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Abstract. We introduce refutationally complete superposition calculi for inten-
tional and extensional λ-free higher-order logic, two formalisms that allow partial
application and applied variables. The calculi are parameterized by a term order
that need not be fully monotonic, making it possible to employ the λ-free higher-
order lexicographic path and Knuth–Bendix orders. We implemented the calculi
in the Zipperposition prover and evaluated them on TPTP benchmarks. They ap-
pear promising as a stepping stone towards complete, efficient automatic theorem
provers for full higher-order logic.

1 Introduction

Superposition is a highly successful calculus for reasoning about first-order logic with
equality. We are interested in graceful generalizations to higher-order logic: calculi that,
as much as possible, coincide with standard superposition on first-order problems and
that scale up to arbitrary higher-order problems.

As a stepping stone towards full higher-order logic, in this paper we restrict our
attention to a λ-free fragment of higher-order logic that supports partial application and
application of variables (Section 2). This formalism is expressive enough to permit the
axiomatization of higher-order combinators such as powτ : nat→ (τ→ τ)→ τ→ τ:

pow 0 h≈ id pow (S n) h x≈ h (pow n h x)

Conventionally, functions are applied without parentheses and commas, and variables
are italicized. Notice the variable number of arguments to pow and the application of h.
The expressiveness of full higher-order logic can be recovered by introducing SK-style
combinators to represent λ-abstractions and proxies for the logical symbols [24, 32].

A widespread technique to support partial application and application of variables
in first-order logic is to make all symbols nullary and to represent application of func-
tions of type τ→ υ by a family of binary symbols appτ,υ. Following this scheme, the
higher-order term f (h f) is translated to app(f,app(h, f)), which can be processed by
first-order methods. We call this the applicative encoding. The existence of such a re-
duction explains why λ-free higher-order terms are also called “applicative first-order
terms.” Unlike for full higher-order logic, most general unifiers are unique for our λ-free
fragment, just as they are for applicatively encoded first-order terms.



Although the applicative encoding is complete [24] and is employed fruitfully in
tools such as Sledgehammer [9,27], it suffers from a number of weaknesses, all related
to its gracelessness. Transforming all the function symbols into constants considerably
restricts what can be achieved with term orders; for example, argument tuples cannot be
compared using different methods for different symbols. In a prover, the encoding also
clutters the data structures, slows down the algorithms, and neutralizes the heuristics
that look at the terms’ root symbols. But our chief objection is the sheer clumsiness
of encodings and their poor integration with interpreted symbols. And they quickly ac-
cumulate; for example, using the traditional encoding of polymorphism relying on a
distinguished binary function symbol t [8, Section 3.3] in conjunction with the applica-
tive encoding, the term S x becomes t(nat,app(t(fun(nat,nat),S), t(nat,x))).

Hybrid schemes have been proposed to strengthen the applicative encoding: If a
given symbol always occurs with at least k arguments, these can be passed directly [27].
However, this relies on a closed-world assumption: that all terms that will ever be com-
pared arise in the input problem. This noncompositionality conflicts with the need for
complete higher-order calculi to synthesize arbitrary terms during proof search [6]. As
a result, hybrid encodings are not an ideal basis for higher-order automated reasoning.
Instead, we propose to generalize the superposition calculus to intensional and exten-
sional λ-free higher-order logic. In the extensional version of the logic, the property
(∀x. h x≈ k x)−�→ h≈ k holds for all functions h,k of the same type. For each logic, we
present two calculi (Section 3). The intentional calculi perfectly coincide with standard
superposition on first-order clauses; the extensional calculi depend on an extra axiom.

Superposition is parameterized by a term order, which prunes the search space. If we
assume that the term order is a simplification order enjoying totality on ground terms,
the standard calculus rules and completeness proof can be lifted verbatim. The only
necessary changes concern the basic definitions of terms and substitutions. However,
there is one monotonicity property that is hard to obtain unconditionally: compatibility
with arguments. It states that s′ � s implies s′ t � s t for all terms s, s′, t such that s t
and s′ t are well typed. We recently introduced graceful generalizations of the lexico-
graphic path order (LPO) [11] and the Knuth–Bendix order (KBO) [3] with argument
coefficients, but they both lack this property. For example, given a KBO with g � f, it
may well be that g a≺ f a if f has a large enough multiplier on its argument.

Our calculi are designed to be refutationally complete for such nonmonotonic orders
(Section 4). To achieve this, they include an inference rule for argument congruence,
which derives C∨ s x≈ t x from C∨ s≈ t. The redundancy criterion is defined in such a
way that the larger, derived clause is not subsumed by the premise. In the completeness
proof, the most difficult case is the one that normally excludes superposition at or be-
low variables using the induction hypothesis. With nonmonotonicity, this approach no
longer works, and we propose two alternatives: Perform some superposition inferences
onto higher-order variables, or “purify” the clauses to circumvent the issue. We refer to
the corresponding calculi as nonpurifying and purifying. Detailed proofs are included
in a technical report [5], together with more explanations and examples.

The calculi are implemented in the Zipperposition prover [17] (Section 5). We eval-
uate them on TPTP benchmarks [39,40] and compare them with the applicative encod-
ing (Section 6). We find that there is a substantial cost associated with the applicative
encoding and that the nonmonotonicity is not particularly expensive.
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2 Logic

Refutational completeness of calculi for higher-order logic (also called simple type the-
ory) is usually stated with respect to Henkin semantics [6, 22], in which the universes
used to interpret functions need only contain the functions that can be expressed as
terms. Since the terms of λ-free higher-order logic exclude λ-abstractions, in “λ-free
Henkin semantics” the universes interpreting functions can be even smaller. Unlike
other higher-order logics, there are no comprehension principles, and we disallow nest-
ing of Boolean formulas inside terms, as a convenient intermediate step on our way
towards full higher-order logic.

Problematically, in a logic with applied variables but without Hilbert choice, sko-
lemization is unsound, unless we make sure that Skolem symbols are suitably applied
[28]. We achieve this using a hybrid logic that supports both mandatory (uncurried) and
optional (curried) arguments. Thus, if symbol sk takes two mandatory and one optional
arguments, sk(x,y) and sk(x,y) z are valid terms. Nevertheless, as in our earlier work [3,
11], we use the adjective “graceful” in the strong sense that we can exploit optional ar-
guments, identifying the first-order term f(x,y) with the curried higher-order term f x y.

A type τ,υ of λ-free higher-order logic is either an element ι of a fixed set of atomic
types or a function type τ→ υ of functions from type τ to type υ. In our hybrid logic, a
type declaration for a symbol is an expression of the form τ̄n⇒ τ (or simply τ if n = 0).
We write ān or ā to abbreviate the tuple (a1, . . . ,an) or product a1×·· ·×an, for n≥ 0.

We fix a set V of typed variables, denoted by x : τ or x. A signature consists of a
nonempty set Σ of symbols with type declarations, written as f : τ̄⇒ τ or f. We reserve
the letters s, t,u,v for terms and x,y,z for variables and write : τ to indicate their type.
The set of λ-free higher-order terms T X

Σ
over X is defined inductively. Every variable in

X ⊆ V is a term. If f : τ̄n⇒ τ and ui : τi for all i ∈ {1, . . . ,n}, then f(ūn) : τ is a term. If
t : τ→ υ and u : τ, then t u : υ is a term, called an application. Non-application terms ζ
are called heads. Terms can be decomposed in a unique way as a head ζ applied to zero
or more arguments: ζ s1 . . . sn or ζ s̄n (abusing notation). Substitution and unification are
generalized in the obvious way, without the complexities associated with λ-abstractions;
for example, the most general unifier of x b z and f a y c is {x 7→ f a, y 7→ b, z 7→ c}, and
that of h (f a) and f (h a) is {h 7→ f}.

Formulas ϕ,ψ are of the form⊥,>, ¬ϕ, ϕ∨ψ, ϕ∧ψ, ϕ−�→ ψ, t≈τ s, ∀x. ϕ, or ∃x. ϕ,
where t, s are terms and x is a variable. We let s 6≈ t abbreviate ¬ s ≈ t. We normally
view equations s≈ t as unordered pairs and clauses as multisets of such (dis)equations.

Loosely following Fitting [20], an interpretation J = (U,E ,J ) consists of a type-
indexed family of nonempty sets Uτ, called universes; a family of functions Eτ,υ :
Uτ→υ→ (Uτ→ Uυ), one for each pair of types τ,υ; and a function J that maps each
symbol with type declaration τ̄n⇒ τ to an element of Uτn →Uτ. An interpretation is
extensional if Eτ,υ is injective for all τ,υ. Both intensional and extensional logics are
widely used. The semantics is standard if Eτ,υ is bijective. A valuation ξ is a function
that maps variables x : τ to elements of Uτ.

For an interpretation (U,E ,J ) and a valuation ξ, the denotation of a term is defined
as follows: JxKξJ = ξ(x); Jf(t̄)KξJ = J (f)(Jt̄KξJ ); Js tKξJ = E(JsKξJ )(JtKξJ ). The truth value
JϕKξJ ∈ {0,1} of a formula ϕ is defined as in first-order logic. The interpretation J is a
model of ϕ, written J |= ϕ, if JϕKξJ = 1 for all valuations ξ.
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3 The Inference Systems

We introduce four versions of the superposition calculus, varying along two axes: in-
tentional versus extensional, and nonpurifying versus purifying. To avoid repetitions,
our presentation unifies them into a single framework.

3.1 The Inference Rules

The calculi are parameterized by a partial order� on terms that is well founded, total on
ground terms, and stable under substitutions and that has the subterm property. It must
also be compatible with function contexts, meaning that t′ � t implies both f(s̄, t′, ū) v̄�
f(s̄, t, ū) v̄ and s t′ ū � s t ū. On the other hand, it need not be compatible with optional
arguments: s′ � s need not imply s′ t� s t. Function contexts are built around argument
subterms, defined as the reflexive transitive closure of the relation inductively specified
by f(s̄) t̄ � si and ζ t̄ � ti for all i. We write s〈u〉 to indicate that the subterm u of s[u] is
an argument subterm. For example, f and f a are subterms of f a b, but not argument sub-
terms. The literal and clause orders are defined as multiset extensions in the usual way.

Literal selection is supported. The selection function maps each clause C to a sub-
clause of C consisting of negative literals. A literal L is (strictly) eligible in C if it is
selected in C or there are no selected literals in C and L is (strictly) maximal in C.

We start with the extensional nonpurifying calculus, which consists of five rules:
D︷ ︸︸ ︷

D′∨ t ≈ t′
C︷ ︸︸ ︷

C′∨ [¬] s〈u 〉 ≈ s′
SUP

(D′∨C′∨ [¬] s〈t′〉 ≈ s′)σ

C′∨ s′ ≈ t′∨ s ≈ t
EQFACT

(C′∨ t 6≈ t′∨ s≈ t′)σ

C′∨ s 6≈ s′
EQRES

C′σ

C′∨ s≈ s′
ARGCONG

C′∨ s x̄≈ s′ x̄

C′∨ s x̄≈ s′ x̄
POSEXT

C′∨ s≈ s′

In the first three rules, σ denotes the most general unifier of the two grayed terms.
For SUP, we assume that D’s and C’s variables have been standardized apart. For SUP,
EQFACT, and EQRES, the following standard order conditions apply on the premises
after the application of σ: The last literal in each premise is eligible and even strictly
eligible for positive literals of SUP. For the last literal of each premise of SUP and the
last two literals of the premise of EQFACT, the left-hand sides are not smaller than or
equal to (6�) the respective right-hand sides. For SUP, Cσ 6� Dσ.

Definition 1. A term of the form x s̄n, for n≥ 0, jells with a literal t≈ t′ ∈ D if t = t̃ ȳn
and t′ = t̃ ′ ȳn for some t̃, t̃ ′ and distinct variables ȳn that do not occur elsewhere in D.

We add the following variable condition as a side condition to SUP, to further prune the
search space, using the naming convention from Definition 1 for t̃ ′:

If u has a variable head x and jells with the literal t ≈ t′ ∈ D, there must exist a
ground substitution θ with tσθ� t′σθ and Cσθ≺C′′σθ, where C′′ =C[x 7→ t̃ ′].

This condition generalizes the standard condition that u /∈ V . The two coincide if C is
first-order. In some cases involving nonmonotonicity, the variable condition effectively
mandates SUP inferences at variable positions, but never below.

The last two rules are nonstandard. For ARGCONG, s≈ s′ must be strictly eligible
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in the premise, and x̄ is a tuple of fresh variables. For POSEXT, s x̄ ≈ s′ x̄ must be
strictly eligible in the premise, and x̄ is a tuple of distinct variables that occur nowhere
else in the premise. Furthermore, for every function type τ→ υ occurring in the input
problem, we introduce a Skolem symbol diffτ,υ : (τ→ υ)2 ⇒ τ characterized by the
following extensionality axiom: h (diff(h,k)) 6≈ k (diff(h,k)) ∨ h≈ k.

The second calculus is the intensional nonpurifying variant. We obtain it by re-
moving the POSEXT rule and the extensionality axiom and by replacing the variable
condition with “if u ∈ V , there exists a ground substitution θ with tσθ � t′σθ and
Cσθ ≺C[u 7→ t′]σθ.” For monotone term orders, this condition amounts to u /∈ V .

By contrast, the purifying calculi never perform superposition at variables. Instead,
they rely on purification [14,35] (also called abstraction) to circumvent nonmonotonic-
ity. The idea is to rename apart problematic occurrences of a variable x in a clause to
x1, . . . , xn and to add purification literals x1 6≈ x, . . . , xn 6≈ x to connect the new variables.
We must then purify the initial clauses and all derived clauses.

In the extensional purifying calculus, the purification pure(C) of clause C is de-
fined as the result of the following iterative procedure. Consider the literals of C ex-
cluding those of the form y 6≈ z. If these literals contain both x ū and x v̄ as distinct
argument subterms, replace all argument subterms x v̄ with xi v̄, where xi is fresh, and
add the purification literal xi 6≈ x. This calculus variant contains the POSEXT rule and
the extensionality axiom. The conclusion E of each rule is changed to pure(E), except
for POSEXT, which preserves purity. Moreover, the variable condition is replaced by
“either u has a non-variable head or u does not jell with the literal t ≈ t′ ∈ D.”

In the intensional purifying calculus, we define pure(C) iteratively as follows.
Consider the literals of C excluding those of the form y 6≈ z. If these literals contain
a variable x both applied and unapplied, replace all unapplied occurrences of x in C
by a fresh variable xi and add the purification literal xi 6≈ x. We remove the POSEXT
rule and the extensionality axiom. The variable condition is replaced by “u /∈ V .” The
conclusion C of ARGCONG is changed to pure(C); the other rules preserve purity.

Finally, we impose some additional restrictions on literal selection. In the nonpuri-
fying variants, a literal may not be selected if x ū is a maximal term of the clause and the
literal contains an argument subterm x v̄ with v̄ 6= ū. In the extensional purifying calcu-
lus, a literal may not be selected if it contains a variable that is applied to different argu-
ments in the clause. In the intensional purifying calculus, a literal may not be selected
if the literal contains an unapplied variable that also appears applied in the clause.

3.2 Rationale for the Inference Rules
A key restriction of all four calculi is that they superpose only onto argument sub-
terms, mirroring the requirement that the term order enjoy compatibility with function
contexts. The ARGCONG rule then makes it possible to simulate superposition onto
non-argument subterms. However, in conjunction with the SUP rule, ARGCONG can
exhibit an unpleasant behavior, which we call argument congruence explosion:

g ≈ f
ARGCONG

g x≈ f x h a 6≈ b
SUP

f a 6≈ b

g ≈ f
ARGCONG

g x y z≈ f x y z h a 6≈ b
SUP

f x y a 6≈ b
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In both cases, the higher-order variable h is effectively the target of a SUP inference.
Such derivations essentially amount to superposition at variable positions (as shown on
the left) or even superposition below variable positions (as shown on the right), both
of which can be extremely prolific. In standard superposition, the explosion is averted
by the condition on the SUP rule that u /∈ V . In the extensional purifying calculus, the
variable condition tests that either u has a non-variable head or u does not jell with the
literal t ≈ t′ ∈ D, which prevents derivations such as the above. In the corresponding
nonpurifying variant, some such derivations may need to be performed when the term
order exhibits nonmonotonicity for the terms of interest.

In the intensional calculi, the explosion can arise even for monotonic orders, and it
must be tamed by heuristics. The reason is connected to the absence of the POSEXT
rule (which would be unsound). The variable condition in the extensional calculi is
designed to prevent derivations such as those shown above, but since it only considers
the shape of the clauses, it might also block SUP inferences whose side premises do not
originate from ARGCONG. Consider a left-to-right LPO [11] instance with precedence
h� g � f � b� a, and consider the following unsatisfiable clause set:

g (x b) x≈ a g (f b) h 6≈ a h x≈ f x

The only possible inference from these clauses is POSEXT, showing its necessity. It
is unclear whether POSEXT is necessary for the extensional purifying variant as well,
but our completeness proof suggests that it is. Our proof also suggests that to achieve
refutational completeness, due to nonmonotonicity, we need either to purify the clauses
or to allow some superposition at variable positions, as mandated by the respective
variable conditions. However, we have yet to find an example that demonstrates the
necessity of these measures.

A significant advantage of our calculi over the use of standard superposition on
applicatively encoded problems is the flexibility they offer in orienting equations. The
following example gives two definitions of addition on Peano numbers:

addL 0 y≈ y addR x 0≈ x
addL (S x) y≈ addL x (S y) addR x (S y)≈ addR (S x) y

Let addL (S
100 0) n 6≈ addR n (S100 0) be the negated conjecture. With LPO, we can use a

left-to-right comparison for addL’s arguments and a right-to-left comparison for addR’s
arguments to orient all four equations from left to right. Then the negated conjecture
can be simplified to S100 n 6≈ S100 n by rewriting (demodulation), and ⊥ can be derived
with a single inference. If we use the applicative encoding instead, there is no instance
of LPO or KBO that can orient both recursive equations from left to right. For at least
one of the two sides of the negated conjecture, the rewriting is replaced by 100 SUP
inferences, which is much less efficient, especially in the presence of additional axioms.

3.3 Redundancy Criterion

For our calculi, a redundant (or composite) clause cannot simply be defined as a clause
whose ground instances are entailed by smaller (≺) ground instances of existing clauses,
because this would make all ARGCONG inferences redundant. Our solution is to base
the redundancy criterion on a weaker ground logic in which argument congruence does
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not hold. This logic also plays a central role in our completeness proof, to reason about
the nonmonotonicity emerging from the lack of compatibility with optional arguments.

The weaker logic is defined via an encoding b c of ground hybrid λ-free higher-
order terms into uncurried terms, with d e as its inverse. Accordingly, we refer to
clausal λ-free higher-order logic as the ceiling logic and to its weaker relative as the
floor logic. Essentially, the encoding indexes each symbol occurrence with its argument
count. Thus, bfc = f0 and bf ac = f1(a0). This is enough to disable argument congru-
ence; for example, {f ≈ g, f a 6≈ g a} is unsatisfiable, whereas its encoding {f0 ≈ g0,
f1(a0) 6≈ g1(a0)} is satisfiable. For clauses built from fully applied ground terms, the
two logics are isomorphic, as we would expect from a graceful generalization.

Given a signature Σ in the ceiling logic, we define a signature Σ↓ in the floor logic as
follows. For each higher-order type τ, we introduce an atomic type bτc in the floor logic.
For each symbol f : τ̄k ⇒ τk+1→ ·· · → τn→ υ in Σ, where υ is atomic, we introduce
symbols fm : bτ̄mc⇒ bτm+1 → ··· → τn → υc for m ∈ {k, . . . ,n}. The translation of
ground terms is given by bf(ūk) uk+1 . . . umc = fm(būmc). We extend this mapping to
literals and clauses by applying it to each side of a literal and to each literal of a clause.
Using d e, the clause order � can be transferred to the floor logic by defining t � s as
equivalent to dte � dse. The property that � on clauses is the multiset extension of �
on literals, which in turn is the multiset extension of � on terms, is maintained because
d e maps the multiset representations elementwise.

Crucially, argument subterms in the ceiling logic correspond to argument subterms
in the floor logic, whereas non-argument subterms in the ceiling logic are not subterms
at all in the floor logic. Well-foundedness, totality on ground terms, compatibility with
all contexts, and the subterm property hold for � in the floor logic.

In standard superposition, redundancy relies on the entailment relation |= on ground
clauses. We define redundancy of ceiling clauses in the same way, but using the floor
logic’s entailment relation: A ground ceiling clause C is redundant with respect to a set
of ceiling ground clauses N if bCc is entailed by clauses from bNc that are smaller than
bCc. This notion of redundancy gracefully generalizes the first-order notion without
making all ARGCONG inferences redundant.

For SUP, EQFACT, and EQRES, we can use the more precise notion of redundancy
of inferences instead of redundancy of clauses, a ground inference being redundant if
the conclusion follows from existing clauses that are smaller than the largest premise.
For ARGCONG and POSEXT, we must use redundancy of clauses.

3.4 Skolemization

A problem expressed in λ-free higher-order logic must be transformed into clausal nor-
mal form before the calculi can be applied. This process works as in the first-order case,
except for skolemization. The issue is that skolemization, when performed naively, is
unsound for λ-free higher-order logic with a Henkin semantics. For example, given
f : τ→ υ, the formula (∀y.∃x. f x≈ y)∧ (∀z. f (z a) 6≈ a) has a model with Uτ = Uυ that
interprets f as the identity function and ensures that none of the functions in the image
of Eυ,τ map J (a) to J (a).Yet, naive skolemization would yield the clause set {f (sk y)≈
y, f (z a) 6≈ a}, whose unsatisfiability can be shown by taking y := a and z := sk. The
crux of the issue is that sk denotes a new function that can be used to instantiate z.
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Inspired by Miller [28, Section 6], we adapt skolemization as follows. An existen-
tially quantified variable x : τ in a context with universally quantified variables x̄n of
types τ̄n is replaced by a fresh symbol sk : τ̄n⇒ τ applied to the tuple x̄n. For the exam-
ple above, we obtain {f (sk(y))≈ y, f (z a) 6≈ a}. Syntactically, z cannot be instantiated
by sk, which is not even a term. Semantically, the clause set is satisfiable because we
can have J (sk)(J (a)) = J (a) even if the image of Eτ,τ contains no such function.

4 Refutational Completeness

The proof of refutational completeness of the four calculi introduced in Section 3.1
follows the same general idea as for standard superposition [2, 42]. Given a clause set
N 63 ⊥ saturated up to redundancy, we construct a term rewriting system R based on the
set of ground instances GΣ(N). From R, we define an interpretation. We show, by in-
duction on the clause order, that this interpretation is a model of GΣ(N) and hence of N.

To circumvent the term order’s potential nonmonotonicity, our SUP inference rule
only considers the argument subterms u of a maximal term s〈u〉. This is reflected in our
proof by the reliance of the floor logic from Section 3.3. In that logic, the equation g0 ≈
f0 cannot be used directly to rewrite the clause g1(a0) 6≈ f1(a0); instead, we first need
to apply ARGCONG to derive g1(x)≈ f1(x) and then use that equation. The floor logic
is a device that enables us to reuse the traditional model construction almost verbatim,
including its reliance on a first-order term rewriting system.

Following the traditional proof, we obtain a model of bGΣ(N)c. Since N is saturated
up to redundancy with respect to ARGCONG, the model bGΣ(N)c can easily be turned
into a model of GΣ(N) by conflating the interpretations of the members fk, . . . , fn of a
same symbol family. For this section, we fix a set N 63 ⊥ of λ-free higher-order clauses
that is saturated up to redundancy. For the purifying calculi, we additionally require that
all clauses in N are purified. To avoid empty Herbrand universes, we assume that the
signature Σ contains, for each type τ, a symbol of type τ.

4.1 Candidate Interpretation

The construction of the candidate interpretation is as in the first-order proof, except that
it is based on bGΣ(N)c. We first define sets of rewrite rules EC and RC for all C ∈
bGΣ(N)c by induction. Assume that ED has already been defined for all D ∈ bGΣ(N)c
with D ≺ C. Then RC =

⋃
D≺C ED. Let EC = {s→ t} if the following conditions are

met: (a) C = C′∨ s≈ t; (b) s≈ t is strictly maximal in C; (c) s� t; (d) C is false in RC ;
(e) C′ is false in RC ∪{s→ t}; and (f) s is irreducible with respect to RC . Otherwise,
EC = /0. Finally, R∞ =

⋃
D ED. A rewrite system R defines an interpretation T /0

Σ
/R such

that for every ground equation s ≈ t, we have T /0
Σ
/R |= s ≈ t if and only if s↔∗R t.

Moreover, T /0
Σ
/R is term-generated. To lighten notation, we will write R to refer to both

the term rewriting system R and the interpretation T /0
Σ
/R.

4.2 Lifting Lemmas

Following Waldmann’s version of the first-order proof [42], we proceed by lifting in-
ferences from the ground to the nonground level. We also need to lift ARGCONG. A
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complication that arises when lifting purifying inferences is that the nonground conclu-
sions may contain purification literals (corresponding to applied variables) not present
in the ground conclusions. Given an inference I of the form C̄ ` pure(E), we refer to
the ground instances of C̄ ` E as ground instances of I up to purification.

Lemma 2 (Lifting of non-SUP inferences). Let Cθ ∈GΣ(N), where θ is a substitution
and the selected literals in C ∈ N correspond to those in Cθ. Then every EQRES or
EQFACT inference from Cθ and every ground instance of an ARGCONG inference from
Cθ is a ground instance of an inference from C up to purification.

The conditions of the lifting lemma for SUP differ slightly from the first-order ver-
sion. For standard superposition, the lemma applies if the superposed term is not at or
under a variable. This condition is replaced by the following criterion.

Definition 3. We call a ground SUP inference from Dθ and Cθ liftable if the superposed
subterm in Cθ is not under a variable in C and the correponding variable condition holds
for D and C.

Lemma 4 (Lifting of SUP inferences). Let Dθ,Cθ∈GΣ(N) where the selected literals
in D ∈ N and C ∈ N correspond to those in Dθ and Cθ, respectively. Then every liftable
SUP inference between Dθ and Cθ is a ground instance of a SUP inference from D
and C up to purification.

4.3 Main Result

The candidate interpretation R∞ is a model of bGΣ(N)c. Like in the first-order proof,
this is shown by induction on the clause order. For the induction step, we fix some
clause bCθc ∈ bGΣ(N)c and assume that all smaller clauses are true in RCθ. We distin-
guish several cases, most of which amount to showing that Cθ can be used in a certain
inference. Then we deduce that bCθc is true in RCθ to complete the induction step.

The next two lemmas are slightly adapted from the first-order proof. The justifi-
cation for Lemma 5, about liftable inferences, is essentially as in the first-order case.
The proof of Lemma 6, about nonliftable inferences, is more problematic. The standard
argument involves defining a substitution θ′ such that Cθ′ and Cθ are equivalent and
Cθ′ ≺Cθ. But due to nonmonotonicity, we might have Cθ′ �Cθ, blocking the applica-
tion of the induction hypothesis. This is where the variable conditions, purification, and
the POSEXT rule come into play.

Lemma 5. Let Dθ,Cθ ∈ GΣ(N), where the selected literals in D ∈ N and in C ∈ N
correspond to those in Dθ and Cθ, respectively. We consider a liftable SUP inference
from Dθ and Cθ or an EQRES or EQFACT inference from Cθ. Let E be the conclusion.
Assume that Cθ and Dθ are nonredundant with respect to GΣ(N). Then bEc is entailed
by clauses from bGΣ(N)c that are smaller than bCθc.

Lemma 6. Let Dθ,Cθ ∈ GΣ(N), where the selected literals in D ∈ N and in C ∈ N
correspond to those in Dθ and Cθ, respectively. We consider a nonliftable SUP inference
from Dθ and Cθ. Assume that Cθ and Dθ are nonredundant with respect to GΣ(N). Let
D′θ be the clause Dθ without the literal involved in the inference. Then bCθc is entailed
by ¬bD′θc and the clauses in bGΣ(N)c that are smaller than bCθc.
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Using these two lemmas, the induction argument works as in the first-order case.

Lemma 7 (Model construction). Let bCθc ∈ bGΣ(N)c. We have

(i) EbCθc = /0 if and only if RbCθc |= bCθc;
(ii) if Cθ is redundant with respect to GΣ(N), then RbCθc |= bCθc;

(iii) bCθc is true in R∞ and in RD for every D ∈ bGΣ(N)c with D� bCθc; and
(iv) if Cθ has selected literals, then RbCθc |= bCθc.

Given a model R∞ of bGΣ(N)c, we construct a model R↑∞ of GΣ(N). The key prop-
erties are that R∞ is term-generated and that the interpretations of the members fk, . . . , fn
of a same symbol family behave in the same way.

Lemma 8 (Argument congruence). For all ground terms fm(s̄) and gn(t̄), if Jfm(s̄)KξR∞

= Jgn(t̄)K
ξ
R∞

, then Jfm+1(s̄,u)KξR∞
= Jgn+1(t̄,u)K

ξ
R∞

for all u.

The proof relies on the saturation of N up to redundancy with respect to ARGCONG.

Definition 9. Define an interpretation R↑∞ = (U↑,E↑,J ↑) in the ceiling logic as fol-
lows. Let (U,E ,J ) = R∞. Let U↑τ = Ubτc and J ↑(f) = J (fk), where k is the number
of mandatory arguments of f. Since R∞ is term-generated, for every a ∈Ubτ→υc, there
exists a ground term s : τ→ υ such that JbscKξR∞

= a. Without loss of generality, we
write s = f(s̄k) sk+1 . . . sm. Then we have a = Jfm(bs̄mc)KξR∞

and define E↑ by

E↑τ,υ(a)(b) = J (fm+1)(Jbs̄mcKξR∞
,b) for all b ∈Uτ

It follows that E↑τ,υ(a)
(
JuKξR∞

)
= Jfm+1(bs̄mc,u)KξR∞

for any term u. This interpreta-
tion is well defined if the definition of E↑ does not depend on the choice of the ground
term s. To show this, we assume that there exists another ground term t = g(t̄l) tl+1 . . . tn
such that JbtcKξR∞

= a. By Lemma 8, it follows from JbscKξR∞
= JbtcKξR∞

that

Jfm+1(bs̄mc,u)KξR∞
= Jgn+1(bt̄nc,u)KξR∞

indicating that the definition of E↑ is independent of the choice of s.
Since R∞ is a term-generated model of bGΣ(N)c, we can show that R↑∞ is also term-

generated. And using the same argument as in the first-order proof, we can lift this result
to nonground clauses. For the extensional variants, we also need to show that R↑∞ is an
extensional interpretation.

Lemma 10 (Model transfer to ceiling logic). R↑∞ is a term-generated model of GΣ(N).

Lemma 11 (Model transfer to nonground clauses). R↑∞ is a model of N.

Lemma 12 (Completeness of the extensionality axioms). If N contains the exten-
sionality axioms, R↑∞ is extensional.

We summarize the results of this section in the following theorem.

Theorem 13 (Refutational completeness). Let N be a clause set that is saturated by
any of the four calculi, up to redundancy. For the purifying calculi, we additionally
assume that all clauses in N are purified. Then N has a model if and only if ⊥ /∈ N.
Such a model is extensional if N contains the extensionality axioms.
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5 Implementation

Zipperposition [16, 17] is an open source superposition-based theorem prover written
in OCaml.1 It was initially designed for polymorphic first-order logic with equality, as
embodied by TPTP TFF [10]. We will refer to this implementation as Zipperposition’s
first-order mode. Recently, we extended the prover with a pragmatic higher-order mode
with support for λ-abstractions and extensionality, without any completeness guaran-
tees. Using this mode, Zipperposition entered the 2017 edition of the CADE ATP Sys-
tem Competition [38]. We have now also implemented a complete λ-free higher-order
mode based on the four calculi described in this paper, extended with polymorphism.

The pragmatic higher-order mode provided a convenient basis to implement our
calculi. It includes higher-order term and type representations and orders. Its ad hoc
calculus extensions are similar to our calculi. Notably, they include an ARGCONG rule
and a POSEXT-like rule, and SUP inferences are performed only at argument subterms.
In the term indexes, which are imperfect (overapproximating), terms whose heads are
applied variables and λ-abstractions are treated as fresh variables. This could be further
optimized to reduce the number of unification candidates.

To implement the λ-free mode, we restricted the unification algorithm to non-λ-
terms, and we added support for mandatory arguments to make skolemization sound, by
associating the number of mandatory arguments to each symbol and incorporating this
number in the unification algorithm. To satisfy the requirements on selection, we avoid
selecting literals that contain higher-order variables. Finally, we disabled rewriting of
non-argument subterms to comply with our redundancy notion.

For the purifying calculi, we implemented purification as a simplification rule. This
ensures that it is applied aggressively on all clauses, whether initial clauses from the
problem or clauses produced during saturation, before any inferences are performed.

For the nonpurifying calculi, we added the possibility to perform SUP inferences at
variable positions. This means that variables must be indexed as well. In addition, we
modified the variable condition. However, it is in general impossible to decide whether
there exists a ground substitution θ with tσθ � t′σθ and Cσθ ≺C′′σθ. We overapprox-
imate the condition as follows: (1) check whether x appears with different arguments
in the clause C; (2) use an order-specific algorithm (for LPO and KBO) to determine
whether there might exist a ground substitution θ and terms ū such that tσθ � t′σθ and
tσθ ū ≺ t′σθ ū; and (3) check whether Cσ 6� C′′σ. If these three conditions apply, we
conclude that there might exist a ground substitution θ witnessing nonmonotonicity.

For the extensional calculi, we added a single extensionality axiom based on a poly-
morphic symbol diff : ∀αβ. (α→ β)2⇒ α. To curb the explosion associated with exten-
sionality, this axiom and all clauses derived from it are penalized by the clause selection
heuristic. We also added a negative extensionality rule that resembles Vampire’s [21].

Using Zipperposition, we can quantify the disadvantage of the applicative encoding
on the problem given at the end of Section 3.2. Well-chosen LPO and KBO instances
allow Zipperposition to derive ⊥ in 4 iterations of the prover’s main loop and 0.04 s.
KBO or LPO with default settings needs 203 iterations and 0.5 s, whereas KBO or LPO
on the applicatively encoded problem needs 203 iterations and almost 2 s.

1 https://github.com/c-cube/zipperposition
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6 Evaluation

We evaluated Zipperposition’s implementation of our four calculi on TPTP bench-
marks. We compare them with Zipperposition’s first-order mode on the applicative
encoding with and without the extensionality axiom. Our experimental data is avail-
able online.2 Since the present work is only a stepping stone towards a prover for full
higher-order logic, it is too early to compare this prototype to state-of-the-art higher-
order provers that support a stronger logic.

We instantiated all variants with LPO [11] (which is nonmonotonic) and KBO [3]
without argument coefficients (which is monotonic). This gives us a rough indication
of the cost of nonmonotonicity. However, when using a monotonic order, it may be
more efficient (and also refutationally complete) to superpose at non-argument subterms
directly instead of relying on the ARGCONG rule.

We collected 671 first-order problems in TFF format and 1114 higher-order prob-
lems in THF, both groups containing monomorphic and polymorphic problems. We ex-
cluded all problems containing λ-expressions, the quantifier constants !! (∀) and ?? (∃),
arithmetic types, or the $distinct predicate, as well as problems that mix Booleans and
terms. Figures 1 and 2 summarize, for various configurations, the number of solved sat-
isfiable and unsatisfiable problems within 300 s. The average time and number of main
loop iterations are computed over the problems that all configurations for the respective
logic and term order found to be unsatisfiable within the timeout. The evaluation was
carried out on StarExec [37] using Intel Xeon E5-2609 0 CPUs clocked at 2.40 GHz.

Our approach targets large, mildly higher-order problems—a practically relevant
class of problems that is underrepresented in the TPTP library. The experimental results
confirm that our calculi handle first-order problems gracefully. Even the extensional
calculi, which include (graceless) extensionality axioms, are almost as effective as the
first-order mode. This indicates that our calculi will perform well on mildly higher-
order problems, too, where the proving effort is dominated by first-order reasoning.
In contrast, the applicative encoding is comparatively inefficient on problems that are
already first-order. For LPO, the success rate drops by 16%–18%; for both orders, the
average time to show unsatisfiability roughly quadruples.

Many of the higher-order problems in the TPTP library are satisfiable for our λ-free
logic, even though they may be unsatisfiable for full higher-order logic and labeled as
such in the TPTP. This is a reason why we postpone a comparison with state-of-the-art
higher-order provers until we have developed a prover for full higher-order logic. On
higher-order problems, the nonpurifying calculi outperform their purifying relatives.
The comparison of the applicative enconding and the nonpurifying calculi, however,
is not entirely conclusive. In the light of the results of this evaluation, in future work,
we would like to collect benchmarks for large, mildly higher-order problems and to
investigate whether we can weaken the selection restrictions of our calculi.

The nonpurifying calculi perform slightly better with KBO than with LPO. This
confirms our expectations, given that KBO is generally considered the more robust
default option for superposition and that the nonmonotonic LPO triggers SUP inferences
at variable positions—which is the price to pay for nonmonotonicity.

2 http://matryoshka.gforge.inria.fr/pubs/lfhosup_data/
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# sat # unsat � time (s) � iterations
LPO KBO LPO KBO LPO KBO LPO KBO

TFF first-order mode 0 0 181 220 4.0 4.4 1497 1473
applicative encoding 0 0 150 203 19.0 16.0 1698 1916
nonpurifying calculus 0 0 181 219 4.2 4.6 1497 1473
purifying calculus 0 0 181 218 4.3 4.8 1497 1473

THF applicative encoding 444 438 676 671 0.8 0.2 72 81
nonpurifying calculus 353 360 675 676 0.6 0.3 83 63
purifying calculus 338 343 664 666 0.8 1.0 116 231

Fig. 1: Evaluation of the intensional calculi

# sat # unsat � time (s) � iterations
LPO KBO LPO KBO LPO KBO LPO KBO

TFF first-order mode 0 0 181 220 2.8 4.3 1219 1420
applicative encoding 0 0 151 201 19.0 17.6 1837 1792
nonpurifying calculus 0 0 179 215 6.2 6.8 1610 1524
purifying calculus 0 0 180 215 5.0 7.4 1291 1464

THF applicative encoding 426 421 677 671 0.7 0.8 78 89
nonpurifying calculus 310 327 669 675 0.6 0.4 83 66
purifying calculus 227 261 647 650 1.0 1.0 114 108

Fig. 2: Evaluation of the extensional calculi

7 Discussion and Related Work

Our calculi join a long list of extensions and refinements of superposition. Among the
most closely related is Peltier’s [30] Isabelle formalization of the refutational complete-
ness of a superposition calculus that operates on λ-free higher-order terms and that is
parameterized by a monotonic term order. Extensions with polymorphism and induc-
tion, developed by Cruanes [16, 17] and Wand [43], contribute to increasing the power
of automatic provers. Detection of inconsistencies in axioms, as suggested by Schulz et
al. [34], is important for large axiomatizations. Also of interest is Bofill and Rubio’s [13]
integration of nonmonotonic orders in ordered paramodulation, a precursor of super-
position. Their work is a veritable tour de force, but it is also highly complicated and re-
stricted to ordered paramodulation. Lack of compatibility with arguments being a mild
form of nonmonotonicity, it seemed preferable to start with superposition, enrich it with
an ARGCONG rule, and tune the side conditions until we obtained a complete calculus.

Most complications can be avoided by using a monotonic order such as KBO with-
out argument coefficients, but we suspect that the coefficients will play an important role
to support λ-abstractions. For example, the term λx. x+ x could be treated as a constant
with a coefficient of 2 on its argument and a heavy weight to ensure (λx. x+ x) y� y+y.
LPO can also be used to good effect. This technique could allow provers to perform ag-
gressive β-reduction in the vast majority of cases, without compromising completeness.
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Many researchers have proposed or used encodings of higher-order logic constructs
into first-order logic, including Robinson [32], Kerber [24], Dowek et al. [19], Meng
and Paulson [27], and Czajka [18]. Encodings of types, such as those by Bobot and
Paskevich [12] and Blanchette et al. [8], are also crucial to obtain a sound encoding of
higher-order logic. These ideas are implemented in proof assistant tools such as HOLy-
Hammer and Sledgehammer [9].

Another line of research has focused on the development of automated proof pro-
cedures for higher-order logic. Robinson’s [31] and Huet’s [23] pioneering work stands
out. Andrews [1] and Benzmüller and Miller [6] provide excellent surveys. The compet-
itive higher-order automatic theorem provers include LEO-II [7] (based on unordered
paramodulation), Satallax [15] (based on a tableau calculus and a SAT solver), Agsy-
HOL [26] (based on a focused sequent calculus and a generic narrowing engine), and
Leo-III [36] (based on a pragmatic extension of superposition with no completeness
guarantees). The Isabelle proof assistant [29] and its Sledgehammer subsystem also
participate in the higher-order division of the CADE ATP System Competition [38].

Zipperposition is a convenient vehicle for experimenting and prototyping because
it is easier to understand and modify than highly-optimized C or C++ provers. Our
middle-term goal is to design higher-order superposition calculi, implement them in
state-of-the-art provers such as E [33], SPASS [44], and Vampire [25], and integrate
these in proof assistants to provide a high level of automation. With its stratified archi-
tecture, Otter-λ [4] is perhaps the closest to what we are aiming at, but it is limited to
second-order logic and offers no completeness guarantees. In preliminary work super-
vised by Blanchette and Schulz, Vukmirović [41] has generalized E’s data structures
and algorithms to λ-free higher-order logic, assuming a monotonic KBO [3].

8 Conclusion

We presented four superposition calculi for intensional and extensional λ-free higher-
order logic and proved them refutationally complete. The calculi nicely generalize stan-
dard superposition and are compatible with our λ-free higher-order LPO and KBO. Our
experiments partly confirm what one would naturally expect: that native support for
partial application and applied variables outperforms the applicative encoding.

The new calculi reduce the gap between proof assistants based on higher-order logic
and superposition provers. We can use them to reason about arbitrary higher-order prob-
lems by axiomatizing suitable combinators. But perhaps more importantly, they appear
promising as a stepping stone towards complete, highly efficient automatic theorem
provers for full higher-order logic.
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[41] Vukmirović, P.: Implementation of Lambda-Free Higher-Order Superposition. M.Sc. the-
sis, Vrije Universiteit Amsterdam (2018)

[42] Waldmann, U.: Automated reasoning II. Lecture notes, Max-Planck-Institut für
Informatik (2016), http://resources.mpi-inf.mpg.de/departments/rg1/teaching/
autrea2-ss16/script-current.pdf

[43] Wand, D.: Superposition: Types and Polymorphism. Ph.D. thesis, Universität des Saarlan-
des (2017)

[44] Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS
version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 140–145. Springer
(2009)

16

https://www.isa-afp.org/entries/SuperCalc.shtml
http://resources.mpi-inf.mpg.de/departments/rg1/teaching/autrea2-ss16/script-current.pdf
http://resources.mpi-inf.mpg.de/departments/rg1/teaching/autrea2-ss16/script-current.pdf

	Superposition for Lambda-Free Higher-Order Logic
	1 Introduction
	2 Logic
	3 The Inference Systems
	3.1 The Inference Rules
	3.2 Rationale for the Inference Rules
	3.3 Redundancy Criterion
	3.4 Skolemization

	4 Refutational Completeness
	4.1 Candidate Interpretation
	4.2 Lifting Lemmas
	4.3 Main Result

	5 Implementation
	6 Evaluation
	7 Discussion and Related Work
	8 Conclusion


