Long time behavior of a mean-field model of interacting neurons

Quentin Cormier 1 Etienne Tanré 1 Romain Veltz 2
1 TOSCA - TO Simulate and CAlibrate stochastic models
CRISAM - Inria Sophia Antipolis - Méditerranée , IECL - Institut Élie Cartan de Lorraine : UMR7502
2 MATHNEURO - Mathématiques pour les Neurosciences
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : We study the long time behavior of the solution to some McKean-Vlasov stochastic differential equation (SDE) driven by a Poisson process. In neuroscience, this SDE models the asymptotic dynamic of the membrane potential of a spiking neuron in a large network. We prove that for a small enough interaction parameter, any solution converges to the unique (in this case) invariant measure. To this aim, we first obtain global bounds on the jump rate and derive a Volterra type integral equation satisfied by this rate. We then replace temporary the interaction part of the equation by a deterministic external quantity (we call it the external current). For constant current, we obtain the convergence to the invariant measure. Using a perturbation method, we extend this result to more general external currents. Finally, we prove the result for the non-linear McKean-Vlasov equation.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01903857
Contributeur : Etienne Tanré <>
Soumis le : mercredi 24 octobre 2018 - 16:37:37
Dernière modification le : mercredi 16 janvier 2019 - 12:52:03
Document(s) archivé(s) le : vendredi 25 janvier 2019 - 15:17:42

Fichier

LongTimeBehaviorSmallInteracti...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01903857, version 1
  • ARXIV : 1810.08562

Citation

Quentin Cormier, Etienne Tanré, Romain Veltz. Long time behavior of a mean-field model of interacting neurons. 2018. 〈hal-01903857〉

Partager

Métriques

Consultations de la notice

93

Téléchargements de fichiers

23