Long time behavior of a mean-field model of interacting neurons

Quentin Cormier 1 Etienne Tanré 1 Romain Veltz 2
1 TOSCA - TO Simulate and CAlibrate stochastic models
CRISAM - Inria Sophia Antipolis - Méditerranée , IECL - Institut Élie Cartan de Lorraine : UMR7502
2 MATHNEURO - Mathématiques pour les Neurosciences
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : We study the long time behavior of the solution to some McKean-Vlasov stochastic differential equation (SDE) driven by a Poisson process. In neuroscience, this SDE models the asymptotic dynamic of the membrane potential of a spiking neuron in a large network. We prove that for a small enough interaction parameter, any solution converges to the unique (in this case) invariant measure. To this aim, we first obtain global bounds on the jump rate and derive a Volterra type integral equation satisfied by this rate. We then replace temporary the interaction part of the equation by a deterministic external quantity (we call it the external current). For constant current, we obtain the convergence to the invariant measure. Using a perturbation method, we extend this result to more general external currents. Finally, we prove the result for the non-linear McKean-Vlasov equation.
Document type :
Preprints, Working Papers, ...
Liste complète des métadonnées

Cited literature [13 references]  Display  Hide  Download

https://hal.inria.fr/hal-01903857
Contributor : Etienne Tanré <>
Submitted on : Wednesday, October 24, 2018 - 4:37:37 PM
Last modification on : Friday, April 19, 2019 - 4:54:51 PM
Document(s) archivé(s) le : Friday, January 25, 2019 - 3:17:42 PM

File

LongTimeBehaviorSmallInteracti...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01903857, version 1
  • ARXIV : 1810.08562

Citation

Quentin Cormier, Etienne Tanré, Romain Veltz. Long time behavior of a mean-field model of interacting neurons. 2018. ⟨hal-01903857⟩

Share

Metrics

Record views

108

Files downloads

35