M. Balabanovi´cbalabanovi´c and Y. Shoham, Fab: Content-based, collaborative recommendation, Commun. ACM, vol.40, issue.3, pp.66-72, 1997.

L. Candillier, F. Meyer, M. Boullé, and . In, Comparing State-of-the-Art Collaborative Filtering Systems, pp.548-562, 2007.

N. E. Karabadji, S. Beldjoudi, H. Seridi, S. Aridhi, and W. Dhifli, Improving memory-based user collaborative filtering with evolutionary multi-objective optimization, Expert Systems with Applications, vol.98, pp.153-165, 2018.
DOI : 10.1016/j.eswa.2018.01.015

URL : https://hal.archives-ouvertes.fr/hal-01807931

N. Mustafa, A. O. Ibrahim, A. Ahmed, and A. Abdullah, Collaborative filtering: Techniques and applications, 2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE), pp.1-6, 2017.
DOI : 10.1109/iccccee.2017.7867668

H. Liu, Z. Hu, A. Mian, H. Tian, and X. Zhu, A new user similarity model to improve the accuracy of collaborative filtering, Knowledge-Based Systems, vol.56, pp.156-166, 2014.

A. Narang, A. Srivastava, and N. P. Katta, Distributed Scalable Collaborative Filtering Algorithm, pp.353-365, 2011.
DOI : 10.1007/978-3-642-23400-2_33

M. E. Celebi, H. A. Kingravi, and P. A. Vela, A comparative study of efficient initialization methods for the k-means clustering algorithm, Expert Systems with Applications, vol.40, issue.1, pp.200-210, 2013.

S. Zahra, M. A. Ghazanfar, A. Khalid, M. A. Azam, U. Naeem et al., Novel centroid selection approaches for kmeans-clustering based recommender systems, Information Sciences, vol.320, pp.156-189, 2015.
DOI : 10.1016/j.ins.2015.03.062

URL : http://roar.uel.ac.uk/4298/1/Novel%20centroid%20selection%20approaches%20for%20KMeans-clustering%20based%20recommender%20systems.pdf

F. Cao, J. Liang, and G. Jiang, An initialization method for the k-means algorithm using neighborhood model, Computers & Mathematics with Applications, vol.58, issue.3, pp.474-483, 2009.

C. S. Li, Cluster center initialization method for k-means algorithm over data sets with two clusters, International Conference on Advances in Engineering, vol.24, pp.324-328, 2011.

E. R. Hruschka, R. J. Campello, A. A. Freitas, and A. C. De-carvalho, A survey of evolutionary algorithms for clustering, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol.39, issue.2, pp.133-155, 2009.

R. Kuo, H. Wang, T. L. Hu, and S. Chou, Application of ant k-means on clustering analysis, Computers & Mathematics with Applications, vol.50, issue.10, pp.1709-1724, 2005.

S. Kalyani and K. Swarup, Particle swarm optimization based k-means clustering approach for security assessment in power systems, Expert Systems with Applications, vol.38, issue.9, pp.10839-10846, 2011.

B. Alhijawi and Y. Kilani, Using genetic algorithms for measuring the similarity values between users in collaborative filtering recommender systems, 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS, pp.1-6, 2016.

K. Jae-kim and H. Ahn, A recommender system using ga k-means clustering in an online shopping market, Expert Systems with Applications, vol.34, issue.2, pp.1200-1209, 2008.

S. Fong, Y. Ho, and Y. Hang, Using genetic algorithm for hybrid modes of collaborative filtering in online recommenders, Eighth International Conference on Hybrid Intelligent Systems, pp.174-179, 2008.