J. R. Cohen, The development and generality of self-control. UCLA, 2009.

K. Foerde, B. Knowlton, and R. Poldrack, Modulation of competing memory systems by distraction, Proc Natl Acad Sci, vol.103, p.11778, 2006.

A. Rizk-jackson, A. R. Aron, and R. A. Poldrack, Classification learning and stop-signal (1 year test-retest)

R. P. Alvarez and R. A. Poldrack, Cross-language repetition priming

R. P. Alvarez, G. Jasdzewski, and R. A. Poldrack, Building memories in two languages: An fMRI study of episodic encoding in bilinguals, Society for Neuroscience Abstracts, 2002.

R. Poldrack, J. Clark, E. Pare-blagoev, D. Shohamy, C. Moyano et al., Interactive memory systems in the human brain, Nature, vol.414, p.546, 2001.

A. Kelly and M. Milham, Cross-language repetition priming

A. Kelly, L. Q. Uddin, B. B. Biswal, F. Castellanos, and M. Milham, Competition between functional brain networks mediates behavioral variability, Neuroimage, vol.39, p.527, 2008.

J. Haxby, I. Gobbini, M. Furey, A. Ishai, J. Schouten et al., Distributed and overlapping representations of faces, vol.19, p.33

G. Varoquaux, A. Gramfort, and B. Thirion, Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering, ICML, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00705192

T. G. Dietterich, Ensemble methods in machine learning. In: Multiple classifier systems, pp.1-15, 2000.

A. Hoyos-idrobo, Y. Schwartz, G. Varoquaux, and B. Thirion, Improving sparse recovery on structured images with bagged clustering, Pattern Recognition in NeuroImaging (PRNI), 2015.
URL : https://hal.archives-ouvertes.fr/hal-01174335

A. Hoyos-idrobo, G. Varoquaux, Y. Schwartz, and B. Thirion, FReM-Scalable and stable decoding with fast regularized ensemble of models, Neuroimage, vol.2017, issue.17, pp.30818-30820
URL : https://hal.archives-ouvertes.fr/hal-01615015

Y. Schwartz, B. Thirion, and G. Varoquaux, Mapping paradigm ontologies to and from the brain, Advances in Neural Information Processing Systems, pp.1673-1681, 2013.

L. Breiman, Stacked regressions. Machine learning, vol.24, p.49, 1996.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, vol.12, p.2825, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller et al., Machine learning for neuroimaging with scikit-learn, Frontiers in Neuroinformatics, vol.8, p.14, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01093971

S. Haufe, F. Meinecke, K. Görgen, S. Dähne, J. D. Haynes et al., On the interpretation of weight vectors of linear models in multivariate neuroimaging, Neuroimage, vol.87, pp.96-110, 2014.

R. A. Poldrack, Y. O. Halchenko, and S. J. Hanson, Decoding the large-scale structure of brain function by classifying mental states across individuals, Psychol Sci, vol.20, p.1364, 2009.

R. A. Poldrack, D. Barch, J. Mitchell, T. Wager, A. Wagner et al., Towards open sharing of task-based fMRI data: The OpenfMRI project, Front Neuroinform, vol.7, p.12, 2013.