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Differential uniformity and the associated
codes of cryptographic functions

Pascale Charpin∗ Jie Peng†

February 8, 2019

Abstract

The associated codes of almost perfect nonlinear (APN) functions
have been widely studied. In this paper, we consider more generally
the codes associated with functions that have differential uniformity
at least 4. We emphasize, for such a function F , the role of codewords
of weight 3 and 4, and of some cosets of its associated code CF . We
give some properties on codes associated with differential uniformity
exactly 4. We obtain lower bounds and upper bounds for the numbers
of codewords of weight less than 5 of the codes CF . We show that the
nonlinearity of F decreases when these numbers increase. We obtain
a precise expression to compute these numbers, when F is a plateaued
or a differentially two-valued function. As an application, we propose
a method to construct differentially 4-uniform functions, with a large
number of 2-to-1 derivatives, from APN functions.

Keywords: Vectorial function, power function, derivative, Boolean function,
linear code, coset of code, plateaued function, bent functions, differential
uniformity, differentially two-valued function, Walsh spectrum.

1 Introduction

Differential cryptanalysis is a statistical attack for breaking iterated block
ciphers which was proposed in 1991 by Biham and Shamir [2]. The efficiency
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of such attack is quantified by the so-called differential uniformity of the
substitution box (S-box). An S-box is currently represented by a vectorial
function from F2n to F2n , where F2n is the finite field of order 2n. The
differential uniformity of such a function F , denoted δ(F ), is equal to the
largest number δ(a, b) of solutions x of the equations

(Ea,b) : F (x+a)+F (x)=b, a ∈ F∗
2n , b ∈ F2n .

To have a good resistance to the differential attack, the numbers δ(a, b) must
be globally low. The best value for δ(F ) is 2, when every (Ea,b) has 0 or 2
solutions. In this case, F is said to be an Almost Perfect Nonlinear (APN)
function.

Further, the associated code CF of F was defined and its basic proper-
ties were explained in [8]. The main purpose was to describe the algebraic
structure of CF when F is an APN function or, equivalently, when CF has
minimum distance 5. It was notably proved that for odd n some APN func-
tions, called Almost Bent (AB) functions, lead to completely regular codes
(see [8, Corollary 2]).

This paper can be considered as an extension of [8], since we are interested
by the full corpus of codes CF , mainly when δ(F ) ≥ 4. When F is not APN,
the minimum distance of CF is 3 or 4 making the codewords of weight 3 and
4 of CF highly significant for our study. Our main purpose is to describe the
set of such codewords and to establish some relations with the value of δ(F )
or with special properties of F .

The paper is organized as follows. The next section gives some necessary
definitions on the cryptographic properties of functions over F2n and basic
properties of their related codes. In Section 3, we describe the links between
the differential uniformity of F , the codewords of weight 3 and 4 of CF and
the cosets of CF of minimum weight 1 and 2. In Section 4, we present specific
properties of codes CF associated to differentially 4-uniform functions. We
further study the size of the setW3 (resp. W4) of codewords of weight 3 (resp.
of weight 4). In Section 5.2, we obtain lower bounds and upper bounds for
the numbers of codewords of weight less than 5 of the codes CF . We later
show that the nonlinearity of F decreases when these numbers increase. We
obtain a precise expression to compute these numbers when F is a plateaued
or a differentially two-valued function. Sections 6 and 7 can be seen as
practical extensions. First, we are focusing on the set of 2-to-1 derivatives
of any function over F2n , providing a new method to construct differentially
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4-uniform functions, which have a large number of 2-to-1 derivatives. In
Section 7, we give a precise expression of the size of sets W3 and W4 for
differentially two-valued functions and for plateaued functions.

2 Preliminaries

In this paper, some aspects of coding theory are required. A basic framework
is given in Section 2.2 later. For further details, the reader can refer to [14] or
to the first chapter of [17], for instance. Amongst the notations introduced
in this section, some are reserved throughout this paper:
– |E| is the size of any set E and E∗ = E \ {0};
– N = 2n − 1;
– α is a primitive element of the finite field F2n .

2.1 Notation, definitions

Any function from F2n to F2n is called a vectorial function over F2n . Let F
be such a function and a ∈ F∗

2n . Then, the function

DaF : F2n 7→ F2n , x 7→ F (x+a)+F (x)

is called the difference function of F with respect to a, or the derivative of F
in direction a. Define the numbers

δ(a, b)= |{x ∈ F2n | DaF (x)=b}|, b ∈ F2n . (1)

The differential uniformity of F is defined as

δ(F )= max
a∈F∗

2n , b∈F2n
δ(a, b). (2)

Then, F is said to be a differentially δ(F )-uniform function. Clearly, δ(F ) is
an even integer. When δ(F ) = 2, F is said to be an almost perfect nonlinear,
abbreviated APN, function.

The differential spectrum of F is the multiset consisting of integers δ(a, b)
with their multiplicities. For simplicity, we will use the sequence of values

ωi= |{(a, b) ∈ F∗
2n × F2n | δ(a, b)= i}|.

3



Then it is easy to check that

δ(F )∑
i=0

ωi=

δ(F )∑
i=2

i× ωi=2n(2n−1). (3)

Very particular functions will appear in this paper, which could be seen as a
generalization of APN functions.

Definition 1 A function F over F2n is said to be differentially two-valued,
if δ(a, b) takes two values only, that is δ(a, b) ∈ {0, δ(F )} for any pair (a, b) ∈
F∗
2n × F2n.

It is known that a differentially two-valued function F satisfies δ(F ) = 2s

for some integer s > 0. A basic study of these functions can be found in [3,
Section 5]. Little is known about the corpus of non APN such functions. We
prove in this paper that some properties of differentially two-valued func-
tions hold for quadratic functions. These results reinforce [3, Conjecture 1],
claiming that such monomial functions are strongly connected with the one
which are quadratic. However, note that APN functions and the inverse of
differentially two-valued permutations are differentially two-valued, too. Not
all differentially two-valued functions are quadratic.

The set of Boolean functions of n variables is currently denoted by Bn.
Such functions, from F2n to F2, will be denoted by lower case letters. Define,
for any f ∈ Bn and a ∈ F∗

2n ,

F(f)=
∑
x∈F2n

(−1)f(x) and φa(x)=Tr(ax),

where Tr is the absolute trace over F2n . The set of Walsh coefficients of
f ∈ Bn is

Wf ={F(f+φa) | a ∈ F2n}.

The nonlinearity of f , say nl(f), is related to the Walsh spectrum as follows:

nl(f)=2n−1−L(f)

2
where L(f) = max

a∈F2n
Av(F(f+φa)), (4)

where Av(u) is the absolute value of any u ∈ Z. The function f is said to
be bent when n is even and Wf contains two values only, namely ±2n/2. It
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is said to be plateaued when either it is bent, or Wf contains three values,
namely

{0,±2(n+s)/2}, where 1 ≤ s ≤ n− 2 with s+ n even.

The value 2(n+s)/2 is the amplitude of f . Plateaued functions were introduced
by Zhang and Zheng in [20], where the reader can find a proof of Theorem 1
below. The sum-of-square indicator of a Boolean function f ∈ Bn is

ν(f)=
∑
a∈F2n

F2(Daf)=2−n
∑
a∈F2n

F4(f+φa). (5)

Theorem 1 [20] Any f ∈ Bn satisfies ν(f) ≤ 2nL2(f), where L(f) is de-
fined by (4). Equality occurs if and only if f is plateaued, that is, for some
integer 1 ≤ s ≤ n− 2,

L(f)=2(n+s)/2 and ν(f)=22n+s. (6)

For a function F over F2n , the nonzero linear combinations of its coordi-
nates are called the components of F . They are the functions of Bn defined
as follows:

fµ(x) := Tr(µF (x)), ∀ µ ∈ F∗
2n .

The nonlinearity of the vectorial function F is then

NL(F )=2n−1−L(F )

2
where L(F ) = max

µ∈F∗
2n

L(fµ). (7)

A plateaued vectorial function is a vectorial function whose components are
plateaued Boolean functions. It is said that F is plateaued with single am-
plitude when all components have the same amplitude. For recent progress
on plateaued functions, see [7]. See [15], and the references herein, for a
generalization to any characteristic.

2.2 The related codes

In this paper, we consider binary linear codes which are subspaces of FN
2 ,

where N = 2n − 1. Such a code C is a so called [N, k, d] code, i.e., of length
N , dimension k and minimum weight d. Any codeword in the ambiant space
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FN
2 is a vector c = (c0, . . . , cN−1), ci ∈ F2. The (Hamming) weight of c is

the number of nonzero ci, denoted wt(c). The weight enumerator of C is the
sequence (λ0, ..., λN), where λi is the number of codewords of C of weight i.
Viewing F∗

2n as the sequence

1, α, α2, . . . , αN−1,

a codeword c can be expressed by its locators. These are the elements of
the support of c, the αi such that ci ̸= 0. Setting c = (c0, . . . , cN−1) and
ω = wt(c), the codeword c can be expressed as follows:

Xc=(αi1 , . . . , αiω) where ci ̸= 0 ⇔ i ∈ {i1, . . . , iω}.

For simplicity, we will often say Xc ∈ C as well as c ∈ C. Generally, we will
use capital letters for a vector expressed by its locators: X = (x1, . . . , xω),
xi ∈ F2n , where wt(X) = ω. Thus, for two such vectors Xc and Xc′ , Xc+Xc′

is the vector c+ c′ expressed by its locators and Xc ∩Xc′ is the vector whose
locators are locators of both Xc and Xc′ .

The dual C⊥ of C is the subspace generated by the so called parity check
matrix of C. Let H be such a matrix. Then C⊥ is defined as follows:

c ∈ C if and only if Hct=0.

The link between linear codes and APN functions was introduced in [8].

Definition 2 Let C be a binary linear code of length N . Denote by (η0, ..., ηN)
the weight enumerator of its dual C⊥, with

ηi = |{c ∈ C⊥|wt(c) = i}| and Ω = {j : ηj ̸= 0, 1 ≤ j ≤ N}.

The set Ω is said to be the characteristic set of C.

Theorem 2 [8, Theorem 5] Let F be any function from F2n to F2n such that
F (0) = 0, and let CF be the [N = 2n − 1, k , d] code defined by the parity
check matrix

HF =

(
1 α α2 . . . αN−1

F (1) F (α) F (α2) . . . F (αN−1)

)
, (8)

where each entry is viewed as a binary vector. Then:
(i) The code CF is such that 3 ≤ d ≤ 5;
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(ii) F is APN if and only if d = 5;
(iii) F is almost bent (AB) if and only if the characteristic set of CF is as
follows:

Ω={2n−1, 2n−1 ± 2(n−1)/2}.

Let c = (c0, ..., cN−1) be a binary vector. By the definition of HF , c
belongs to CF if and only if it satisfies

N−1∑
i=0

ciα
i=0 and

N−1∑
i=0

ciF (αi)=0. (9)

Remark 1 AB functions exist only for odd n. Any AB function is APN.
The dimension k of CF satisfies k ≥ 2n − 2n− 1, with equality if and only if
F has no linear component. This holds when F is APN [8, Corollary 1].

3 Codewords of weight 3 or 4

In this paper, we mainly treat the codes CF , with minimum distance d, such
that 3 ≤ d ≤ 4, i.e., the functions F satisfying δ(F ) ≥ 4. In this section,
we emphasize that the differential uniformity of F is fully related with the
codewords of weight 3 and 4 of CF . We later explain the link between these
codewords and the cosets of CF of minimum weight 1 and 2. We first give
definitions and notations which will be used throughout this paper.

3.1 Basic description

Definition 3 Let F be any function over F2n such that F (0) = 0. For any
(a, b) ∈ F∗

2n × F2n, we define

Ta,b={(x, x+ a) ∈ F2n × F2n | DaF (x)=b}, (10)

where by convention (x, x + a) is a codeword of length N , whose weight is 1
if x ∈ {0, a} and is 2 otherwise, expressed by its locators.

To be clear, if x = αi for some i and x + a = αj, j ̸= i, then (αi, αj)
corresponds to the binary codeword

(c0, c1, . . . , cN−1) where cℓ ̸= 0 if and only if ℓ ∈ {i, j}.
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When x ∈ {0, a}, this codeword has only one locator (a), i.e., it corresponds
to a binary codeword of weight 1 in the ambiant space FN

2 .
Note that Ta,b is empty for any b which is not in the image set of DaF .

In particular, if F is APN, then any Ta,b has size 0 or 1. More generally, the
size of Ta,b is

κa,b=
δ(a, b)

2
. (11)

Every pair (x, y) ∈ F∗
2n × F∗

2n , with x ̸= y, can be written as (x, x + a)
for a = x + y, and the corresponding codeword is in only one Ta,b, where
b = F (x) + F (x + a). When x = 0, we have (a) ∈ Ta,F (a). Obviously, two
vectors in Ta,b do not intersect, by definition. Now, we define a mapping S
from the set {Ta,b, (a, b) ∈ F∗

2n × F2n} to the set of subsets of CF :

S(Ta,b)=

{
∅ if κa,b ∈ {0, 1}

{X+Y | X,Y ∈ Ta,b, X ̸= Y } otherwise
(12)

We denote by S(F ) the union of all S(Ta,b).

Lemma 1 Assume that δ(F ) ≥ 4. Let W3 and W4 be, respectively, the set
of codewords of weight 3 and 4 of CF . Then W3 ∪W4 = S(F ).

Proof. Recall that F is a function over F2n such that F (0) = 0. First,
S(Ta,b) is included in W3 ∪ W4 for all (a, b). This is because, by definition,
any codeword of S(Ta,b) has locators of the form (x, x+ a, y, y+ a), for some
x and y satisfying x ̸= y ̸= y + a and

F (x)+F (x+a)=b=F (y)+F (y+a).

According to (9), such a codeword is a codeword of CF of weight 3 or 4.
Conversely, let X = (x, t, y, z) be a codeword of W3 ∪ W4, where we admit
that x = 0 when this codeword has weight 3. Set a = x + t and u = z + y.
From (9) again, we get a = u and then

X = (x, x+ a, y, y + a) ∈ S(Ta,b) for b = F (x) + F (t) = F (y) + F (z),

completing the proof. ⋄

Lemma 2 Assume that δ(F ) ≥ 4. Let X ∈ W3 ∪W4 with

X=(x, x+a, y, y+a), y ̸=x ̸=x+a. (13)
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Then X ∈ S(Tai,bi) for exactly three distinct (ai, bi), that is:

(ai, bi), i=1, 2, 3 with a1=a, a2=x+y, a3=x+y+a,

and b = b1 = DaF (x) = DaF (y),

b2=Da2F (x)=Da2F (x+a), b3=Da3F (x)=Da3F (x+a).

Moreover, if F is a permutation then b1 ̸= b2 ̸= b3.

Proof. Let X ∈ W3 ∪W4, which is in a set S(Ta,b), and satisfies (13), with
b = DaF (x) = DaF (y). Now, the three pairs of locators of X are each in
one and only one set S(Tai,bi), providing three times the same codeword.

Setting y = x+ a2 so that y + a = x+ a2 + a, we have

(x, y), (x+a, y+a) ∈ Ta2,b2 with Da2F (x)=Da2F (x+a)=b2

and, with a3 = a2 + a = y + x+ a,

(x, y+a), (x+a, y) ∈ Ta3,b3 with Da3F (x)=Da3F (x+a)= b3.

Clearly, the ai are distinct, since y ̸= x ̸= x+a, and every pair of locators ofX
is well placed. We have above F (x)+F (x+a2) = b2 and F (x)+F (x+a) = b.
Assuming that b = b2, we get F (y) = F (x+ a), which is impossible if F is a
permutation. The cases b = b3 and b2 = b3 are similar, completing the proof.
⋄

3.2 The cosets of CF

Let C be any binary linear [N, k, d]-code, where N = 2n − 1. There are
2N−k − 1 distinct proper cosets of C. Such a coset is simply: U = X + C
with X ̸∈ C. A codeword of minimum weight of U is called a leader of U .
Every coset is uniquely determined by its so-called syndrome. For the code
CF , the syndrome of X + CF , where X has locators (x1, . . . , xℓ), is the pair
(u, v) where

u=
ℓ∑

i=1

xi and v=
ℓ∑

i=1

F (xi), (14)

according to the definition of codewords of CF (see (9)).
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Several properties of the code CF are developed in [8, Section 3.2], when
F is any APN function over F2n . It is notably proved that when F is an
AB function (see Theorem 2), the code CF is completely regular, i.e., for any
coset of CF its weight distribution is uniquely determined by its minimum
weight. When F is not APN, the code CF contains codewords of weight 3,
or/and 4. Then the structure of CF and the weight distributions of its cosets
become more complicated, even when δ(F ) = 4.

In the previous section, we proved that for any not APN function F ,
every codeword in W3 ∪W4 is obtained by summing two distinct vectors of
a set Ta,b. By definition, any non empty Ta,b characterizes the coset of CF

with syndrome (a, b), by its codewords of weight 1 and 2. Such a coset, say
Ca,b, has only one leader when its weight equals 1. The number of codewords
of weight 2 in Ca,b equals κa,b − 1 when b = F (a) and κa,b otherwise. Since
2κa,b = δ(a, b), the differential uniformity of F is fully determined by the
number of codewords of weight 2 in the cosets Ca,b. We summarize as follows.

Theorem 3 Assume that δ(F ) ≥ 4. The set W3 ∪ W4 is fully determined
by the set of cosets of CF of minimum weight 1 or 2, which are defined by
the syndromes:

(a, b), a ∈ F∗
2n , b ∈ Im(DaF ) (so that κa,b>0), (15)

where Im(DaF ) is the image set of DaF . Moreover, such a coset Ca,b has
the following properties:

(i) When b = F (a), the coset Ca,b contains κa,b − 1 codewords of weight 2
and one codeword of weight 1.

(ii) When b ̸= F (a), the coset Ca,b contains κa,b codewords of weight 2.

Finally, δ(F ) = 2×maxa,b{κa,b}, where (a, b) is defined by (15).

We end this section with two properties concerning low differential uni-
formity. They are directly deduced from the previous results. The code CF

is defined by Theorem 2 and its cosets Ca,b by Theorem 3.

Proposition 1 The function F is APN if and only if every coset Ca,b of CF ,
with syndrome (a, b) defined by (15), contains only one codeword with weight
in {1, 2}, its leader. It means in other terms that any Ta,b has size 0 or 1.
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Proposition 2 The function F satisfies δ(F ) = 4 if and only if every coset
Ca,b of CF , defined by (15), contains either only one codeword with weight in
{1, 2}, or two codewords either both of weight 2, or one of weight 1 and the
other of weight 2.

4 The case δ(F ) = 4

In this section, we study specific properties of the code CF , when δ(F ) = 4.
The code CF is defined by Theorem 2 and F is a function over F2n such that
F (0) = 0. Also W3 (resp. W4) is the set of codewords of weight 3 (resp. of
weight 4) of CF .

Lemma 3 Let X and Y be two distinct codewords of CF , which belong to
W3 ∪W4. Then wt(X + Y ) ≥ 3 and wt(X ∩ Y ) ≤ 2. Moreover, if X and Y
satisfy either wt(X ∩ Y ) = 2, or wt(X ∩ Y ) = 1 with wt(X) = wt(Y ) = 3,
then δ(F ) ≥ 6.

Proof. Since the vector X + Y is in CF , its weight is at least 3, from
Theorem 2, implying wt(X ∩ Y ) ≤ 2.

Assume that wt(X∩Y )=2. So, at least Y (for instance) has weight equal
to 4. Let X = (x, y, x1, x2) and Y = (x, y, y1, y2) with x ̸= y ̸= 0. Then we
have, since X, Y ∈ CF ,

x+y=x1+x2=y1+y2=a and

F (x)+F (x+a)=F (x1)+F (x1+a)=F (y1)+F (y1+a). (16)

Hence δ(F ) ≥ 6. Next, assume X = (x, x1, x2) and Y = (x, y1, y2). We get,
as above, x = x1 + x2 = y1 + y2 with

F (x) = F (x1) + F (x1 + x) = F (y1) + F (y1 + x),

completing the proof. ⋄

In the case where δ(F ) = 4, we can study precisely the weight of X + Y ,
when X and Y belong to W3 ∪W4. This leads to a combinatorial property
of CF .
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Theorem 4 Let F : F2n 7→ F2n. The function F satisfies δ(F ) = 4 if and
only if the code CF , defined by Theorem 2, has codewords of weight 3 or 4
and, for any such two distinct codewords, the weight of their sum equals at
least 5. More precisely, in the case where δ(F ) = 4, we have for any such
X, Y ∈ W3 ∪W4:

(i) If X and Y are both of weight 3, then wt(X + Y ) = 6.

(ii) If wt(X) = 3 and wt(Y ) = 4, then wt(X + Y ) ∈ {5, 7}.

(iii) If wt(X) = wt(Y ) = 4, then wt(X + Y ) ∈ {6, 8}.

Proof. Recall that for any codewords X and Y , one has

wt(X+Y )=wt(X)+wt(Y )−2wt(X∩Y ).

Assume that δ(F ) = 4. Applying Lemma 3, we know that wt(X ∩ Y ) ≤ 1
for any X and Y in W3 ∪W4, where X ̸= Y . In particular, wt(X ∩ Y ) = 0
when wt(X) = wt(Y ) = 3. Therefore, in all cases wt(X+Y ) ≥ 5. The three
items are simply derived.

Now, suppose that any two distinct codewords of weight 3 or 4, say X
and Y , satisfy wt(X + Y ) ≥ 5. If δ(F ) ≥ 6, then there is a pair (a, b) and
x, y, z ∈ F2n such that

DaF (x)=DaF (y)=DaF (z)=b, |{x, x+a, y, y+a, z, z+a}|=6.

Thus the two codewords with locators (x, x+a, y, y+a) and (x, x+a, z, z+a)
whose weights are 3 or 4, are such that their sum has locators (y, y+a, z, z+a),
and thus has weight 3 or 4, a contradiction which completes the proof. ⋄

To show that our results are relevant, we end this section by a first out-
come; others will be given later. When δ(F ) = 4, every non empty S(Ta,b)
contains only one codeword (see (12) and Proposition 2). Thus the size of
S(F ), which is the union of the S(Ta,b), is in this case

|S(F )|= 1

3
|{(a, b) ∈ F∗

2n×F2n | κa,b=2}|,

since every codeword is in exactly three S(Ta,b) (Lemma 2).
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Corollary 1 Let F be a not APN function. We denote by λ3 (resp. λ4)
the size of W3 (resp. W4). Assume that λ4 = 0. Then δ(F ) = 4 and
λ3 = |S(F )| ≤ N/3. Also, if λ3 = N/3 then n must be even. It is in
particular the case when F (x) = xd for some d, which is not a power of 2.
Consequently, it is impossible to have λ4 = 0, for such F , when n is odd.

Proof. Any codeword of weight 3 or 4 is obtained from a set Ta,b of size at
least 2, by means of the application S. Since λ4 = 0, any such Ta,b cannot
contain two codewords of weight 2. Hence κa,b = 2 and Ta,b = {(a), (x, x+a)},
for some x. Moreover b = F (a) so that:

|S(F )|= 1

3
|{a ∈ F∗

2n | κa,F (a)=2}|.

Further, λ3 equals the size of S(F ), which is less than or equal to N/3, since
codewords of weight 3 are disjoined. If λ3 = (2n−1)/3, then n must be even.

When F (x) = xd, it is well-known that the code CF is a so-called binary
cyclic code with two zeroes, α and αd, where α is a primitive root of F2n .
Thus the code CF is invariant by shift, that is, for any vector X given by its
locators,

X=(x1, x2, . . . , xℓ) ∈ CF ⇐⇒ (αx1, αx2, . . . , αxℓ) ∈ CF . (17)

Thus λ3 = N/3 when n is even. When n is odd the codewords of weight 3
cannot be disjoined, a contradiction. ⋄

Example 1 Let n = 2k for some k and consider the function F : x 7→ x−1

over F2n. It is well-known that F satisfies δ(F ) = 4. Moreover, for any
a ∈ F∗

2n, the equation
1

x
+

1

x+a
=b, b ̸= 1

a
,

has 0 or 2 solutions (x and x+ a). When b = 1/a, the solutions are

x=0, x=a and the two roots of x2+ax+a2=0.

Thus the code CF is such that λ3 = N/3 and λ4 = 0. We can describe the
set W3: let x1 be a root of x2 + x+ 1 = 0; then

W3=
{
(αi, αix1, α

i(x1+1)), i=0, . . . , N−1
}
.

Note that every codeword appears three times, for three distinct i.

13



Problem 1 The main question arising from the previous example is: whether
there exist or not differentially 4-uniform monomial functions with λ4 = 0,
other than the inverse function (up to equivalence)? Another question is
about the existence of codes CF such that λ4 = 0 and 0 < λ3 < N/3.

5 The size of W3 and W4 via differential spec-

trum

In this section, our aim is to compute the size of the sets of codewords of
weight 3 and 4 of any code CF , denoted W3 and W4 respectively. Recall that
λ3 and λ4 denote the size of W3 and W4, respectively. In previous works, λ3

and λ4 were obtained essentially for some functions of type F (x) = xd, with
respect to the differential spectrum (see [3, 12]).

5.1 The formulas

In this subsection, we propose some expressions of λ3 and λ4 for any function
F with respect to its differential spectrum. Recall that the binomial coeffi-
cient

(
u
v

)
:= u!

v!(u−v)!
equals 0 when u < v. By Lemma 1, we know that the

codewords of weight 3 and 4 are just all the elements of the set

S(F )=
∪

(a,b)∈F∗
2n×F2n

S(Ta,b)

(see (10) and (12) for the definitions). Every set S(Ta,b) is of size
(
κa,b

2

)
, where

κa,b is the size of Ta,b. Moreover the value λ3 is strongly related with some
values of b.

(1) If b = F (a), then κa,b − 1 codewords of weight 3, together with
(
κa,b−1

2

)
codewords of weight 4, belong to S(Ta,b).

(2) If b ̸= F (a), then S(Ta,b) contains
(
κa,b

2

)
codewords of weight 4 and no

codewords of weight 3.

According to these observations, we express easily the size of W3 and of W4.

Theorem 5 With notations as above, we assume that δ(F ) ≥ 4 and F (0) =
0. Then we have:

14



(i) The size of W3 is λ3=
1
3

∑
a∈F∗

2n
(κa,F (a)−1);

(ii) The size of W3 ∪W4 is

λ3+λ4=
1

6

∑
a∈F∗

2n

∑
b∈F2n

κ2
a,b−

N(N+1)

12
=

1

24

δ(F )∑
i=0

i2ωi−
N(N+1)

12
,

where ωi = |{(a, b) ∈ F∗
2n × F2n | δ(a, b) = i}| and N = 2n − 1.

Proof. By Lemma 2, each codeword X ∈ W3 ∪W4 appears exactly in three
S(Ta,b) for three distinct pairs (a, b). Hence

λ3=
1

3

∑
a∈F∗

2n

(κa,F (a)−1),

and

λ3+λ4 = |S(F )|= 1

3

∑
a,b

|S(Ta,b)|

=
1

3

∑
a∈F∗

2n

∑
b∈F2n

(
κa,b

2

)
=

1

3

∑
a∈F∗

2n

∑
b∈F2n

κ2
a,b − κa,b

2

=
1

6

 ∑
a∈F∗

2n

∑
b∈F2n

κ2
a,b− 2n−1N

 (as
∑
b

κa,b=
1

2

∑
b

δ(a, b)=2n−1)

=
1

24

δ(F )∑
i=0

i2ωi−
N(N+1)

12
.

This completes the proof. ⋄

Let F (x) = xd be a power function, for some d which is not a power of 2.
By applying Theorem 5 to the power functions, we obtain an extension of
previous results given in [3, Corollary 1], with a different approach. The next
corollary is simply derived, since for such F we have

2κa,b = δ(a, b) = δ(1, b/ad), for any a ∈ F∗
2n .

Corollary 2 Let F be a power function over F2n. Then the following holds:

15



(i) The size of W3 is

λ3=
N(δ(1)− 2)

6
, where δ(b) := δ(1, b) for any b ∈ F2n .

(ii) The size of W3 ∪W4 is

λ3+λ4=
N

24

∑
b∈F2n

δ(b)2−N(N+1)

12
=

N

24

δ(F )∑
i=0

i2ω̃i−
N(N+1)

12
,

where ω̃i = |{b ∈ F2n | δ(b) = i}|.

The next proposition is directly obtained from Corollary 2(i) (with same
notation). Since λ3 = N(δ(1)− 2)/6, 3 must be a divisor of N or of δ(1)− 2.
Note that 3 divides N if and only if n is even, hence 3 must divide δ(1)− 2
when n is odd. We summarize as follows.

Proposition 3 Let F (x) = xd be defined over F2n where d is not a power of
2. Then λ3 = 0 if and only if δ(1) = 2.

Assume that λ3 ̸= 0. Then either δ(1) − 2 or N is divisible by 3. In
particular, when n is odd it holds

δ(1)=3k+2 for some even k≥2.

Therefore, if λ3 ̸= 0 with n odd then δ(F ) ≥ 8.

Problem 2 According to Corollary 2 and Proposition 3, it appears that for
odd n the power functions F such that δ(F ) = 4 have an associated code CF

of minimum distance 4. One can see in [3, Table 1] that such a function
does not exist for n ∈ {15, 17, . . . , 25}, when gcd(n, d) = 1. Does it hold for
n > 25?

5.2 Lower bound and upper bound

In this subsection, we discuss upper and lower bounds for λ3 and λ4. We set

κ(F )= max
a∈F∗

2n ,b∈F2n
κa,b (so that δ(F )=2κ(F )). (18)

Recall that differentially two-valued functions are defined in Section 2.1.

16



Theorem 6 Let F be a function over F2n such that κ(F ) ≥ 2. Then it holds

λ3≤
1

3
(κ(F )−1)(N−M)≤ 1

3
(κ(F )−1)N,

where M is the number of a ∈ F∗
2n such that κa,F (a) = 1. Both equalities hold

if and only if κa,F (a) = κ(F ) for any a ∈ F∗
2n.

Proof. It follows from Theorem 5(i) that

λ3 =
1

3

∑
a∈F∗

2n

(κa,F (a)−1)

≤ 1

3
(κ(F )−1)(N−M) ≤ 1

3
(κ(F )−1)N.

We first used that κa,F (a) ≤ κ(F ), for those a ∈ F∗
2n such that κa,F (a) ̸= 1.

Further, we put M = 0 to obtain the latter bound. Hence, both equalities
hold if and only if κa,F (a) = κ(F ) for any a ∈ F∗

2n . ⋄

We need more notations to propose the next upper bound for λ3 + λ4.
Set {x1, . . . , xN} = F∗

2n . For 1 ≤ i < j ≤ N , let nij be the number of
codewords of CF of weight 4, which contains xi and xj as two of its locators.
Set aij = xi + xj and bij = F (xi) + F (xj).

First, κaij ,bij ≥ 1 as (xi, xj) ∈ Taij ,bij . In particular, it holds κaij ,bij ≥ 2 if
bij = F (aij), since in this case (aij) ∈ Taij ,bij as well. Conversely, if κa,b ≥ 1
for some (a, b) ∈ F∗

2n×F2n such that b ̸= F (a), then (a) ̸∈ Ta,b, and thus there
exists some pair of integers (i, j), 1 ≤ i < j ≤ N , such that (xi, xj) ∈ Ta,b.
This implies a = xi + xj = aij and b = F (xi) + F (xj) = bij. Moreover, it
is clear that when κa,F (a) ≥ 2, there exist some 1 ≤ i < j ≤ N such that
(a, F (a)) = (aij, bij). So, we have proved that κu,v ̸= 0 if and only if

(u, v) ∈ {(aij, bij) | 1≤ i<j≤N}∪{(a, F (a)) | a ∈ F∗
2n}.

Moreover, it holds

{(aij, bij) | 1≤ i<j≤N}∪{(a, F (a)) | a ∈ F∗
2n}

= {(aij, bij) | 1≤ i<j≤N}∪{(a, F (a)) | a ∈ F∗
2n , κa,F (a)=1},

where the latter is a disjoint union. We also need to define

ω2= |{(i, j) | 1≤ i<j≤N, κai,j ,bi,j =1}|, (19)

or equivalently,
ω2=ω2−|{a ∈ F∗

2n | κa,F (a)=1}|.
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Theorem 7 Let F be a function over F2n such that κ(F ) ≥ 2. Then it holds

λ3+λ4≤
λ3

2
+(κ(F )−1)(

N(N−1)

12
−ω2

6
)≤ (κ(F )−1)N(N+1)

12
.

The first inequality is equality if and only if F is differentially two-valued
{0, δ(F )} or three-valued {0, 2, δ(F )}. Both equalities hold if and only if F
is differentially two-valued.

Proof. On one hand, note that any codeword of weight 4 that contains xi

and xj (i ̸= j) as two of its locators should appear in S(Taij ,bij) as (xi, xj) ∈
Taij ,bij . But in each S(Taij ,bij), there are exactly κaij ,bij − 1 such codewords if
bij ̸= F (aij); and there are exactly κaij ,bij − 2 such codewords if bij = F (aij).
Hence we have

nij=

{
κaij ,bij−1 if bij ̸=F (aij),

κaij ,bij−2 if bij=F (aij).

On the other hand, the sum n12+n13+ · · ·+nN−1,N is a calculation of the
number of codewords of CF of weight 4, in which every codeword of weight
4 is taken

(
4
2

)
= 6 times. Consequently, one obtains that

λ4 =
1

6

∑
1≤i<j≤N

nij

=
1

6

( ∑
1≤i<j≤N,
bij ̸=F (aij)

(κaij ,bij−1)+
∑

1≤i<j≤N,
bij=F (aij)

(κaij ,bij−2)

)

=
1

6

∑
1≤i<j≤N

(κaij ,bij−1)− 1

6
|{(i, j) | i < j, bij=F (aij)}|

=
1

6

∑
1≤i<j≤N

(κaij ,bij−1)−λ3

2

≤ 1

6
(κ(F )−1)(

N(N−1)

2
−ω2)−

λ3

2
,

where in the inequality we used the fact that κaij ,bij ≤ κ(F ) for any i, j such
that κaij ,bij ̸= 1. Then we arrive at

λ3+λ4≤
λ3

2
+(κ(F )−1)(

N(N−1)

12
−ω2

6
),
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with equality if and only if κaij ,bij = κ(F ) for any 1 ≤ i < j ≤ N such that
κaij ,bij ̸= 1, say F is differentially two-valued or three-valued {0, 2, δ(F )}.

Furthermore, from Theorem 6, we get

λ3

2
+(κ(F )−1)(

N(N−1)

12
−ω2

6
)

≤ (κ(F )−1)N

6
+
(κ(F )−1)N(N−1)

12

=
(κ(F )−1)N(N+1)

12
,

with equality if and only if ω2 = 0 and κa,F (a) = κ(F ) for all a ∈ F∗
2n (due

to Theorem 6). Hence both equalities hold if and only if F is differentially
two-valued, noting that ω2 = 0 means that κa,b = 1 cannot happen when
b ̸= F (a). ⋄

Remark 2 The functions which are differentially three-valued {0, 2, δ(F )}
appear in the previous theorem. It is important to notice that the knowledge
of ω2 only allows to get the exact value of λ3 and λ4, according to Theorems
6 and 7 (see the next example). Note that, in particular, differentially 4-
uniform functions are either three-valued of this form or two-valued.

Example 2 Let n = 2m, m > 2, and F (x) = x2m+1−1. From [4, Theorem
8]), we know that F is a so-called locally-APN function, i.e., δ(b) ∈ {0, 2}
unless b ∈ {0, 1}. Also, F has differential spectrum {0, 2, 2m} with δ(1) = 2m

and δ(0) ∈ {0, 2}. Thus, we get

λ3=(2m−1−1)
N

3
and λ4=

N(2m−1−1)(2m−2−1)

3
.

Since ω2 = ω2 = N(2n−1 − 2m−1), because κa,F (a) ̸= 1 for any a and ω2/N is
given by [4, Theorem 8]), we have

λ3+λ4=
N(2m−1−1)2m−2

3
,

which is equal to the bound of Theorem 7:

(2m−1−1)
2N+N(N−1)−N(2n−2m)

12
=(2m−1−1)

2mN

12
.

19



In the next theorem, we present two lower bounds for λ3+λ4. The first one
is a unified constant bound for functions with same differential uniformity.
The second one is more refined by introducing the parameter ω0. Note that
for any function F , we have

ω0≥(2n−1)×2n−1=N(N+1)/2 (with ω0= |{(a, b)|δ(a, b)=0}|),

with equality if and only if F is APN. This is because the size of the image
set of DaF is at most 2n−1, for any a ∈ F∗

2n . Equality, for any a, is obtained
if and only if F is APN.

Theorem 8 Let F be a function over F2n such that κ(F ) ≥ 2. Then we
have:

(i) λ3+λ4≥κ(F )(κ(F )−1)/2;

(ii)

λ3+λ4≥(
N(N+1)/2

N(N+1)−ω0

−1)
N(N+1)

12
,

where equality holds if and only if F is differentially two-valued.

Proof. (i) There is at least one pair (a, b) ∈ F∗
2n ×F2n such that κa,b = κ(F ).

Then

|S(Ta,b)|=
(
κ(F )

2

)
=
1

2
κ(F )(κ(F )−1),

so that λ3 + λ4 ≥ κ(F )(κ(F )− 1)/2.

(ii) First, note that the number of pairs (a, b) ∈ F∗
2n ×F2n , such that κa,b ̸= 0,

is equal to ω2 + ω4 + · · ·+ ωδ(F ) = N(N + 1)− ω0. Then one has:

λ3+λ4 =
1

6

∑
a∈F∗

2n

∑
b∈F2n

κ2
a,b−

N(N+1)

12

≥ 1

6
×

(
∑

a,b κa,b)
2

N(N + 1)− ω0

−N(N+1)

12

=
(N(N+1))2/24

N(N+1)−ω0

−N(N+1)

12
=(

N(N+1)/2

N(N+1)−ω0

−1)
N(N+1)

12
,
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where we applied the Cauchy-Schwartz inequality to the sum
∑

a,b κ
2
a,b, after

eliminating all the zero’s. Hence the equality holds for F if and only if
κa,b = κ(F ) for all pairs (a, b) ∈ F∗

2n × F2n such that κa,b ̸= 0, say F is
differentially two-valued. ⋄

According to Theorem 7, the proof of the following corollary is obvious.

Corollary 3 Let F be a function over F2n such that κ(F ) ≥ 2 and λ3 = 0.
Then one has ω2 = ω2 −N and λ4 ≤ B with

B=(κ(F )−1)(
N(N−1)

12
−ω2

6
)=(κ(F )−1)(

N(N+1)

12
−ω2

6
).

Equality occurs if and only if F is differentially three-valued as {0, 2, δ(F )}.

In the following proposition, we prove that the lower bound in (ii) of
Theorem 8 is larger than half of the real value for differentially 4-uniform
functions.

Proposition 4 Let F be a differentially 4-uniform function over F2n. Then
one has:

(
N(N+1)/2

N(N+1)−ω0

−1)
N(N+1)

12
>

1

2
(λ3+λ4). (20)

Proof. Note that ω0 = N(N + 1)/2 + ω4 by (3) and λ3 + λ4 = ω4/3 by
Theorem 5, for differentially 4-uniform functions. Hence the inequality (20)
can be rewritten as

(
N(N+1)/2

N(N+1)/2−ω4

−1)N(N+1)/2 > ω4. (21)

By simple calculations one can further rewrite (21) as follows:

N2(N+1)2/4

N(N+1)/2−ω4

> N(N+1)/2+ω4,

which holds obviously as ω4 ̸= 0 and

(N(N+1)/2−ω4)(N(N+1)/2+ω4)=N2(N+1)2/4−ω2
4.

⋄
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Remark 3 Proposition 4 gives another upper bound, for λ3 + λ4, of differ-
entially 4-uniform functions as

λ3+λ4 < (
1

1−ω0/(N2+N)
−2)

N(N+1)

12
,

which is better than λ3+λ4 ≤ N(N+1)
12

given by Theorem 7, if ω0 ≤ 2
3
N(N+1).

We end this section with some results, relating the Walsh spectrum and
the associated code of a vectorial function.

Theorem 9 Let F be a function over F2n with component functions fµ, µ ∈
F∗
2n. Then ∑

µ∈F∗
2n

ν(fµ)=(2n−1)22n+1+3×2n+3(λ3+λ4),

where ν(fµ) is defined in Section 2.1.

Proof. It has been obtained by Nyberg that, for any a ∈ F∗
2n ,∑

µ∈F2n

F2(Dafµ)=2n
∑
b∈F2n

δ2a,b

(see formula (4) in Page 118 of [16], which is here rewritten in our context).
This is equivalent to∑

µ∈F2n

F2(Dafµ)=22n+1+2n+3
∑
b∈F2n

(
κa,b

2

)
. (22)

Indeed, 2κa,b = δa,b and
∑

b∈F2n
κa,b = 2n−1, providing∑

b∈F2n

κ2
a,b−2n−1=

∑
b∈F2n

κa,b(κa,b−1).

Then, we can deduce that∑
µ∈F∗

2n

ν(fµ) =
∑
µ∈F∗

2n

∑
a∈F2n

F2(Dafµ)

=
∑
a∈F∗

2n

∑
µ∈F2n

F2(Dafµ)

= (2n−1)22n+1+2n+3
∑
a∈F∗

2n

∑
b∈F2n

(
κa,b

2

)
= (2n−1)22n+1+3×2n+3(λ3+λ4),
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where the third equality is deduced from (22). For the last equality, see
Theorem 5. ⋄

As a consequence of our previous results, we show that the nonlinearity of
any function F over F2n decreases while the number of codewords of weight 3
and 4 increases. Another property will be derived by Corollary 7 in Section 7.

Corollary 4 Let F be a function over F2n. Then its nonlinearity satisfies

NL(F )≤2n−1−
√
2n−1+

6(λ3+λ4)

2n−1
≤2n−1− 1

2

√
22n+1(2n−1)

2(2n(2n−1)− ω0)
.

Proof. Recall that NL(F ) and L(F ) are defined in Section 2.1 by (7). With
the same notation, we have first

L2(F )= max
µ∈F∗

2n ,
b∈F2n

F2(fµ+φb)≥

∑
µ∈F∗

2n ,
b∈F2n

F4(fµ+φb)∑
µ∈F∗

2n ,
b∈F2n

F2(fµ+φb)
,

while one has ∑
µ∈F∗

2n ,
b∈F2n

F2(fµ+φb)=(2n−1)22n,

by Parseval’s relation. Moreovoer, Theorem 9 implies that∑
µ∈F∗

2n ,
b∈F2n

F4(fµ+φb)=2n
∑
µ∈F∗

2n

ν(fµ)=(2n−1)23n+1+3× 22n+3(λ3+λ4).

Consequently, we arrive at

L2(F ) ≥ (2n−1)23n+1+3× 22n+3(λ3+λ4)

(2n−1)22n
=2n+1+

24(λ3+λ4)

2n−1
,

and hence

NL(F ) ≤ 2n−1− 1

2

√
2n+1+

24(λ3+λ4)

2n−1

≤ 2n−1− 1

2

√
22n+1(2n−1)

2(2n(2n−1)− ω0)
,

by Theorem 8(ii), completing the proof. ⋄
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6 The set of 2-to-1 derivatives

In this section, we are interested in the set of 2-to-1 derivatives of any function
F over F2n . It is well-known that F is APN if and only if all its derivatives
are 2-to-1. Actually, it is sufficient that this last property holds for 2n−1 − 1
well-chosen derivatives [10]: F is APN if and only if DaF is 2-to-1 for all
non-zero a of any hyperplane of F2n . We will show that this result can
be generalized, by considering the derivatives in respect with subspaces of
smaller dimensions.

Lemma 4 Let F be a function over F2n and k ≥ 2. Suppose that there is
(a, b), a ∈ F∗

2n and b ∈ F2n, such that

Ta,b={(x1, x1+a), . . . , (xk, xk+a)},

where xi ̸= xj ̸= xj + a for all i, j. Then, we have for any (i, j), i ̸= j,

Dxi+xj
F (xi)=Dxi+xj

F (xi+a) and

Dxi+xj+aF (xi)=Dxi+xj+aF (xi+a). (23)

Consequently, the functions DβF , β ∈ Sa with

Sa := {a, xi+xj, xi+xj+a | 1≤ i<j≤k},

are not 2-to-1.

Proof. We simply apply Lemma 2. Let (x, y) be any pair (xi, xj), i ̸= j.
The codeword, with locators (x, x+ a, y, y + a), is exactly in three S(Taℓ,bℓ),
ℓ = 1, 2, 3 with a1 = a, a2 = x+ y and a3 = x+ y + a. This proves (23). ⋄

Remark 4 If k = 2 (in Lemma 4),xs then Sa∪{0} is a subspace of dimension
2. If k > 2, then Sa ∪ {0} contains a subspace of dimension 3, for instance
with basis {a, x1 + x2, x1 + x3).

Now we can generalize [10, Theorem 2] as follows.

Theorem 10 Let V be a t-dimensional subspace of F2n and r = n − t. Let
F be a function over F2n such that DaF is 2-to-1, for all a ∈ V ∗. Then
δ(F ) ≤ 2r.
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Proof. Note that V has 2r cosets, including V itself. Suppose that there is
a ∈ F2n \ V such that δ(a, b) ≥ 2r + 2, for some b. Let ℓ = (2r + 2)/2. Then
we have ℓ elements of F2n :

A={x1, x2, . . . , xℓ} such that DaF (xi)=b, 1≤ i≤ℓ,

where xi ̸= xj ̸= xj + a, for all i, j. From Lemma 4 the elements xi + xj and
xi+xj +a are not in V . Therefore, for any pair (i, j), the elements xi and xj

(resp. xi and xj + a) cannot be in the same coset of V . Thus, the ℓ elements
of A are in ℓ different cosets of V . The same holds for the ℓ elements xj + a:
they are in ℓ different cosets of V , all different from the cosets xi + V .

Thus, we get at all 2r+2 different cosets of V , which is impossible. Hence
such an a does not exist and we can conclude that δ(F ) ≤ 2r. ⋄

Example 3 Let n=2k and F (x) = x2i(x+ x2k), where gcd(i, k) = 1. It was
proved in [18] that

δ(a, b) ∈
{

{0, 2k} if a ∈ F∗
2k
,

{0, 2} if a ∈ F2n\F2k .

Let W be a set of representatives of the cosets of F2k , i.e., F2n is the union
of the w + F2k , w ∈ W . Clearly W is a subspace of dimension k of F2n.
Moreover, for all a ∈ W ∗ the function DaF is 2-to-1. And W is the subspace
of F2n with the largest dimension which satisfies this property. When a ̸∈ W ,
we have δ(a, b) ∈ {0, 2, 2k}.

We now propose an application of Theorem 10, by using together APN
functions and bilinear functions. In the next example, we propose a class of
functions F such that δ(F ) ≤ 4.

Corollary 5 Let H(x) = L1(x)L2(x), where L1 and L2 are two linear func-
tions over F2n satisfying ker(L1) ⊆ ker(L2). Set t = dim(ker(L1)). Then for
any APN function G over F2n, the function F = G+H is such that DaF is
2-to-1 for all a ∈ ker(L1)

∗, so that δ(F ) ≤ 2n−t.

Proof. We have simply to write the derivative of F for any a ∈ F∗
2n :

DaF (x) = DaG(x)+L1(x)L2(x)+L1(x+a)L2(x+a)

= DaG(x)+L1(x)L2(a)+L1(a)L2(x+a).

Thus, for any a ∈ ker(L1), the equation DaF (x) = b becomes DaG(x) = b,
for any b. This is to say that DaF is 2-to-1, for all a ∈ ker(L1)

∗. Then
Theorem 10 applies. ⋄
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Example 4 Let n = 2k and set:
– L1(x) = T n

2 (x), the trace function from F2n to F22,
– L2(x) = Tr(x), the absolute trace on F2n.
Let F (x) = G(x) + L1(x)L2(x), where G is any APN function.

Since Tr(x) = T 2
1 (T

n
2 (x)), the kernel of L1 is included in the kernel of

L2. We apply Corollary 5 with t = n − 2, the dimension of ker(L1). Hence
δ(F ) ≤ 4.

Problem 3 Two questions arise naturally, regarding functions F of Corol-
lary 5, namely possible permutations and possible APN functions. Another
problem is to find constructions, which are not derived from APN functions,
as in Example 3.

7 Particular functions

In this section, we study the values λ3 and λ4 for two types of vectorial
functions, the differentially two-valued functions and the plateaued functions.
Recall that these kinds of functions are defined in Section 2.1. The next
proposition is a generalization of [3, Proposition 5], where this result was
obtained for monomial functions.

Proposition 5 Let F be a differentially two-valued function over F2n, with
differential uniformity δ(F ) = 2s, where s > 1. Then the numbers of code-
words of weight 3 and 4 of CF satisfy

λ3=
N(2s−1−1)

3
and λ4=(2n−2−1)λ3.

Thus λ4 ̸= 0 if and only if λ3 ̸= 0.

Proof. Note that the function F is differentially two-valued if and only the
derivative DaF is 2s-to-1 for any a ∈ F∗

2n . According to Theorem 7, this
holds if and only if

λ3+λ4=
2n−2N(2s−1−1)

3
.

Moreover, λ3 is directly obtained from (i) of Theorem 5, since any Ta,F (a) has
size κa,F (a) = 2s−1. To conclude, we compute

λ4=
2n−2N(2s−1−1)

3
−N(2s−1−1)

3
=(2n−2−1)λ3.
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⋄

As announced by Theorem 7, the higher bound on λ3 + λ4 is reached
by differentially two-valued functions only. Moreover, λ3 reaches its upper
bound too. Notably, if s = 2 then λ3 = N/3 and λ4 = N(2n−2 − 1)/3, where
both values must be non-zero integers, which is impossible when n and (then)
n− 2 are odd. More generally, n odd would imply s odd. Note that the next
result is a generalization of [3, Corollary 3].

Corollary 6 Let F be a differentially two-valued function over F2n such that
δ(F ) = 2s. If s is even, then n must be even too. In particular, F cannot be
differentially 4-uniform when n is odd.

Until the end of this section, F is a plateaued function over F2n . Thus
every component fµ of F satisfies

L(fµ)=2
n+tµ
2 , 0≤ tµ≤n−2,where tµ + n is even. (24)

We begin by giving a result derived from Theorem 9.

Corollary 7 Assume that F is a plateaued function over F2n, with compo-
nents satisfying (24) above. Then

λ3+λ4=
2n−3

3

∑
µ∈F∗

2n

(2tµ−2).

Proof. Since every fµ is plateaued, we have from Theorem 1

ν(fµ)=22n+tµ , µ ∈ F∗
2n .

Hence, from Theorem 9,∑
µ∈F∗

2n

ν(fµ)=
∑
µ∈F∗

2n

22n+tµ =(2n−1)22n+1+3×2n+3(λ3+λ4),

so that

λ3+λ4=
22n

3×2n+3

 ∑
µ∈F∗

2n

2tµ−2(2n−1)

=
2n−3

3

∑
µ∈F∗

2n

(2tµ−2).

⋄
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Theorem 11 Let F be a plateaued function with components satisfying (24)
above. Then

λ3=
1

6

∑
µ∈F∗

2n

(2tµ−2) and λ4=(2n−2−1)λ3.

Consequently, λ4 ̸= 0 if and only if λ3 ̸= 0. If F is plateaued with single
amplitude 2(n+t)/2, then λ3 = (2t−1 − 1)N/3.

Proof. For any µ, we have:∑
a∈F2n ,b∈F2n

(−1)Tr(µDaDbF (x))=2n+tµ , for all x ∈ F2n .

This was proved by [9, Theorem 1], for plateaued Boolean functions. This
result holds for any characteristic (see [15, Theorem 2]). Thus we have∑

µ∈F∗
2n

2n+tµ =
∑
µ∈F∗

2n

∑
a,b

(−1)Tr(µDaDbF (x))

=
∑
a,b

∑
µ∈F2n

(−1)Tr(µDaDbF (x))−22n.

Denoting the last value on the right by A1, we get

A1=2n|{ (a, b) | DaDbF (x)=0 }|−22n,

and removing the trivial cases we obtain

A2 = |{ (a, b) | DaDbF (x) = 0, a ̸= b ̸= x }|

as follows:

A1=2n(2n+2n+1−2)+2nA2−22n=2n(2n+1−2)+2nA2.

For x = 0, we obtain the number of codewords of weight 3, that is λ3 = A2/6.
Indeed, according to (9), A2 is then the number of codewords of CF with
locators {a, b, a+ b}, a ̸= b ̸= 0, where every codeword is counted six times.
Finally, we obtain

λ3=
A2

6
=

∑
µ∈F∗

2n
2tµ−2(2n−1)

6
.
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When tµ = t for all µ, then λ3 = ((2n− 1)(2t− 2))/6. Now, to get λ4, we use
Corollary 7:

λ4 =
2n−3

3

∑
µ∈F∗

2n

(2tµ−2)−λ3

=
∑
µ∈F∗

2n

(2tµ−2)

(
2n−3

3
− 1

6

)
=
1

6

 ∑
µ∈F∗

2n

(2tµ−2)

 (2n−2−1),

completing the proof. ⋄

Remark 5 Let F be a plateaued function, whose components fµ have am-
plitude 2(n+tµ)/2, 0 ≤ tµ ≤ n− 2. Note that tµ = 0 if and only if fµ is a bent
function.

If n is odd then tµ > 0. From Corollary 7, we obtain this well-known
result: F is APN if and only if tµ = 1 for all µ. When n is even, we obtain
a property on the number of bent components of F .

Proposition 6 Let F be a plateaued function over F2n. Let n be even, and
denote by B the number of bent components of F . Then F is APN if and
only if

B=
∑

µ∈F∗
2n ,tµ>0

(2tµ−2).

Consequently,
∑

µ∈F∗
2n ,tµ>0(2

tµ−1 − 1) ≥ (2n − 1)/3 with equality if and only

if tµ = 2, for all non zero tµ.

Proof. We obtain directly the value B by applying Theorem 11 with λ3 = 0.
Further, the lower bound of B was given by [1, Corollary 3], a result which
is here completed. ⋄

When F is plateaued, the numbers of codewords of weight 3 and 4 of CF

satisfy the same relationship (between λ4 and λ3) as for a differentially two-
valued function. Moreover, if F is plateaued with single amplitude 2(n+t)/2

and, at the same time, differentially two-valued {0, 2s}, we get

λ3=
(2t−1−1)N

3
=
N(2s−1−1)

3
.
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Clearly, in this case t = s, where s has the same parity as t. A similar result
was proved for monomial plateaued functions by [3, proposition 6]. Here we
can generalize to plateaued functions a property of quadratic functions that
we proved in [11, Theorem 8].

Corollary 8 Let F be a plateaued function over F2n, which is with single
amplitude 2(n+t)/2 and differentially two-valued {0, 2s}. Then t = s where
s+ n must be even.

Remark 6 Quadratic functions are plateaued and not always differentially
two-valued, unless they are monomial. A binary code C is said invari-
ant by translation when any codeword of C given by its locators, say X =
(x1, . . . , xk), satisfies

(g+x1, . . . , g+xk) ∈ C for all g ∈ F2n .

Let F be quadratic and consider its extended code CF . The extended code CF

of CF is obtained by adding a position “0” and a digit c =
∑N−1

i=0 ci on this
position to any codeword c ∈ CF . Clearly all codewords of CF have an even
weight. If F is quadratic, then CF is invariant by translation, and one deduce
easily that λ4 = (2n−2 − 1)λ3 (by extending the proof of [8, Lemma 3]).

Some, but still too few, monomials are known to be plateaued and not
quadratic. We end this section by an example, which illustrates the following
property, directly derived from the previous theorem.

Corollary 9 Let F be a plateaued function over F2n, which is with single
amplitude 2(n+2)/2, with n even. Then λ3 = N/3.

Example 5 Let n = 2m with m ≥ 5 being odd. The functions defined as

Fd(x)=xd, d=2m+2(m+1)/2+1 and d=2m+1+3,

are known to be plateaued, bijective and with single amplitude 2(n+2)/2 [13].
Further, the differential spectrum of Fd was computed in [19] confirming that
δ(Fd) = 8 and all values 0, 2, 4, 6, 8 appear in this spectrum, for both values
of d.

We get λ3 = N/3 and λ4 = (2n−2−1)N/3. Thus, both functions have only
one codeword of weight 3, which is shifted N/3 times. Moreover, codewords
of weight 3 do not intersect and δ(1) = 4, as expected (from Corollary 2).
Thus, according to Theorem 4, there are pairs of codewords of weight 4 such
that their sum has weight 4. This is because δ(Fd) > 4.
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8 Conclusion

In this paper, we initiate another approach for the study of the differential
uniformity of any function F , by replacing it in coding theory. Our purpose
was first to establish clearly the relations between the differential uniformity
of F , the codewords of weight 3 and 4 and some cosets of the code CF asso-
ciated to F . But we still believe that this point of view needs to use together
classical tools for the study of functions over F2n and of Boolean functions.
This paper extends the work on APN functions and their associated codes
presented in [8]. More recently, some studies on equivalent APN functions
have shown that the properties of these associated codes are of interest (see
[5], [6] and references herein). The study of algebraic and combinatorial
properties of the code CF opens up a wide sphere of knowledge.

References

[1] T. Berger, A. Canteaut, P. Charpin and Y. Laigle-Chapuy, On almost
perfect nonlinear functions over F n

2 , IEEE Transactions on Information
Theory, 52(9):4160–4170, 2006.

[2] E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryp-
tosystems, Journal of Cryptology, 4(1):3–72, 1991.

[3] C. Blondeau, A. Canteaut and P. Charpin, Differential properties of
power functions, Int. J. of Information and Coding Theory, 1(2):149–
170, 2010. Special Issue dedicated to Vera Pless.

[4] C. Blondeau, A. Canteaut and P. Charpin, Differential properties of
x 7→ x2t−1, IEEE Transactions on Information Theory, 57(12):8127–
8137, 2011.

[5] C. Bracken, E. Byrne, G. Mcguire and G. Nebe, On the equivalence of
quadratic APN functions, Des. Codes Cryptogr., 61:261–272, 2011.

[6] A. Canteaut and L. Perrin, On CCZ-Equivalence, Extended-Affine
Equivalence, and Function Twisting, Cryptology ePrint Archiv,
2018/713.

31



[7] C. Carlet, Boolean and Vectorial Plateaued Functions and APN Func-
tions, IEEE Transactions on Information Theory, 61(11): 6272–6289,
2015.

[8] C. Carlet, P. Charpin, and V. Zinoviev, Codes, bent functions and per-
mutations suitable for DES-like cryptosystems, Des. Codes Cryptogr.,
15(2):125–156, 1998.

[9] C. Carlet and E. Prouff, On plateaued functions and their construc-
tions, in Proc. of Fast Software Encryption-FSE’03 (Lecture Notes in
Computer Science), T. Johansson (Ed.), Springer-Verlag, 2887:54–73,
2003.

[10] P. Charpin and G. Kyureghyan, On sets determining the differential
spectrum of mappings, Int. J. of Information and Coding Theory, Spe-
cial Issue on the honor of Gerard Cohen, 4(2/3):170–184, 2017.

[11] P. Charpin and J. Peng, New links between nonlinearity and differential
uniformity, Finite Fields and Their Applications, 56:188–208, 2019.
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