´. E. Beno??tbeno??t, J. Callot, F. Diener, and M. Diener, Collect. Math, vol.32, issue.1-2, pp.37-119, 1981.

R. Bertram, M. J. Butte, T. Kiemel, and A. Sherman, Topological and phenomenological classification of bursting oscillations, Bull. Math. Biol, vol.57, issue.3, pp.413-439, 1995.

S. M. Baer, J. Rinzel, and H. Carillo, Analysis of an autonomous phase model for neuronal parabolic bursting, J. Math. Biol, vol.33, issue.3, pp.309-333, 1995.

N. Berglund and H. Kunz, Chaotic hysteresis in an adiabatically oscillating double well, Phys. Rev. Lett, vol.78, issue.9, pp.1691-1694, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00130556

N. Berglund, Adiabatic dynamical systems and hysteresis, Thesis, EPFL no 1800, 1998.

N. Berglund and H. Kunz, Memory effects and scaling laws in slowly driven systems, J. Phys. A: Math. Gen, vol.32, pp.15-39, 1999.
DOI : 10.1088/0305-4470/32/1/005

URL : https://hal.archives-ouvertes.fr/hal-00130552

K. Bold, C. Edwards, J. Guckenheimer, S. Guharay, K. Hoffman et al., The forced van der Pol equation II: Canards in the reduced system, SIAM J. Appl. Dyn. Syst, vol.2, issue.4, pp.570-608, 2003.

J. Callot, Bifurcations du portrait de phase pour deséquationsdeséquations différentielles linéaires du second ordre ayant pour type l'´ equation d'Hermite, 1981.

F. Clément and J. Françoise, Mathematical modeling of the GnRH pulse and surge generator, SIAM J. Appl. Dyn. Syst, vol.6, issue.2, pp.441-456, 2007.

C. A. Del-negro, C. F. Hsiao, S. H. Chandler, and A. Garfinkel, Evidence for a novel bursting mechanism in rodent trigeminal neurons, Biophys. J, vol.75, issue.1, pp.174-182, 1998.

P. De-maesschalck, F. Dumortier, and R. Roussarie, Canard-cycle transition at a fast-fast passage through a jump point, C R Math, vol.352, issue.1, pp.27-30, 2014.

M. Desroches, T. J. Kaper, and M. Krupa, Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster, Chaos, vol.23, issue.4, p.46106, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00932344

M. Desroches, M. Krupa, and S. Rodrigues, Spike-adding in parabolic bursters: the role of folded-saddle canards, Phys. D, vol.331, issue.1, pp.58-70, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01136874

M. Desroches and V. Kirk, Spike-adding in a canonical three-time-scale model: superslow explosion and folded-saddle canards, SIAM J. Appl. Dyn. Syst, vol.17, issue.3, pp.1989-2017, 2018.

M. Diener, Nessie et les canards, Preprint, Institut de Recherche Mathmatique Avance, 1979.

M. Diener, Deux nouveaux "phénomènes-canard, CR Acad. Sci, vol.290, pp.541-544, 1980.

F. Dumortier and R. Roussarie, Canard cycles and center manifolds, vol.121, 1996.
DOI : 10.1090/memo/0577

G. B. Ermentrout and N. J. Kopell, Parabolic bursting in an excitable system coupled with a slow oscillation, SIAM J. Appl. Math, vol.46, issue.2, pp.233-253, 1986.

M. Golubitsky, K. J?osi´cj?osi´j?osi´c, and T. J. Kaper, An unfolding theory approach to bursting in fast-slow systems, In: Global analysis of dynamical systems, pp.282-313, 2001.

J. Grasman, H. Nijmeijer, H. , and E. J. , Veling Singular perturbations and a mapping on an interval for the forced van der Pol relaxation oscillator, Phys. D, vol.13, issue.1-2, pp.195-210, 1984.

J. Grasman, Asymptotic methods for relaxation oscillations and applications, 1987.

J. Grasman, Encyclopedia of Complexity and Systems Science, pp.7602-7616

J. Guckenheimer, K. Hoffman, and W. Weckesser, The forced van der Pol equation I: The slow flow and its bifurcations, SIAM J. Appl. Dyn. Syst, vol.2, issue.1, pp.1-35, 2003.

J. Guckenheimer and Y. Ilyashenko, The duck and the devil: canards on the staircase, Moscow Math. J, vol.1, issue.1, pp.27-47, 2001.

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol, vol.117, pp.500-544, 1952.

E. M. Izhikevich, Neural Excitability, Spiking, and Bursting, vol.10, pp.1171-1266, 2000.

E. M. Izhikevich, N. S. Desai, E. C. Walcott, and F. C. Hoppensteadt, Bursts as a unit of neural information: selective communication via resonance, Trends Neurosci, vol.26, issue.3, pp.161-167, 2003.

E. M. Izhikevich, Dynamical systems in neuroscience: The geometry of excitability and bursting, 2007.

A. Kepecs and X. J. Wang, Analysis of complex bursting in cortical pyramidal neuron models, Neurocomputing, vol.32, pp.181-187, 2000.

M. Krupa and P. Szmolyan, Relaxation oscillation and canard explosion, J. Differential Equations, vol.174, issue.2, pp.312-368, 2001.
DOI : 10.1006/jdeq.2000.3929

URL : https://doi.org/10.1006/jdeq.2000.3929

J. E. Lisman, Bursts as a unit of neural information: making unreliable synapses reliable, Trends Neurosci, vol.20, issue.1, pp.38-43, 1997.

J. E. Littlewood, On non-linear differential equations of the second order: III. The equation¨yequation¨ equation¨y ? k(1 ? y 2 ) ? y + y = bµk cos(µt + ?) for large k, and its generalizations, Acta Math, vol.97, issue.1-4, pp.267-308, 1957.

J. E. Littlewood, On non-linear differential equations of the second order: IV. The general equation¨yequation¨ equation¨y + kf (y) ? y + g(y) = bkp(?), ? = t + ?, Acta Math, vol.98, issue.1, pp.1-110, 1957.

S. Moran, S. M. Moenter, and A. Khadra, A unified model for two modes of bursting in GnRH neurons, J. Comput. Neurosci, vol.40, issue.3, pp.297-315, 2016.

R. E. Plant and M. Kim, On the mechanism underlying bursting in the Aplysia abdominal ganglion R15 cell, Math. Biosci, vol.26, issue.3, pp.357-375, 1975.
DOI : 10.1016/0025-5564(75)90022-x

R. E. Plant and M. Kim, Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations, Biophys. J, vol.16, issue.3, pp.227-244, 1976.

R. E. Plant, The effects of calcium ++ on bursting neurons: A modelling study, Biophys. J, vol.21, issue.3, pp.217-237, 1978.

R. E. Plant, Bifurcation and resonance in a model for bursting nerve cells, J. Math. Biol, vol.11, issue.1, pp.15-32, 1981.
DOI : 10.1007/bf00275821

J. , A formal classification of bursting mechanisms in excitable systems, Proc. Int. Congr. Math, pp.1578-1593, 1986.

J. Rinzel and Y. S. Lee, Dissection of a model of neuronal parabolic bursting, J. Math. Biol, vol.25, issue.6, pp.653-675, 1987.

I. V. Schurov, Ducks on the torus: existence and uniqueness, J. Dyn. Control Syst, vol.16, issue.2, pp.267-300, 2010.

I. V. Schurov, Canard cycles in generic fast-slow systems on the torus, Trans. Moscow Math. Soc, vol.71, pp.175-207, 2010.

I. V. Schurov and N. Solodovnikov, Duck factory on the two-torus: multiple canard cycles without geometric constraints, 2014.

P. Smolen, D. Terman, and J. Rinzel, Properties of a bursting model with two slow inhibitory variables, SIAM J. Appl. Math, vol.53, issue.3, pp.861-892, 1993.

P. Szmolyan and M. Wechselberger, Canards in R 3, J. Differential Equations, vol.177, issue.2, pp.419-453, 2001.

C. Soto-treviño, N. Kopell, and D. Watson, Parabolic bursting revisited, J. Math. Biol, vol.35, issue.1, pp.114-128, 1996.

D. Terman, Chaotic spikes arising from a model of bursting in excitable membranes, SIAM J. Appl. Math, vol.51, issue.5, pp.1418-1450, 1991.