L. Bloy and R. Verma, Demons registration of high angular resolution diffusion images, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1013-1016, 2010.

E. Caruyer and R. Verma, On facilitating the use of hardi in population studies by creating rotation-invariant markers, Medical image analysis, vol.20, issue.1, pp.87-96, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01090154

F. Dell'acqua, P. Scifo, G. Rizzo, M. Catani, A. Simmons et al., A modified damped richardson-lucy algorithm to reduce isotropic background effects in spherical deconvolution, Neuroimage, vol.49, issue.2, pp.1446-1458, 2010.

M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche, Regularized, fast, and robust analytical q-ball imaging, Magnetic Resonance in Medicine, vol.58, issue.3, pp.497-510, 2007.

R. Ehrenborg and G. C. Rota, Apolarity and canonical forms for homogeneous polynomials, European Journal of Combinatorics, vol.14, issue.3, pp.157-181, 1993.
DOI : 10.1006/eujc.1993.1022

URL : https://doi.org/10.1006/eujc.1993.1022

A. Ghosh, T. Papadopoulo, and R. Deriche, Generalized invariants of a 4th order tensor: Building blocks for new biomarkers in dmri, Proceedings of the Computation Diffusion MRI Workshop at the MICCAI Conference, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00789763

H. H. Homeier and E. Steinborn, Some properties of the coupling coefficients of real spherical harmonics and their relation to gaunt coefficients, proceedings of the Second Electronic Computational Chemistry Conference, vol.368, pp.31-37, 1996.

E. Kaden, N. D. Kelm, R. P. Carson, M. D. Does, and D. C. Alexander, Multicompartment microscopic diffusion imaging, NeuroImage, vol.139, pp.346-359, 2016.

R. Kakarala and D. Mao, A theory of phase-sensitive rotation invariance with spherical harmonic and moment-based representations, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.105-112, 2010.
DOI : 10.1109/cvpr.2010.5540222

R. Kondor, A novel set of rotationally and translationally invariant features for images based on the non-commutative bispectrum, 2007.

R. M. Negrinho and P. M. Aguiar, Shape representation via elementary symmetric polynomials: A complete invariant inspired by the bispectrum, 2013 IEEE International Conference on Image Processing, pp.3518-3522, 2013.
DOI : 10.1109/icip.2013.6738726

URL : http://users.isr.ist.utl.pt/~aguiar/icip2013-shape.pdf

D. S. Novikov, J. Veraart, I. O. Jelescu, and E. Fieremans, Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion mri, NeuroImage, vol.174, pp.518-538, 2018.
DOI : 10.1016/j.neuroimage.2018.03.006

URL : http://arxiv.org/pdf/1609.09144

T. Papadopoulo, A. Ghosh, R. Deriche, P. Golland, N. Hata et al., Complete set of invariants of a 4th order tensor: The 12 tasks of hardi from ternary quartics, Medical Image Computing and Computer-Assisted Intervention-MICCAI, pp.233-240, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01092492

M. Reisert, E. Kellner, B. Dhital, J. Hennig, and V. G. Kiselev, Disentangling micro from mesostructure by diffusion mri: A bayesian approach, 2016.
DOI : 10.1016/j.neuroimage.2016.09.058

URL : https://doi.org/10.1016/j.neuroimage.2016.09.058

E. Schwab, H. E. Afsari, B. Yassa, M. A. Vidal, and R. , Information Processing in Medical Imaging, pp.705-717, 2013.

J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. ACM, vol.27, issue.4, pp.701-717, 1980.
DOI : 10.1145/322217.322225

URL : http://rjlipton.files.wordpress.com/2009/11/schwartz.pdf

S. N. Sotiropoulos, S. Jbabdi, J. Xu, J. L. Andersson, S. Moeller et al., Advances in diffusion MRI acquisition and processing in the human connectome project, Neuroimage, vol.80, pp.125-143, 2013.
DOI : 10.1016/j.neuroimage.2013.05.057

URL : http://eprints.nottingham.ac.uk/52877/1/nihms483085.pdf

J. D. Tournier, F. Calamante, and A. Connelly, Robust determination of the fibre orientation distribution in diffusion mri: non-negativity constrained super-resolved spherical deconvolution, NeuroImage, vol.35, issue.4, pp.1459-1472, 2007.

D. S. Tuch, Q-ball imaging, Magnetic Resonance in Medicine, vol.52, issue.6, pp.1358-1372
DOI : 10.1002/mrm.20279

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.20279

R. Zippel, Probabilistic algorithms for sparse polynomials, pp.216-226, 1979.
DOI : 10.1007/3-540-09519-5_73

M. Zucchelli, M. Descoteaux, and G. Menegaz, A generalized smt-based framework for diffusion mri microstructural model estimation, Computational Diffusion MRI, pp.51-63, 2018.
DOI : 10.1007/978-3-319-73839-0_4