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Abstract: The local approach to linear parameter varying (LPV) system identification consists
in interpolating a collection of linear time invariant (LTI) models, which have been estimated
from data acquired at different working points of a nonlinear system. Interpolation is essential
in this approach. When the local LTI models are in state-space form, as each local model can be
estimated with an arbitrary state basis, it is widely acknowledged that the local models should
be made coherent before their interpolation. In order to avoid the delicate task of making
local state-space models coherent, a new interpolation method of local state-space models is
proposed in this paper, which does not require coherent local models. This method is based on
the reduction of the large state-space model built by combining the local models. Numerical
examples are presented to illustrate the effectiveness of this method.

Keywords: LPV system identification, local model interpolation, coherence of local state-space
models.

1. INTRODUCTION

Linear parameter varying (LPV) models provide an effec-
tive approach to handling nonlinear control systems (Tóth,
2010; Mohammadpour and Scherer, 2012; Lopes dos San-
tos et al., 2012; Sename et al., 2013). In order to build LPV
models, various system identification methods have been
proposed (Van Wingerden and Verhaegen, 2009; Tóth,
2010; Mercere et al., 2011; Lopes dos Santos et al., 2011;
Tóth et al., 2012; Zhao et al., 2012; Piga et al., 2015).
The local approach to LPV system identification consists
in interpolating a collection of linear time invariant (LTI)
models, which have been estimated from data acquired
at different working points of the underlying nonlinear
system. Being valid around the corresponding working
point only, such an LTI model is also referred to as a local
linear model, or local model for short. Compared to the
global approach, which builds LPV models by processing
in one shot all the available data, the local appraoch is
less demanding on computational ressources when build-
ing LPV models, and offers the possibility of refining an
existing LPV model by adding more LTI models estimated
at new working points.

Interpolation is essential in the local approach to LPV
system identification. Depending on the form of local
linear models, interpolation is a more or less tricky task.
When input-output (I-O) local models are used, the linear
coefficients of LTI models can be interpolated (Nemani
et al., 1995; Bamieh and Giarré, 2002; Bolea et al., 2007;
Mart́ınez-González et al., 2009). Frequency domain local
models can be interpolated in a similar way (Petersson
and Löfberg, 2009). When state-space local models are
used, however, as each local model can be estimated with
an arbitrary state basis, it is necessary to make the local
models “coherent” before their interpolation (De Caigny
et al., 2011, 2014).

It is shown in (Zhang and Ljung, 2017) that, if local
linear state-space models are estimated without any global
structural assumption, the local models themselves do
not contain the information to make them coherent for
the purpose of their interpolation. This problem can be
solved by introducing structural assumptions, but such
a practice requires relevant physical knowledges about
the underlying system. As pointed out in (Zhang and
Ljung, 2017), it is also possible to build a coherent set of
local state-space models from I-O data sequences involving
sufficiently working point transitions, but then it is no
longer a truly local approach.

Another possibility is to interpolate the outputs of the
local models, instead of the local models themselves (Zhu
and Xu, 2008; Zhu and Ji, 2009) . With this method, the
actual form of local models does not matter, and it is
even possible to mix up local models of different forms.
In particular, when local state-space models are used,
there is no need to make them “coherent”. However, the
result of such an interpolation is the output of an LPV
model, instead of the LPV model itself, which is never
built with this method. It is thus necessary to repeat the
interpolation when the system input changes. Moreover, it
is not possible to analyze the underlying LPV model.

In this paper, a new method is proposed to interpolate
local state-space models, without requiring “coherent” local
models. It is thus of particular interest to applications
requiring state-space LPV models. This method has been
inspired by the interpolation of local model outputs, but
it does lead to an LPV model in state-space form.

This paper is organized as follows. In Section 2 the
considered problem is formulated. In Section 3 local model
output interpolation is shortly introduced. In Section 4
the new interpolation method is presented. Numerical
examples are presented in Section 5. Conclusions are
drawn in Section 6.



2. PROBLEM FORMULATION

Consider a nonlinear system whose behavior can be ap-
propriately approximated by linearized models at fixed
working points. Assume that the working points are char-
acterized by a variable p ∈ R that is accessible, directly
or indirectly, from sensor signals. In the LPV system
literature, p is usually called a scheduling variable or a
scheduling parameter. There is no theoretical obstacle to
generalize the result of this paper to vector valued p, how-
ever, in practice it is difficult to obtain a sufficient num-
ber of local models to be interpolated in a vector space.
Typically these local models are obtained with classical
system identification methods (Ljung, 1999), by processing
data collected at different working points corresponding to
different values of p. The higher is the dimension of p, the
more local models are required so that their interpolation
leads to a relevant LPV model.

Let

P = {p1, p2, . . . , pm} ⊂ R (1)

be a finite set of scheduling values corresponding to work-
ing points where local linear models in state-space form
are available. For every scheduling value pi ∈ P, let the
local state-space model be

σi :

{
xi(t+ 1) = Aixi(t) +Biu(t) + wi(t)

y(t) = Cixi(t) +Diu(t) + vi(t),
(2)

where t = 0, 1, 2 . . . is the discrete time index, xi(t) ∈ Rn

the state, u(t) ∈ Rq the input, y(t) ∈ Rs the output,
wi(t) ∈ Rn the state noise, vi(t) ∈ Rs the output noise,
and Ai, Bi, Ci, Di are matrices of appropriate sizes. The
set of available local models corresponding to the entries
of P is denoted by

Σ = {σ1, σ2, . . . , σm}. (3)

Let S ⊂ R be an interval in which the local models are to
be interpolated. The purpose of local model interpolation
is to build an LTI model σ(p) for every given value of p ∈ S,
based on the set Σ of available local models. The resulting
model σ(p) should be similar, in some sense, to those local
models σi ∈ Σ corresponding to the scheduling values pi
close to p.

A naive method for local model interpolation would be to
choose a set of weighting functions ρi : S→ [0, 1], typically
bell-shaped functions centered at p = pi ∈ P, such that

m∑
i=1

ρi(p) = 1 for all p ∈ S, (4)

and then to interpolate the matrices Ai, Bi, Ci, Di as
weighted sums, i.e.,

A(p) =

m∑
i=1

ρi(p)Ai, (5)

and similarly for B(p), C(p), D(p).

Such a naive method has a serious drawback: typically each
of the local models σi, which have been estimated from
local I-O data, corresponds to an arbitrary state basis,
but the naive interpolation does not take into account this
fact. In other words, each matrix Ai has been estimated up
to an arbitrary similarity transformation TiAiT

−1
i with an

unknown and arbitrary invertible matrix Ti ∈ Rn×n, and
similarly for Bi, Ci. As the matrix Ti differs for different

σi, the result of the naive interpolation strongly depends
on the arbitrary matrices Ti.

It is widely acknowledged in the LPV system identification
community that local state-space models should be made
“coherent” before being interpolated. A simple idea is
to put the available local models into some canonical
form before their interpolation. For example, the control
canonical form is used in (Steinbuch et al., 2003), the
balanced form in (Lovera and Mercere, 2007), and a
zero-pole decomposition-based form in (De Caigny et al.,
2009, 2011). This practice assumes that the local models
in the same canonical form are coherent. An important
question then arises naturally: are these different forms of
“coherent” local models compatible with each other?

It is recently reported in (Zhang and Ljung, 2017) that,
if the local state-space models σi have been built without
any global structural assumption, then these local mod-
els do not contain sufficient information to make them-
selves coherent. Global structural assumptions can help to
solve this problem, but they should be based on physical
knowledges, i.e., the local models σi should be physically
parametrized.

As it is not always possible to physically parametrize local
models, other interpolation methods should be developed
for building LPV models following the local approach.

3. OUTPUT INTERPOLATION

A simple method is to interpolate the outputs of the local
models, instead of the local models themselves (Zhu and
Xu, 2008; Zhu and Ji, 2009). Let yi(t) denote the output
delivered by the local model σi. At every instant t, the
outputs of the local models are first computed, then the
output ȳ(t) of the underlying LPV system at the same
time instant can be computed as a weighted average:

ȳ(t) =

m∑
i=1

ρi(p(t))yi(t) (6)

where the weighting functions ρi(·) are as those introduced
in the previous section satisfying the constraint (4), and
p(t) ∈ S is the scheduling value at instant t.

This method has the advantage of being applicable to local
models of any form (state-space, transfer function, etc.).
However, the interpolation must be made in real time, at
every time instant t. Let ρ∗ be the scheduling value at
instant t, i.e, ρ(t) = ρ∗. Even if an interpolation has been
made for the same scheduling value ρ∗ at an earlier time
instant t′ < t, it has to be computed again at instant t,
because the local model outputs yi(t) have changed.

Moreover, as this interpolation does not yield a local
model, it is not possible to analyze the behavior of the
local model, nor the underlying LPV model, which is never
built with this method.

4. NEW LOCAL MODEL INTERPOLATION BASED
ON COMBINED MODEL REDUCTION

The method proposed in this section has been inspired
by the output interpolation introduced in the previous
section, but it does result in a state-space model σ(p) for
any given scheduling value p ∈ S, and remarkably, there is
no need to make the local models σi ∈ Σ coherent before
their interpolation.



Let Σ = {σ1, σ2, . . . , σm} be a set of local models to be
interpolated, with each σi expressed in the state-space
form (2), typically locally estimated from I-O data. Choose
a set of weighting functions ρi : S → [0, 1], typically bell-
shaped functions, satisfying (4).

The basic idea of the new interpolation method is based on
the following large state-space model built by combining
all the local models σi ∈ Σ:

x1(t+ 1) = A1x1(t) +B1u(t) + wi(t) (7a)

x2(t+ 1) = A2x2(t) +B2u(t) + wi(t) (7b)

...

xm(t+ 1) = Amxm(t) +Bmu(t) + wi(t) (7c)

y(t) =

m∑
i=1

ρi(p) [Cixi(t) +Diu(t) + vi(t)] . (7d)

The state vector of this large system is a concatenation
of the states of the local models σi, and its output is a
weighted average of the outputs of the local models.

By viewing t as a dummy variable (it does not mean the
current time instant, but serves to recursively define the
states xi(t)), this large set of equations defines an LTI
state-space model for any specified value of p. This (large)
model does not depend on the time t, other than via the
dependence of p on t. Therefore, the combined state-space
model (7), as (an intermediate step of) an interpolation of
the local models σi ∈ Σ, is indeed an LTI model for any
given p ∈ S, unlike the result of the output interpolation
introduced in the previous section.

At time instant t, the actual value of p is p(t), then the
output equation (7d) becomes

y(t) =

m∑
i=1

ρi(p(t)) [Cixi(t) +Diu(t) + vi(t)] (8)

=

m∑
i=1

ρi(p(t))yi(t) (9)

where yi(t) denotes the output of the local model σi.
Then the resulting y(t) computed from equation (7d) is
equivalent to the result of output interpolation ȳ(t), as
expressed in (6).

Due to this equivalence, the combined (large) state-space
model (7) is an interpolation of the local models σi.

However, this result has the drawback of yielding a large
state-space model, of order mn. For a given scheduling
value p, because the resulting model (7) is expected to
be similar to the local models σi ∈ Σ corresponding to
scheduling values pi ∈ P close to p, and each of these
local models σi is of order n, the large model of order
mn must have many insignificant states. Therefore, the
interpolation procedure should be completed by reducing
the order of the large state-space model (7).

The large state-space model (7) can be more compactly
written as

x(t+ 1) = Ax(t) +B u(t) + w(t) (10a)

y(t) = C(p)x(t) +D(p)u(t) + v(t), (10b)

with

x(t) ,

x1(t)
...

xm(t)

 , w(t) ,

w1(t)
...

wm(t)

 , (11)

v(t) ,
m∑
i=1

ρi(p)vi(t), (12)

A ,

A1

. . .
Am

 , B ,

B1

...
Bm

 , (13)

C(p) , [ρ1(p)C1 · · · ρm(p)Cm], (14)

D(p) ,
m∑
i=1

ρi(p)Di. (15)

For every given scheduling value p, in principle, the state-
space system (10) defined by the matrices A,B,C,D of
order mn can be reduced with any appropriate model
reduction method. In what follows, the balanced reduction
method will be adopted, due to its reliable numerical
behavior.

Balanced reduction is a well known LTI model reduction
method (Kailath, 1980; Moore, 1981). Let us shortly recall
this method for completeness.

The controllability Gramian Wc ∈ Rmn×mn and the
observability Gramian Wo ∈ Rmn×mn of the large sys-
tem (10) are matrices satisfying respectively the equations

Wc +AWcA
T = BBT (16)

Wo +ATWoA = CT (p)C(p). (17)

A linear transformation matrix T ∈ Rmn×mn can be found
so that the Gramian matrices of the transformed system,
namely W̃c = T−1WcT

−T and W̃o = TTWoT , are both
diagonal, and equal to each other, except those entries
non zero in one of the two matrices only (Glover, 1984;

Varga, 1991). The square roots of the eigenvalues of W̃cW̃o

are known as the Hankel singular values. The balanced
reduction consists in, after applying the linear transfor-
mation T to the state vector x(t), removing the states
corresponding to the smallest Hankel singular values. In
the present context, only the n states corresponding to
the n largest Hankel singular values are kept, so that the
resulting state-space model is of order n, like the local
models σi ∈ Σ.

5. NUMERICAL EXAMPLES

As an illustration, let us consider an example of pipeline.
In (Lopes dos Santos et al., 2011), an affine LPV model
of a pipeline in a natural gas transportation network is
established following the global LPV system identification
approach. This LPV model is borrowed in this section for
generating data by numerical simulation, in order to apply
the proposed local model interpolation method.

The affine LPV model of a pipeline established in
(Lopes dos Santos et al., 2011) is in the form of

x(t+ 1) = A(p)x(t) +B(p)u(t) + w(t) (18a)

y(t) = C(p)x(t) +D(p)u(t) + v(t) (18b)

where u(t) = Qi(t) ∈ R is the input mass flow, y(t) =
Qo(t) ∈ R is the output mass flow, x(t) ∈ R2 is composed
of the mass flow and the pressure drop within the first



section of the modeled pipe, and p(t) ∈ R is the sum of the
intake pressure and offtake pressure, with its mean value
translated to zero, the matrices A(p), B(p), C(p), D(p) are
parametrized in the affine form

A(p) = A0 +App (19a)

B(p) = B0 +Bpp (19b)

C(p) = C0 + Cpp (19c)

D(p) = D0 +Dpp. (19d)

The parameter values contained in A0, Ap, B0, Bp, C0,
Cp, D0, Dp, are detailed in (Lopes dos Santos et al., 2011).

Example 1 – continuously varying scheduling variable

The input-output data and the scheduling variable used
in this example are plotted in Figure 1. The profiles of
the input u(t) and the scheduling variable p(t) follow
an example in (Lopes dos Santos et al., 2011), and the
output y(t) is simulated with the affine LPV model (18).
In order to estimate local LTI models, the range of the
continuously varying p(t) is divided into 5 intervals of
equal size, as illustrated in Figure 2 with the 5 horizontal
strips partitioning the vertical axis. The time axis is
then partitioned accordingly, so that each time interval
corresponds to values of p(t) belonging to a single partition
of the vertical axis. As p(t) is not monotonic, the same
partition of the vertical axis may correspond to several
time intervals, coded with the same color in Figure 2. The
data sequences u(t), y(t), p(t) are then segmented so that
the subset corresponding to each of the 5 colors in Figure 2
is used for the estimation of a local LTI model σi.

The subspace method for LTI state-space system identi-
fication (as implemented in the Matlab System Identifi-
cation Toolbox) is used to estimate the 5 second order
local models σi corresponding to the 5 colors in Figure 2.
Following the local approach to LPV system identification,
the interpolation of these local models σi then leads to an
LPV model.

The data shown in Figure 1 were simulated with the
affine LPV model (18), which can be used to evaluate the
interpolated LPV model by comparing the behaviors of the
two models. For this purpose, the step responses of the two
LPV models at fixed scheduling values will be compared.
For the interpolated LPV model, the interpolation at any
given value of p yields an LTI model. On the other hand,
fixing the scheduling varible of the affine LPV model (18)
to the same value p leads also to an LTI model, which is
referred to as a frozen LPV model in the LPV literature
(Tóth, 2010).

The interpolation method presented in this paper is ap-
plied to the 5 local models σi in this example, with the
weighting functions

ρi(p) =

exp

(
− (p− pi)2

2s2i

)
5∑

j=1

exp

(
− (p− pi)2

2s2i

) (20)

where p1, p2, . . . , p5 are the middles of the 5 partitions of
the vertical axis in Figure 2, and si the half widths of these
partitions.

For p = −4, the step responses of the interpolated LPV
model and the frozen affine LPV model are compared in
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Fig. 1. Example 1: input, out and continuously varying
scheduling variable p(t).
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Fig. 2. Example 1: partition of the range of the scheduling
variable (vertical axis) for local model identification,
illustrated by the 5 horizontal strips. As p(t) is not
monotonic, the same partition of the vertical axis may
correspond to several time intervals, coded with the
same color.

Figure 3. Similarly another comparison for p = 2 is shown
in Figure 4.

These results show that the static gains are relatively
well interpolated, but the transient behaviors are signif-
icantly different between the interpolated LPV model and
the frozen LPV model. Obviously, local model interpola-
tion introduces approximation errors, but the observed
differences may also have another origin: as p(t) varies
continuously in this example, in each of segmented time
interval indicated by different colors in Figure 2, p(t)
is not a constant, hence each local model is estimated
from data collected on a time varying system, which is
then approximated by a local LTI model, introducing also
approximation errors. The next example with piecewise
constant p(t) will confirm this fact.

Example 2 – stair-shaped scheduling variable

In the local approach to LPV system identification, typi-
cally data are collected at a working point corresponding
to a fixed scheduling value, in order to estimate a local LTI
model. Then the experience is repeated at another working
point for another local model, and so on. Following such
a procedure, the previously presented pipeline example is
modified with a stair-shaped scheduling variable sequence,
as shown in Figure 5 with the input-output data. Ac-
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Fig. 3. Example 1: comparison between the step responses
of the interpolated model and the frozen LPV model,
both for p = −4.
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Fig. 4. Example 1: comparison between the step responses
of the interpolated model and the frozen LPV model,
both for p = 2.
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Fig. 5. Example 2: input, out and continuously varying
scheduling variable p(t).

cordingly, the range of the scheduling variable is then
partitioned, as illustrated in Figure 6, where the time
axis is also segmented, as indicated with the 5 different
colors. Like in the previous example, local models are
estimated from the data segments, and then interpolated.
The step responses of the interpolated LPV model and
of the affine LPV model (18) are then compared, for
p = −4 in Figure 7, and for p = 2 in Figure 8. The two
LPV models exhibit similar step responses, with smaller
differences than in the previous example, notably in their
transient behaviors. This improvement can be explained
by the fact that now each of the local models is estimated
from data collected when p(t) is kept constant, hence there
is no approximation of a time varying system by an LTI
model.
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Fig. 6. Example 2: the scheduling variable range partition
for local model identification.
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Fig. 7. Example 2: comparison between the step responses
of the interpolated model and the frozen LPV model,
both for p = −4.
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Fig. 8. Example 2: comparison between the step responses
of the interpolated model and the frozen LPV model,
both for p = 2.

6. CONCLUSION

Interpolation is essential in the local approach to LPV
system identification. When local state-space models are
used, as each local model can be estimated with an ar-
bitrary state basis, existing interpolation methods require
coherent local models. However, it is known that, if lo-
cal state-space models are estimated without any global
structural assumption, the local models themselves do not
contain the information to make them coherent for the pur-
pose of their interpolation. In order to avoid this delicate
problem, a new method has been proposed in this paper
for the interpolation of local state-space models, without
requiring coherent local models. Such interpolated models
can be used at fixed working points or during slow transi-
tions between working points. It should be noted that, if an
LPV model obtained by interpolating local models is to be
used in situations with fast transitions between different
working points, the interpolation of coherent state-space
models remains necessary. This difficult issue is out of the
scope of this paper.
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