which may experience both typical as well as overload activations. All385

other header tasks follow their typical event model.386

Special global combinations are the global typical combination with Cg = ∅, and the global387

worst case combination with Cg = {τi,1| ∀i : τi,1 ∈ T }.388

I Definition 18 (Schedulability of a global combination). We say a global combination Cg is389

schedulable if and only if under all possible scheduling scenarios (1) all streams can satisfy390

their end-to-end deadlines Di,j and (2) every task meets its local deadline di,j .391

We require that the given event models of the header tasks are such that the following392

schedulability constraints are respected.393

I Definition 19 (Global typical worst case). If the system behaves according to the global394

typical combination, then the task set T is schedulable even in the most unfavorable scenario395

(global typical worst case).396

I Definition 20 (Global worst case). If the system behaves according to the global worst397

case combination, the task set T is possibly unschedulable in the most unfavorable scenario398

(global worst case).399
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We would like to mention that for computing weakly-hard real-time guarantees, naturally400

only systems which are unschedulable in the global worst case are of interest.401

5.2 Computation of Minimum and Maximum Event Models402

While for the header tasks the minimum and maximum event model η−i,j(∆t), η
+
i,j(∆t) is403

given by the system specification, it has to be derived for successor tasks τi,j with j > 1.404

The classical CPA is capable of deriving these event models for all successor tasks from405

the original CPA input model as defined in Section 2. Thus CPA explores here the most406

favorable and the most unfavorable behavior of the global worst case combination.407

5.3 Computation of Minimum and Maximum Typical Event Models408

The minimum and maximum typical event model η−,(t)i,j (∆t), η+,(t)
i,j (∆t) have also to be409

computed for the successor tasks τi,j with j > 1. Our claim is that CPA can also be used410

for this purpose, given that in the input model the worst case bounds η−i,1(∆t), η+
i,1(∆t) are411

replaced by the typical event models η−,(t)i,1 (∆t), η+,(t)
i,1 (∆t). In other words, CPA is now412

applied for the best case and worst case scenario where all header tasks see only typical413

events (global typical combination). CPA, which is agnostic of event types, computes the414

converged minimum and maximum event models for all stream tasks. We assume in this415

paper that all typical events that are injected at the head of a stream keep their typical416

nature while propagating through the system. Knowing that only typical events have served417

for stream activation, we can interpret the CPA-derived event models as typical and have418

thus η−,(t)i,j (∆t) and η+,(t)
i,j (∆t) for all stream tasks.419

5.4 Computation of Minimum and Maximum Overload Event Models420

Finally, our intention is to obtain the minimum and maximum overload event models for421

each successor task τi,j with j > 1. We begin by describing how an arbitrary event flow422

ei,j(t) can be decomposed in a typical event flow e
(t)
i,j (t) and an overload event flow e

(o)
i,j (t).423

In this context, we use the concept of a sliding window function which returns a maximum424

event model for a specific event flow.425

I Definition 21 (Sliding window function). A sliding window function fslw takes a specific426

event flow ei,j(t) of task τi,j defined on 0 ≤ t ≤ T as an input, and returns a maximum event427

model for ei,j(t), denoted as η+
ei,j ,T

(∆t) for any interval size 0 ≤ ∆t ≤ T . This maximum428

event model η+
ei,j ,T

(∆t) is derived by passing a window of size ∆t over the event flow ei,j(t)429

of length T and noting down the maximum number events contained in any position of the430

window ∆t such that431

η+
ei,j ,T

(∆t) = max
t1,t2 : 0≤t1≤t2≤T∧t2−t1=∆t

{ei,j(t2)− ei,j(t1)} .432

433

I Theorem 22 (Decomposition of an event flow). Let ei,j(t) be an arbitrary event flow of434

length T belonging to task τi,j. Known bounds for the activation frequency of task τi,j are435

i.a. η+
ei,j ,t(∆t) for all (sub)lengths of the event flow with 0 ≤ t ≤ T and the maximum typical436

event model η+,(t)
i,j (∆t). A valid decomposition of ei,j(t) in a typical and overload event flow437

is given by438

e
(o)
i,j (t) = max

0≤∆t≤t

{
0, η+

ei,j , t(∆t)− η
+,(t)
i,j (∆t)

}
e

(t)
i,j (t) = ei,j(t)− e(o)

i,j (t). (12)439

440
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Proof. The event flow ei,j(t) cannot contain more than η
+,(t)
i,j (∆t) typical events in the441

observed interval [0, t) by Def. 11, where ∆t = t− 0 . All events that occur additionally to442

the maximum number of typical events η+,(t)
i,j (∆t) in [0, t) are a potential source of overload443

in the system and can therefore be safely interpreted as overload events.444

To determine the number overload events in ei,j(t), we (1) apply the sliding window445

function to ei,j(t) within [0, t) which results in η+
ei,j , t(∆t), and then (2) compare point-446

wise η+
ei,j , t(∆t) with η+,(t)

i,j (∆t). Pointwise comparison is done chronologically by increas-447

ing continuously the size of ∆t with 0 ≤ ∆t ≤ t. The largest nonnegative difference448

max
0≤∆t≤t

{
0, η+

ei,j , t(∆t)− η
+,(t)
i,j (∆t)

}
, is the number of overload events in ei,j(t).449

Why is it not sufficient to compute max
{

0, η+
ei,j , t(∆t)− η

+,(t)
i,j (∆t)

}
for ∆t = t? Let ∆t′450

be the first interval, where the maximum budget of typical events is exceeded by the event451

flow such that η+
ei,j , t(∆t

′)− η+,(t)
i,j (∆t′) > 0. This information should not be contradicted452

by a later smaller value of overload events derived at ∆t′′ > ∆t′. This, however, may453

happen due to the cumulative representation of event arrival within ∆t by event models,454

where information on the alignment of events gets lost with increasing interval size. The455

alignment information is however important to distinguish overload from typical events. The456

formulation e(o)
i,j (t) = max

0≤∆t∗≤t

{
0, η+

ei,j , t(∆t
∗)− η+,(t)

i,j (∆t∗)
}

preserves the information on457

the maximum number of overload events once gained at ∆t∗. Also, e(o)
i,j (t) is a wide-sense458

increasing function which accumulates the number of occurred overload events over time, and459

therefore satisfies Def. 10 of an event flow. Furthermore, we have e(t)
i,j (t) = ei,j(t)− e(o)

i,j (t)460

since an event in an event flow can either be overload or typical. J461

In the following Theorem 23, we state how to compute a maximum overload event model. We462

would like to note that the minimum overload event model is the zero function η+,(o)
i,j (∆t) = 0463

since overload events can be completely absent cf. global typical combination.464

I Theorem 23 (Obtaining an overload event model). A maximum overload event model is465

η
+,(o)
i,j (∆t) = fslw

(
max

0≤∆t∗≤∆t

{
η+
i,j(∆t

∗)− η+,(t)
i,j (∆t∗)

})
466

467

where fslw is a sliding window function.468

Proof. An upper bound for all event flow-specific maximum event models η+
ei,j , T

(∆t) of task469

τi,j is the maximum event model η+
i,j(∆t) by Def. 2. Thus we have470

max
0≤∆t∗≤t

{
0, η+

ei,j , t(∆t
∗)− η+,(t)

i,j (∆t∗)
}
≤ max

0≤∆t∗≤∆t

{
η+
i,j(∆t

∗)− η+,(t)
i,j (∆t∗)

}
.471

472

In other words, the overload event flow ẽ
(o)
i,j (t) = max

0≤∆t∗≤t

{
η+
i,j(∆t∗)− η

+,(t)
i,j (∆t∗)

}
is always473

larger than any other arbitrary overload event flow e
(o)
i,j (t). To derive from the largest overload474

event flow ẽ
(o)
i,j (t) the corresponding maximum overload event model, we apply once again the475

sliding window function such that ẽ(o)
i,j (t2)− ẽ(o)

i,j (t1) ≤ η+,(o)
i,j (t2 − t1) = fslw

(
ẽ

(o)
i,j (t2 − t1)

)
.476

The computation of the overload event model η+,(o)
i,j (∆t) is illustrated in Figure 6. J477

Calculating a maximum overload event model according to Theorem 23 requires a high478

computational effort since the sliding window approach has to be applied to the infinitely479

long event flow ẽ
(o)
i,j (t) = max

0≤∆t∗≤t

{
η+
i,j(∆t∗)− η

+,(t)
i,j (∆t∗)

}
. Fortunately most event flows480
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Δt
1

Figure 6 Computing a maximum overload event model

have a repetitive behavior or can be approximated by repetitive functions, so that the effort481

to derive overload event models is significantly reduced. In the following, we discuss special482

and practically relevant cases for the computation of overload event models.483

I Case 1 (Zero typical event model). In this trivial but important case, the task τi,j has a484

zero typical event model η+,(t)
i,j (∆t) = 0. Obviously, we have η+,(o)

i,j (∆t) = η+
i,j(∆t). This case485

is relevant for header tasks, which have the character of a sporadic interferer.486

I Case 2 (Zero overload event model). In a second trivial but important case, the maximum487

and maximum typical event model of task τi,j are identical such that η+
i,j(∆t) = η

+,(t)
i,j (∆t).488

Consequently, we have a zero overload event model η+,(o)
i,j (∆t) = 0. Header tasks with a489

periodic activation have often this behavior.490

I Case 3 (Repetitive overload event flow). If the overload event flow ẽ
(o)
i,j (t) is T -repetitive491

possibly with an offset (cf. Lemma 7), then applying the sliding window algorithm can be492

restricted to the interval [0, 2T ) to construct the maximum overload event model. In the493

following Theorem 24, we show that a T -repetitive overload event flow is obtained if the494

event model η+
i,j(∆t) and the typical event model η+,(t)

i,j (∆t) are both T -repetitive extensions495

(which can be achieved by appropriate output model computation described Section 3.1.2).496

I Theorem 24 (Repetitive overload event flow). If the event model η+(∆t) and the typical497

event model η+,(t)(∆t) are both T -repetitive extensions, then the resulting overload event flow498

ẽ
(o)
i,j (t) is likewise T -repetitive, such that499

ẽ
(o)
i,j (t) = max

0≤∆t∗≤t
{
⌊

∆t∗

T

⌋
·
(
η+(T )− η+,(t)(T )

)
+ η+(∆t∗ −

⌊
∆t∗

T

⌋
T )− η+,(t)(∆t∗ −

⌊
∆t∗

T

⌋
T )}.500

501

Proof.

max
0≤∆t∗≤∆t

{η+(∆t∗)− η+,(t)(∆t∗)}502

= max
0≤∆t∗≤∆t

{
⌊

∆t∗

T

⌋
· η+(T ) + η+(∆t∗ −

⌊
∆t∗

T

⌋
· T )−

⌊
∆t∗

T

⌋
· η+,(t)(T )− η+,(t)(∆t∗ −

⌊
∆t∗

T

⌋
· T )}503

= max
0≤∆t∗≤∆t

{
⌊

∆t∗

T

⌋
·
(
η+(T )− η+,(t)(T )

)
+ η+(∆t∗ −

⌊
∆t∗

T

⌋
T )− η+,(t)(∆t∗ −

⌊
∆t∗

T

⌋
T )}504

= max
0≤∆t∗≤∆t

{
⌊

∆t∗

T

⌋
· ηdiff (T ) + ηdiff (∆t∗ −

⌊
∆t∗

T

⌋
T )}505

506

where ηdiff (∆t) = η+(∆t)− η+,(t)(∆t).507

J508
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6 Experiments509

The presented experiments focus on computing end-to-end (m, k)-guarantees for traffic510

streams in realistic network settings, while exploring how a varying amount of overload511

impacts the timing behavior of the investigated system.512

6.1 System Generation513

The case study presented in Thiele et al. [20] provides characteristics of future automotive514

backbone networks by Daimler. Based on this data, we have randomly generated a set of515

automotive switched Ethernet networks with mapped traffic streams. Firstly, let us present516

the data used from the case study. Figure 7 illustrates three possible network topologies. The517

topologies vary in the number of switches (SWs) which interconnect 8 electronic control units518

(ECUs). Links operate at 100 Mbit/s, only ECU0 and ECU7 are equipped with 1Gbit/s519

links due to high load. Stream characteristics are described statistically by [20], they are520

summarized in Table 1a. There are 50 periodic control streams of highest priority and 4521

periodic camera streams of lower priority. Control streams have relatively small payloads and522

rather long periods, while camera streams have large payloads and shorter periods. Some of523

the streams are unicast, others are multicast or broadcast. A periodically sent Ethernet frame524

is mapped to exactly one stream. Information on the frame payload as well as on periods is525

given by [20] only in form of minimum and maximum values, averages, and quartiles for the526

purpose of data anonymization. In case of camera traffic, the number of streams is too small527

for quantifying quartiles. IPv4/UDP is used at the network/transport layer, which adds528

28 bytes of protocol overhead (not shown in Table 1a). Furthermore, the communication529

matrix in Table 1b is given by [20] indicating the number of control and camera streams sent530

between a tuple of nodes. We use a parser to translate the network described in terms of531

topology and streams into a CPA/TWCA system model as defined in Sections 2 and 4.1.532

ECU0 ECU1

SW1 SW2

ECU2 ECU3

SW3 SW4

ECU7 ECU6 ECU5 ECU4

ECU1 ECU0

SW1 SW2

ECU2

ECU3

ECU7ECU6

ECU5

ECU4

ECU0

ECU1

SW1

SW2
ECU2

ECU3

SW3

SW4

ECU7

ECU6

ECU5
ECU4SW5

Quadruple Star Topology Double Star Topology Tree Topology

Figure 7 Network topologies. Thin lines represent links at 100 Mbit/s, while thick lines represent
links at 1 Gbit/s. A maximum wire length of 10 m is assumed, which translates to a maximum wire
propagation delay of 33 ns.

Secondly, we describe the random generation of systems which conform to the presented533

properties. The generation process is designed to produce a configurable number of systems534

and consists of several runs. A single generation run first creates the set of 54 streams with535

their respective source and destination ECUs, and then the streams are mapped to each of536

the three topologies. A run thus creates 3 systems at once. However, this set of 3 systems is537

discarded if at least one is not schedulable to enable meaningful comparisons between the538

different topologies.539

Generation of control streams. Periods and payloads of control streams are only described540

by statistic figures. Therefore, we used fitting to find distributions which come closest541
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control camera
streams
# total 50 4
# unicast 26 3
# 2-cast 13 1
# 3-cast 4 0
# 4-cast 1 0
# broadcast 6 0
frame payload in bytes
[min, max] [1, 250] B [875, 1400] B
average 54 B 1231 B
quartiles q0.25 = 8 B,

q0.50 = 25 B,
q0.75 = 74 B

period
[min, max] [5ms, 1s] [100us, 1ms]
average 182ms 440us
quartiles q0.25 = 10ms,

q0.50 = 40ms,
q0.75 = 175ms

(a) Stream characteristics

Src/Dst E
C
U
0

E
C
U
1

E
C
U
2

E
C
U
3

E
C
U
4

E
C
U
5

E
C
U
6

E
C
U
7

ECU0 1 1 10 2
1 2

ECU1 1 1
1

ECU2 5
ECU3 1
ECU4 1 2 3 3 1 1 1
ECU5 3 2
ECU6 10 6 4 3 4 3 10
ECU7 5 2 2 2 4 3 8

1

(b) Communication matrix indicating the num-
ber of control streams (black number, 1st entry)
and camera streams (blue number, 2nd entry)
between a pair of ECUs.

Table 1 Traffic properties as given in Thiele et al. [20]

the indicated average and quartiles. For the periods, we opted for a Weibull distribution542

with the parameters shape = 0.54 and scale = 88.09. For the payload, an exponential543

distribution with λ = 0.02 was used.544

Generation of camera streams. The few, i.e. 4, camera streams scam,i are assigned545

the same payloads and periods in each system generation run: scam,0 7→ (100µs, 875B);546

scam,1 7→ (1ms, 1400B); scam,2 7→ (330µs, 1325B); scam,3 7→ (330µs, 1325B).547

Generation of stream sources & destinations and topology mapping. The given communic-548

ation matrix defines constraints on pairs of source-destination ECUs and on the number549

of streams sent between them. Stream sources & destinations are generated randomly550

respecting these constraints. The traffic is then mapped to each of the 3 topologies,551

creating 3 different systems with identical streams.552

Schedulability test. For control streams, local deadlines are set to the stream period and553

the end-to-end deadline is the sum of the local deadlines. For camera streams, we choose554

arbitrarily an end-to-end deadline of 2ms (scam,0, scam,2, scam,3) or 4ms (scam,1), such555

that – without any overload in the system – worst case stream latencys (WCSLs) of556

camera streams are already close to their end-to-end deadlines.3 Local camera deadlines557

are derived by uniform distribution of the end-to-end deadline. Based on these timing558

constraints, the generated systems are filtered such that they are all schedulable as559

mentioned above.560

After a generation run, we dispose of a set of 3 systems in which no overload is present. We561

then add sporadic control streams to each system as transient overload. We see this as a562

realistic extension of the system description, representing event-triggered communication.563

A sporadic control stream s′ is a duplicate of a randomly chosen control stream s from the564

original stream set but with modified activation behavior. The typical activation behavior565

3 The worst case stream latency (WCSL) for a unicast stream is computed by summing the WCRTs of
tasks included in the stream. For multi- or broadcast streams, the WCSLs are computed separately for
each path from the source to a destination.
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(a) Double star topology
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(b) Tree topology
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(c) Quadruple star topology

Figure 8 Worst case latencies of control and camera streams under varying topologies and
overload. Each single box plot is based on the streams of 50 randomly generated systems with the
indicated properties (num. of bursts, num. of overload streams).

of s′ is zero, while the nonzero overload activation behavior is modeled as sporadically566

bursty [16]: A burst of b events with a minimum distance Tin is repeated after an outer567

period Tout such that η+,(o)(∆t) =
⌊

∆t
Tout

⌋
· b+ min

{⌈
∆t−b ∆t

Tout
c·Tout

Tin

⌉
, b

}
. While the burst568

length b is used as a variable parameter in the experiments, fixed parameters are Tin = 100µs569

and Tout is 10-times the period of the original stream s.570

6.2 Experimental Results571

In the experiments, we investigate the impact of overload on the timing behavior of the572

generated systems. For each presented overload configuration, we randomly generated 50573

systems of the same topology. We first present worst case stream latencys (WCSLs), and574

then discuss the DMMs computed for streams. The results in this section are presented575

in box plots as, for instance, in Figure 8a. This is done to summarize results (WCSLs or576

DMMs) over all streams from a set of similar systems. A single box plot indicates the average577

(red square) and the quartiles q0.25, q0.50, q0.75 of the results. The 1st and 3rd quartiles q0.25578

and q0.75 are the top and the bottom of the blue framed box, while the red band inside the579

box is the 2nd quartile (median). The whiskers indicate results outside the quartiles.580

Worst Case Stream Latencies. The WCSLs depend both on the system characteristics581

as well as on the amount of introduced overload. Figure 8 shows that the double star topology582

has the shortest WCSLs, compared to to the tree topology with intermediate WCSLs and583

the quadruple star topology with even higher WCSLs. This behavior is due to the varying584

number and extent of contention points in the different topologies. Moreover, Figure 8585

confirms the intuition that WCSLs increase with the amount of overload in the system, which586

is controlled by the number of overload streams in the system and the number of burst events587

b of each overload stream.588

Deadline Miss Models of Streams. While the control streams satisfy their end-to-end589

deadlines even in the presence of overload, camera streams suffer from occasional deadline590

misses in particular in case of the quadruple star topology. A deadline miss in the context of591

a camera stream can be interpreted as a frame loss which impacts then video quality. We592

therefore focus on the DMMs of the camera streams. Figure 9 illustrates the DMMs for all593

camera streams of generated systems with quadruple star topology. Overload is varied by594

the number of overload streams and the burst length. We compute the DMM of a unicast595
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stream as the sum of the task DMMs included in the stream. In the case that one or more596

local deadlines are violated but the global deadline is satisfied, the stream DMM is set to597

zero. Multicast and broadcast streams are decomposed into unicast streams in order to598

compute the DMMs according to the above rule. Figure 9a indicates DMMs for camera599

streams in the presence of 5 sporadic overload streams, while Figure 9b shows DMMs for600

an increased number of 10 sporadic overload streams. Table 2 lists the nonzero DMMs601

results for k = 100 to get a more detailed impression of the individual weakly-hard real-time602

guarantees. The number of deadline misses grows as expected with the number of overload603

streams. Furthermore, the m-k-ratio is improving for growing k.604

For 5 overload streams many camera streams are schedulable for any burst length. Few605

systems have camera streams that are not schedulable. Among these systems with late606

camera streams, most of them have a very acceptable (m, k) behavior – in particular for607

b ∈ {2, 3}.608

For 10 overload streams more camera streams experience occasional deadline misses. For609

b ∈ {2, 3}, the maximum number of deadline misses m in k executions is acceptable610

for many camera streams depending on system requirements. For b ≥ 4 many of the611

investigated systems are clearly overloaded.612

A note on run times: On a PC with an Intel i5-4210M processor at 2.6 GHz and 8GB RAM,613

the analysis of a single system is in the order of 15-30 seconds.
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(b) 10 overload streams

Figure 9 DMMs for camera streams under varying overload for the quadruple star topology.
Results evaluate camera streams in 50 systems. For a multicast camera stream with n destinations,
there are n end-to-end DMMs computed.

614

7 Related Work615

The seminal paper by Bernat et al. [1] has presented the principles of weakly-hard real-time616

systems. It summarizes existing work in a similar direction, introduces (m,k)-constraints,617

and derives (m,k)-guarantees for periodic task sets with known offsets under fixed priority618

scheduling. More powerful verification techniques for weakly-hard real-time systems have619

been subsequently developed. In particular, Quinton et al. [14] has introduced a method620

called TWCA, which can handle more comprehensive system models covering, e.g., arbitrary621

activation event models. The initial work [14] has been extended and refined in a sequence of622

publications; the latest analysis version is presented in [21]. A new and recent development623
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bursts nonzero dmm(100) results with number of occurrence n in brackets (n)

5 overload streams
b = 2 2(6), 3(5), 4(15), 6(2)
b = 3 2(6), 3(5), 4(22), 5(1), 6(1), 7(6), 9(1), 13(1), 15(1)
b = 4 2(2), 3(3), 4(19), 5(4), 6(1), 7(1), 8(2), 9(1), 10(3), 11(2), 12(1), 13(1), 14(1), 16(1),

18(1), 30(1), 100(3)
10 overload streams
b = 2 2(2), 3(2), 4(31), 5(1), 6(6), 11(2), 12(1), 14(1), 16(1), 19(1), 100(3)
b = 3 4(15), 5(5), 7(2), 8(1), 9(1), 10(2), 12(5), 14(2), 15(4), 16(2), 100(23)
b = 4 4(2), 5(1), 8(1), 9(3), 10(1), 13(2), 14(10), 16(1), 20(2), 21(2), 30(1), 100(51)

Table 2 Details on nonzero DMM results for camera streams for k = 100

is the verification technique for weakly-hard real-time systems presented by Sun et al. [19].624

The work by Sun et al. [19] has only a limited focus on systems with fully periodic tasks with625

unknown offsets under fixed priority scheduling, but it has a higher accuracy than TWCA626

since it provides exact results. However, all of the verification techniques are restricted to627

systems with a single service-providing resource. In this paper, we lift this restriction by628

integrating TWCA as local analysis technique in the context of the CPA framework [11].629

CPA is an established compositional analysis framework, which uses for each component630

a dedicated scheduling analysis and specifies the coupling of the component-based results.631

The advantage of using a compositional analysis framework is that large and heterogeneous632

systems can be analyzed. The choice of the combination (TWCA, CPA) is due to the633

similarities in the system models and interface definitions, which reduces the number of634

compatibility issues.635

8 Conclusion636

In this paper, we presented TypicalCPA which is the first verification method for weakly-hard637

real-time systems with multiple resources and we evaluated it in a network context with traffic638

streams. Previous verification techniques providing weakly-hard real-time guarantees have639

aimed at systems with only a single service-providing resource. The method builds on (1)640

CPA, a compositional performance verification framework for hard real-time guarantees, and641

(2) TWCA, an analysis method which derives weakly-hard real-time guarantees for systems642

with a single resource. CPA allows to use different local scheduling analysis techniques for643

each component in the investigated system, and defines a coupling mechanism between the644

results provided by each component analysis. We have interpreted TWCA as such a local645

scheduling analysis technique, but we had to extend (1) elements of TWCA as well as (2)646

the existing coupling mechanism to achieve compatibility of both CPA and TWCA. In647

particular, the computation and propagation of typical and overload event models between648

tasks on different resources has been introduced. In an industrial case study, focusing on649

automotive switched Ethernet networks, we demonstrated the applicability of TypicalCPA650

to realistic problems. In the future, we intend to work on improved accuracy of the provided651

weakly-hard real-time guarantees.652
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