E. Zio, An introduction to the basics of reliability and risk analysis, vol.13, 2007.

O. Geramifard, J. Xu, and S. K. Panda, Fault detection and diagnosis in synchronous motors using hidden markov model-based semi-nonparametric approach, Engineering Applications of Artificial Intelligence, vol.26, issue.8, pp.1919-1929, 2013.
DOI : 10.1016/j.engappai.2013.06.005

O. Janssens, V. Slavkovikj, B. Vervisch, K. Stockman, M. Loccufier et al., Convolutional neural network based fault detection for rotating machinery, Journal of Sound and Vibration, vol.377, pp.331-345, 2016.
DOI : 10.1016/j.jsv.2016.05.027

L. Jedli´nskijedli´nski and J. Jonak, Early fault detection in gearboxes based on support vector machines and multilayer perceptron with a continuous wavelet transform, Applied Soft Computing, vol.30, pp.636-641, 2015.

Z. Su, B. Tang, Z. Liu, and Y. Qin, Multi-fault diagnosis for rotating machinery based on orthogonal supervised linear local tangent space alignment and least square support vector machine, Neurocomputing, vol.157, pp.208-222, 2015.
DOI : 10.1016/j.neucom.2015.01.016

R. Yan, R. X. Gao, and X. Chen, Wavelets for fault diagnosis of rotary machines: A review with applications, Signal processing, vol.96, pp.1-15, 2014.

Y. Lei, J. Lin, Z. He, and M. J. Zuo, A review on empirical mode decomposition in fault diagnosis of rotating machinery, Mechanical Systems and Signal Processing, vol.35, issue.1, pp.108-126, 2013.

R. Liu, B. Yang, X. Zhang, S. Wang, and X. Chen, Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis, Mechanical Systems and Signal Processing, vol.75, pp.345-370, 2016.
DOI : 10.1016/j.ymssp.2015.12.020

Y. Nyanteh, C. Edrington, S. Srivastava, and D. Cartes, Application of artificial intelligence to real-time fault detection in permanent-magnet synchronous machines, IEEE Transactions on Industry Applications, vol.49, issue.3, pp.1205-1214, 2013.

M. Saimurugan and K. Ramachandran, A comparative study of sound and vibration signals in detection of rotating machine faults using support vector machine and independent component analysis, International Journal of Data Analysis Techniques and Strategies, vol.6, issue.2, pp.188-204, 2014.

L. Van-der-maaten, E. Postma, H. Van-den, and . Herik, Dimensionality reduction: A comparative review, Journal of Machine Learning Research, vol.10, pp.1-41, 2009.

Z. Qian, D. Juan, P. Bogdan, C. Tsui, D. Marculescu et al., A support vector regression (svr)-based latency model for network-on-chip (noc) architectures, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.35, issue.3, pp.471-484, 2016.

T. Law and J. Shawe-taylor, Practical bayesian support vector regression for financial time series prediction and market condition change detection, Quantitative Finance, pp.1-14, 2017.
DOI : 10.1080/14697688.2016.1267868

URL : http://discovery.ucl.ac.uk/1546210/1/Practical%20Bayesian%20support%20vector%20regression%20for%20financial%20time%20series%20prediction%20and%20market%20condition%20change%20detection.pdf

W. Du, H. Cheung, C. A. Johnson, I. Goldberg, M. Thambisetty et al., A longitudinal support vector regression for prediction of als score, Bioinformatics and Biomedicine (BIBM), pp.1586-1590, 2015.

T. Kinnunen and H. Li, An overview of text-independent speaker recognition: From features to supervectors, Speech communication, vol.52, issue.1, pp.12-40, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00587602

V. Vapnik, The Nature of Statistical Learning Theory, 1995.