
HAL Id: hal-01913865
https://inria.hal.science/hal-01913865

Submitted on 6 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Selecting Web Service Compositions Under Uncertain
QoS

Remaci Zeyneb Yasmina, Hadjila Fethallah, Didi Fedoua

To cite this version:
Remaci Zeyneb Yasmina, Hadjila Fethallah, Didi Fedoua. Selecting Web Service Compositions Under
Uncertain QoS. 6th IFIP International Conference on Computational Intelligence and Its Applications
(CIIA), May 2018, Oran, Algeria. pp.622-634, �10.1007/978-3-319-89743-1_53�. �hal-01913865�

https://inria.hal.science/hal-01913865
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


  

Selecting Web Service Compositions under Uncertain 

QoS 

Remaci Zeyneb yasmina
1
, Hadjila Fethallah

1
, Didi Fedoua

1 

Computer Sciences Department 

LRIT Laboratory
1
  

UABT University – Tlemcen 

Tlemcen Algeria 

yasmina_rmc @hotmail.fr, {f_hadjila, f_didi}@mail.univ-tlemcen.dz 

 
Abstract. The uncertain QoS management is gaining a lot of interest in the service 

oriented computing area. In this work, we propose a framework that allows to select the 

TopK compositions of services that best meet the user’s requirements. This framework 

not only handles the user’s global constraints but it also takes into account the 

fluctuating nature of the QoS informations. More specifically we present two 

algorithms that ensure the aforementioned purposes. The first one ranks the services of 

each abstract class according to the probabilistic dominance heuristic. The second 

one explores the compositions search space by leveraging the backtracking search. The 

experimental evaluation shows that the proposed heuristic is more effective than the 

ranking based on average QoS. 

  
Keyword: Service Oriented Architecture, Web Service Selection, uncertain Quality Of 

Service, backtracking search, Combinatorial Optimization. 

 
 

1 Introduction 
 

Over the last decade, the web services have been increasingly published and deployed 

over the web. Consequently, many providers offer the same functionality, (i.e. the 

same interface/behavior) but they differ according to their non-functional attributes 

(or quality of service such as response time, cost, reputation, availability…). In this 

context, the user has to leverage the QoS to select the best advertised services that 

meet his/her requirements. On the other hand, we also observe that the service QoS is 

generally fluctuating and non-deterministic. This is mainly due to the environment 

circumstances (i.e. the price of a service depends to the season; the response time/the 

throughput depend to the network load…). As a result, our selection/aggregation 

models should take into account these fluctuations. Additionally, we notice that a 

complex user’s request is generally fulfilled with a composition of services rather 

than a single component. This means that the optimization/selection algorithms 

should not only handle the non-deterministic QoS, but also the global optimization 

aspects (i.e. global constraints, aggregated QoS,…). In the example cited in table I, 

we assume a user’s request that consists in invoking two types of services: a currency 

service and a purchase order. Each service is characterized by two criteria: the cost 

(denoted C in table I), and the latency (denoted L in table I). The selected 

combination must have a global cost (the QoS sum of the composition services) less 

or equal than 0.8 (according to a given unit such as $) and a global (aggregated) 

latency less or equal than 0.9 (according to a given unit such Seconds).

mailto:%7d@mail.univ-tlemcen.dz


2  
Table 1. Normalized QoS of service instances 

 
 
 

 

Currency conversion Purchase Order 
 

 

X Y S T 
 

 C L  C L  C L  C L 

X1 0.3 0.3 Y1 0.2 0.1 S1 0.5 0.2 T1 0.3 0.5 

X2 0.2 0.5 Y2 0.3 0.4 S2 0.5 0.3 T2 0.2 0.5 

X3 0.6 0.3 Y3 0.3 0.6 S3 0.7 0.3 T3 0.4 0.7 

X4 0.5 0.6 Y4 0.6 0.6 S4 0.8 0.6 T4 0.6 0.4 

 

Furthermore, the table I, also shows the QoS variation (see the instances lines such 

as X1,…X4) of each service. By considering the elements of the currency class (i.e the 

services X and Y that have same functionality), we notice that the comparison of their 

performances is not always self-evident. More specifically, if we use the mean QoS as 

comparison mechanism, this can create a misleading result. Simply speaking, the 

mean QoS of X is (0.4,0.42), likewise the mean QoS of Y is (0.35,0.42), and therefore 

Y is better than X (ie. Y >> X), but if we consider all the instances ( i.e the QoS 

variations), then we observe that Y dominate X in 37% of the cases and X is dominate 

Y in 43% of the cases, furthermore the QoS instances of X have a reduced variance in 

comparison with those of Y. consequently our initial ordering may be erroneous.To 

tackle these difficulties, we should use an ordering scheme that takes into account all 

the sampled QoS (and not the aggregated values). In addition, any proposed service 

selection system should differentiate between feasible compositions and non-feasible 

compositions. For example if we consider the median QoS of each component service 

as the representative value, then the composition c=<Y,S>, is not feasible because : 

MedianCost(Y)+MedianCost(S)=0.3+0.6>0.8. (The first global constraint is 

violated) 

On the other hand, the composition c’=<X,T> is feasible since: 

MedianCost(X)+MedianCost(T)=0.4+0.35 0.8, and 

MedianLatency(X)+MedianLatency(T)=0.4+0.50.9. 

By analyzing the literature approaches, we notice that the majority of the service 

composition works don’t handle the non-deterministic QoS aspects and global 

constraints, at the same time. To deal with this situation, we propose in this paper a 

general framework that selects the Top-k compositions while managing the following 

requirements: 

• The user’s needs (global constraints, QoS optimization, number of services 

classes, control flow). 

• The QoS fluctuations of web services over time. 

Since the number of services per class might still be extremely high, it would be 

preferable to reduce the computational cost of the selection process. This aim can be 

ensured by introducing heuristics that select the best services of each class. It is worth 

mentioning that the complexity of this issue is known to be NP-Hard. [1, 2] 



3  
 

In summary, our main contribution referred to as the “selection module” (see 

figure1) can be described as follows: 

1. Firstly, we rank the services of each class, according to the probabilistic 

dominance relationship shown in formula (5), and we retain only the Top-K 

services having the highest scores. This step aims to reduce the search space. 

2. To rank the service compositions, we leverage an objective function based on 

the median QoS of the components of the composite solution (see formula (1)) 

3. We explore the search space constituted of the first K services of each class 

(see step I), by implementing a backtracking search (inspired from the 

constraint satisfaction problems) and we return the Top-K optimal 

compositions. 

The reminder of the paper is organized as follows: the section 2 demonstrates a 

literature review on the QoS aware service selection issue. The third section specifies 

the problem, in the fourth section we show the proposed framework as well as the 

selection algorithms, and finally we present in the last section our conclusions and 

perspectives. 

 

2 State of the Art 
 

The service composition and selection has drawn a lot of attention during the past 

decade, The existing works either focus on global selection with deterministic/non- 

deterministic QoS [1,2,3,9,10,12,16] or local service selection with non-deterministic 

QoS [4,14,18]. 

The service selection with uncertain QoS is gaining a lot of interest in the service 

oriented computing area. Existing works such as [11, 14] leverage the dominance 

probability relationship to extract the most dominant services from a predefined 

dataset. In nutshell, the work presented in [11] extends the traditional concept of 

skyline [5] to cover the uncertain data (i.e notion of probabilistic skylines). To get the 

probabilistic skylines, the authors extract the services that have at least a percentage p 

to not be dominated by another component. As mentioned in [14], the P-skyline prefers 

noisy services to the detriment of consistent services. In [14] the authors propose a new 

concept called P-dominant skyline, which is less sensitive to noisy (inconsistent) 

services, in addition it is more suitable for including good services. Furthermore the 

authors leverage an R-tree [6] structure in order to efficiently extract the p-dominants 

services. In [4], the authors leverage the possibility theory in order to compute the 

dominants services. The possibility theory is preferred, when the probability 

distributions of QoS criteria is unknown or cannot be computed. As a results, the QoS 

attribute are modeled as possibility distribution. The authors also present two novel 

concepts: the possibility based skyline and the necessity based skyline, in addition 

they provide a mechanism to control the size of the skylines set. In [13], the authors 

propose an approach for computing the top k dominant compositions without taking 

into account the global constraints. The authors handle the QoS uncertainty by 

proposing  the  concept  of  dominance  ability  (which  is  based  on  the  dominance 



4  
 

probability). In [17, 18] the authors present a set of formulas for estimating the 

uncertain QoS (mainly the execution time) of a composite service. To this end, they 

model each QoS metric of a component service as a probability distribution; in 

addition the composite service is represented as a graph that leverages several basic 

patterns (Sequential, Parallel, conditional, and Loop). 

In the area of deterministic service selection, we can review a lot of approaches that 

handle the QoS as a non-varying phenomenon. In [3], the scholars handle both the 

functional aspects (inputs/outputs) and the non-functional aspects (QoS/global 

constraints), they propose an optimization framework based on the harmony search 

meta-heuristic .In [15, 16], the authors aim to avoid the user’s implication (which 

usually assigns a set of numerical weights to the criteria) by focusing on skylines 

compositions (denoted C-SKY). In addition, the authors present a set of heuristics in 

order to accelerate the computation of C-SKY. To this end, they sort the skylines of 

each abstract class according to a predefined objective function (that sums all the QoS 

criteria), thereafter they explore the compositions space by scanning at first, the top 

services of each class. In [9] the authors leverage the harmony search meta-heuristic to 

get the near optimal compositions; the results can be further improved by tuning the 

meta-heuristic parameters. In [2] the authors address this issue by taking into account 

multiple control flow. Their main idea consists in extracting the skylines of each 

abstract class, thereafter; the authors create a hierarchical clustering of each skyline’s 

set by leveraging the K-means Algorithm. Finally they explore the compositions space 

by combining the clusters heads and checking the global constraints fulfillment. 

 

3 Problem Formalization 
 

In this section, we will formalize the problem of Top-k dominant compositions under 

uncertain QoS. In what follows, we will assume a set of hypothesis and notations in 

order to simplify the problem specification: 

 All the QOS attributes are positive (i.e all the positive attributes need to be 

maximized). 

 The composition model is sequential. 

 The QoS criteria of a  composition are aggregated according to the sum function 

(such as reputation), if there are multiplicative criteria, then we replace them with 

their log value and we treat them as additive criteria. The other types of QoS 

criteria are not handled in this paper.   

 n :is the number of abstract classes. 

 Cl1,Cl2,….Cln: are the set of abstract classes. 

 m: is the number of services per classes. 

 r: is the number of QoS attributes. 

 l: is the number of service instances (i.e the number of QoS realizations or  the 

sample size).



5  

j=1 

j=1 

j=1 

 

 QoSpiju  : is the value of  the p
th  

QoS attribute related to  the u
th  

instance of the 

service Si Clj 

 AVGQoSpij:the average QoS computed over all the instances of SiClj 

 b1,b2,..br: are the user’s global constraints (i.e  the limits which need to be met by 

the QoS of the composition). 

 w1,..wr: are the weight of the QoS criteria, the default value of each wp is 1/r 

 k: the size of the returned list (of compositions) 

 The  overall  utility of  a  service  composition  c  =(x1,x2,…,xn)  is  computed  as 

follows: 

• U’(c) = ∑r
p=1  wp *( (MedianQ’p(c)-Qmin’(p))/(Qmax’(p) -Qmin’(p)) (1) 

• x1 (resp x2,…xn): represents the id of the selected service related to Cl1 (resp 

Cl2,…,Cln) 

• Qmin’(p)= = ∑n
 Qmin(j, p), (2) 

(the first normalization constant), were Qmin(j, p)= MINSiClj,u{1,..l}  (QoSpiju) 

• Qmax’(p)= = ∑n
 Qmax(j, p), (3) 

(the  second  normalization  constant),  were  Qmax(j,  p)= MAXSiClj,u{1,..l} 

(QoSpiju) 

• MedianQ’p(c) = ∑
n

 Median 
 
u{1,..l} (QoS 

 

p xj j u ) (4) 

Since a component service Sxi is characterized by several QoS realizations, we 

choose the median QoS Value to evaluate its performance; consequently the 

composition c is also evaluated according to the median performance (see formula 1). 

We have chosen the median aggregation for the QoS realizations, because it is less 

sensitive to the variations and the outliers of the sample. In addition, we use the 

formula (5) to compare the compositions according to their degree of satisfying the 

global constraints. Roughly speaking, a composition c is ranked above another 

composition c’ if the score of c with respect to (5) is higher than the score of c’ with 

respect to (5). If c ties with c’, then we order them according to formula 1 (which is 

also termed fitness or function U’(.)), the higher the score of U’ the better the rank. 

Formally: c is ranked above c’ iff : 

1/r.∑r
p=1    Pr(MedianQ’p(c)) > 1/r.∑r

p=1    Pr(MedianQ’p(c’))  or 

1/r.∑r
p=1   Pr(MedianQ’p(c)) = 1/r.∑r

p=1   Pr(MedianQ’p(c’)) and U’(c) U’(c’) 

We also notice that the computational cost of formula (1) is O(r.n), (we assume 

that median values of the services are already computed), likewise the computational 

cost of formula (5) is O(r.n). In summary, our main objective is to select the Top-K 

compositions, C1,…Ck which : 

 Maximize   the   chance   of   satisfying   the   global   constraints:1/r.∑r
p=1 

Pr(MedianQ’p(cy)) ≥ bp ) , where y {1,..,k}. (5) 



6  

u’=1 

 

 Maximize the function U’(.). 

 

4 Proposed Approach 
 

In  this  section,  we  present  our  selection  framework  (shown in  figure  1).  It is 

constituted of three main modules: 

The class management module: its purpose is to assign each service to a given 

abstract class (which represents the main functionality of the service such as: hotel 

booking, currency conversion, maps services…), the module also updates the classes. 

The QoS management and integration module: it allows to store the fluctuating 

QoS of each service, the QoS data can be drawn from: the service provider itself (ex: 

the cost), the social networks (ex: the reputations) the third parties ( ex: the latency…) 

The selection module: Its main goal is to provide the Top K dominants service 

compositions for each user’s request. This module is constituted of two algorithms 

(algorithm1: service ranking and algorithm2: backtracking search). The algorithm1 

aims to reduce the search space of algorithm2, thereafter the backtracking search is 

executed in order to give the final compositions. 
 

 
Fig. 1. Service selection framework 

 

The service ranking sorts the services of each abstract class through the use of the 
probabilistic dominance relationship. We notice that the dominance relationship and 
its variants are widely used in the preference queries [8, 4] as well as the service 
discovery [7]. Simply speaking, we compare the QoS of each pair of services Si, 

Si’ with respect to the probabilistic dominance, thereafter we increment the 
ranking score of the wining service. The more the score is high the better the rank. The 
probabilistic dominance between two services Si’ and Si measures the average 

fraction of the instances of Si that are weakly dominated by an instance of Si’ . It is 
given as follows: 

prob-dom(Si’,Si)= 1/l 
l
 individual-prob-dom(u’,i’,i) (6) 



7  
and individual-prob-dom(u’,i’,i) = (|{(QoS1iju,.., QoSriju)/ (QoS1i’ju’,.., QoSri’ju’)>> 

(QoS1iju,.., QoSriju)}|/l) , u{1,…l} 
The relation >> denotes the weak dominance relationship, it is defined as follows: 

Let X and Y be two vectors of R
r
 

X>>Y iff for each dimension i {1,..,r}: X(i)Y(i) 

We assume that denotes “better than” 

The pseudocode of algorithm1 is given below: 

Algorithm1:ServiceRanking 

Input: Cl1,..Cln 

Output: RankedCl1,…RankedCln 

1. For i=1to n Do RankedCli=<>; 

2. For i=1 to n Do Begin 

2.1 For y=1 to m Do score(y)=0; 

2.2 For j=1 to m Do Begin 

2.2.1 For j’=1 to m Do Begin 

2.2.1.1 If ( j!=j’) Then Begin 

2.2.1.1.1 If (probdom(( Sj,Sj’)probdom(( Sj’,Sj)) Then 

Begin 

2.2.1.1.1.1 score(j)=0 score(j)+1; 

End 

End 

End 

End 

2.3 RankedCli=decreasing-sort(Cli) 

End 

3. return <RankedCl1,…RankedCln> 

The explanation, of algorithm1 is given as follows: 

In line 1, we initialize the ranked Class RankedCli  (with an empty structure). 

In line 2.1, we initialize the ranking score of each service of the current class i. 

In lines 2.2 up to 2.2.1.1.1,  we compare each pair of services ( Sj,Sj’) of the same 

class i, through the use of the probabilistic dominance formula (6). 

In line 2.2.1.1.1.1, we update the score of Sj if it wins the test. 

In line 2.3, we sort the elements of RankedCli according to the scores updated in 

2.2.1.1.1.1 

We return the ranked classes in line 3. 



8  
 

It  is  worth  noting  that,  the  overall  complexity of  algorithm  1 is  O(nm
2
.r.l

2
 

+n.mlogm),  and  the  complexity  of  formula  (6)is  O(r.l
2
). The  pseudo-code  of 

algorithm2 is given below (we notice that the symbol <> denotes an empty structure): 

Algorithm2:BacktrackingSearch 

Input: RankedCl1,…,RankedCln 

b1,b2,..br : global constraints 

k: size of the results set, t: the minimum % of the preserved constraints. 

Output: TopKCompositions 

1.TopKCompositions =<> 

2.For i=1 to k
n 

Do Begin 

2.1 c=GetNextComposition(RankedCl1,…,RankedCLn); 

2.2 degree= 1/r.∑r
p=1     Pr(MedianQ’p(c)) ≥ bp ) 

2.3 If (degree)  t) Then Begin 

2.3.1 If better (c, TopKCompositions) Then Begin 

2.3.1.1  Update (c, TopKCompositions) 

End 

End 

End 

3. Return  (TopKCompositions) 

The explanation is given as follows: 

In line 2, we explore all the possible compositions. In line 2.1, we get the current 

composition c. In line 2.2, we compute the fraction of satisfied global constrained. In 

line 2.3, we check that the fraction of the preserved global constraints is above the 

threshold. In line 2.3.1, we compare c with the existing “TopKComposition” elements 

through the use of formulas (5) and (1) (see section 3 for more details about the 

ordering of compositions). In line 2.3.1.1, we update the result TopKCompositions if c 

is better than an existing composition. We return the final result in line 3.It is worth 

noting that, the overall complexity of algorithm2 is O( k
n
(k.r.n+n+klogk)). 

 
5 Experiments 

 
In this section we analyze the performance of our framework in terms of execution 

time and optimality. To this end, we conduct a set of experiments, with several 

configurations of parameters (see table 2). The experiments were conducted on a 

machine  having  an  Intel  I3  core  2.53GHz  processor,  4  GB  RAM,  and  running 



9  
 

Windows 7. The figures 1 up to 5 are related to algorithm2; however the figure 6 is 

related to algorithm1 

Table 2. Parameters and examined values 

 
 

Parameters Values 
 

 

Number of Tasks (n) 10, 15, 20 
 

Number of Services (m) 100 to 1100 
 

Number of QOS criteria (r ) 2 to 10 
 

Instances (l) 100 to 400 
 

size of the result (k) 2 ,6,10 
 

 

 

 
Fig. 2. CPU Time versus n (r=3, m=50, l=10) 

 
 

 
Fig. 3. CPU Time versus r (n=5, m=200, l=100) 



10  

 

 
Fig. 4. CPU Time versus l (n=5, r=3, m=200). 

 

The figure 2 shows the exponential growth of the execution time with respect to n. 

if k=2, then the execution time is acceptable for all values of n. however when k=6, 

the time overhead is not tolerable for n 10. 

The figure 3 shows the impact of r over the execution time. We observe that all 

values of r, are tolerable for k=2 and k=6, however for k=10 and r 4 the execution 

time will be inacceptable (more than 10 minutes). The same observation is made for 

figure 4, for k=2 and k=6, the execution time is tolerable, however for k=10 and l 

200 the computational is not acceptable. 

 

 
Fig. 5. CPU Time versus m (n=5, r=3, l=10). 

 

As depicted in figure 5, the global search (algorithm 2) is not very sensitive to m, 

this is mainly due to the fact that the generation of compositions depends on the 

number of filtered services i.e. K. In what follows, we compare the 

effectiveness/efficiency of algorithm1 DSR (Dominance service ranking) with respect 

to the ranking based on average QoS termed ASR (Average service ranking). The 

latter computes the average QoS for each service Si Clj , where j{1, 2,…, n}. 

Thereafter ASR sorts the elements of Clj according to the sum of average QoS ,i.e the 

rank of each Si Clj is : 

rank(i,j)= 
r
p=1 AVGQoSpij. (7) 

The more the score is high, the better the rank. The complexity of formula 6 is 

O(r.l
2
), consequently  if we rank the services of Clj    through the use  of formula 6 , 



11  
 

then the overall complexity will be O(r.l
2
.m +mlogm). The formula 7 is chosen 

instead of the dominance relationship, to alleviate the problem of curse 

dimensionality (i.e, with large r, the probability that a service s dominates another 

service s’ is very weak). 

 
Fig. 6. CPU Time comparison (n=5, r=3, l=10). 

 

As shown in figure 6, the ASR approach is better than DSR in terms of execution 

time. This is due to the fact that ASR is principally based on formula (7) which is 

only O(r.l), in addition ASR doesn’t depend on m, however the DSR algorithm is 

based on formula 6 (which is O(r.l
2
)), and depends on m. 

According to table 3, we observe that the percentage of respected global 

constraints is the same for both approaches (ASR and DSR). We also notice a slight 

fitness superiority (i.e. the function U’) of DSR with respect to ASR. This observation 

is valid for all values of K. 

Table3. Performance comparison between DSR and ASR 

 
 

Parameters        Solutions Algorithms Fitness Respected 

  Constraints (%)   

 

TOP 2 Solutions DSR+Algo2 0.4063 100 

                                 0.4053                      100   

ASR+Algo2 0.3823 100 

n=5,   0.3813  100   
 

r=3, TOP 6 Solutions DSR+Algo2 0.4075 100 

m=200,   0.4073 100 

l=300   0.407 100 

   0.4068 100 

   0.4065 100 

  0.4064 100   

ASR+Algo2 0.3997 100 

 0.3992 100 

 0.3989 100 

 0.3984 100 

 0.3983 100 

 0.3982 100 



12  
 

6 Conclusion 
 

In this work, we have investigated the problem of service selection under uncertain 

QoS. Our approach consists of two steps: the first one sorts the uncertain services 

according to the probabilistic dominance relationship, and the second one explores the 

search space by using a backtracking algorithm. The effectiveness/efficiency of the 

approach is confirmed with a set of experiments. 

For future work, we will consider alternative sorting relationships (such as the 

dominance related to the necessity/possibility distributions). In addition we will adapt 

this framework to the selection of cloud services. 

 
 

References 

 
1.Alrifai, M., Risse, T.: Selecting Skyline Services for QoS-based Web Service Composition. In Proceedings of  

WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA. 2010. 

2. Alrifai, M.,  Risse, T., Nejdl, W. : A hybrid approach for efficient Web service composition with end-to-end QoS 
constraints. ACM Transactions on the Web (TWEB) 6 (2),  p7. 2012. 

3.Bekkouche, A., Benslimane, S.M. , Huchard,  M., Tibermacine, C.,  Hadjila, F., & Merzoug, M.: QoS-aware 
optimal and automated semantic web service composition with user’s constraints. Service Oriented Computing and 
Applications, 11(2), 183-201.2017. 

4.Benouaret, K., Benslimane, D.,  Hadjali, A.: Selecting skyline web services from uncertain qos. In: 2012 IEEE 9th 
international conference on Services computing (SCC), pp 523–530. 2012. 

5.Borzsony,S. , Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of 17th international conference on 
data engineering. IEEE, pp 421–430.2001. 

6.Guttman, A.,  R-trees: A dynamic index structure for spatial searching (Vol. 14, No. 2, pp. 47-57). ACM. 1984. 

7.Hadjila, F., Belabed, A., Halfaoui, A.: Hybrid Web Service Discovery Based on Fuzzy Condorcet Aggregation. In : 
East European Conference on Advances in Databases and Information Systems. Springer, Cham, p. 415-427. 2015. 

8.Hamiche, M., Drias ,H., Allel, H.: A strong-dominance-based approach for refining the skyline. In : Programming 
and Systems (ISPS), 12th International Symposium on. IEEE, p. 1-8. 2015. 

9.Merzoug, M.,  Chikh, M.A., & Hadjila, F.: Qos-aware web service selection based on harmony search. In  4th 
International Symposium  IEEE-ISKO-Maghreb: Concepts and Tools for knowledge Management. (pp. 1-6). 
Alger.Algeria. 2014. 

10.Minjung, K,  Byungkook, O., Jooik, J., Kyong-Ho, L.: Outlier-robust web service selection based on a 
probabilistic QoS model. International Journal of Web and Grid Services. 12(2). pp.162 – 18.2016. 

11. Pei, J., Jiang, B.Lin, X., and Yuan,Y.:  Probabilistic skylines on uncertain data. In VLDB Endowment, Vienna, 
Austria.2007. 

12. Rosenberg, F., Müller, M.B., Leitner, P., Michlmayr, A.,  Bouguettaya, A., & Dustdar, D.: Metaheuristic 
optimization of large-scale qos-aware service compositions. In IEEE International Conference on Services 
Computing (SCC’10) (pp. 97-104). IEEE. 2010. 

13. Wen,S., Tang,C.,Li, Q., Chiu, D. K. W., Liu, A., Han, X.: Probabilistic top-K dominating services composition 
with uncertain Qos. In Service Oriented Computing and Appication, Volume 8, Issue 1, pp 91–103.2014. 

14. Yu, Q., Bouguettaya,A.: Computing service skyline from uncertain qows. IEEE Transactions on Services 
Computing, 3(1):16– 29, 2010. 

15. Yu, Q., Bouguettaya, A.: Computing service skylines over sets of services. In: IEEE international conference on 
web services (ICWS).  pp 481–488. 2010. 

16. Yu, Q., Bouguettaya, A.: Efficient service skyline computation for composite service selection. IEEE 
Transactions on Knowledge and Data Engineering, 25(4), 776-789. 2013. 

17. Zheng, H., Zhao, W., Yang, J., Bouguettaya, A.: "QoS analysis for web service compositions based on 
probabilistic QoS." In Proceedings of International Conference on Service-Oriented Computing. Springer, Berlin, 
Heidelberg, 2011. 

18. Zheng, H., Zhao, W., Yang, J., Bouguettaya, A.: QoS Analysis for Web Service Compositions with Complex 
Structures. IEEE Trans. Services Computing 6(3): 373-386 . 2013. 


