
HAL Id: hal-01913925
https://inria.hal.science/hal-01913925

Submitted on 7 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Unified-Processing of Flexible Division Dealing with
Positive and Negative Preferences

Noussaiba Benadjimi, Walid Hidouci

To cite this version:
Noussaiba Benadjimi, Walid Hidouci. Unified-Processing of Flexible Division Dealing with Positive
and Negative Preferences. 6th IFIP International Conference on Computational Intelligence and Its
Applications (CIIA), May 2018, Oran, Algeria. pp.635-647, �10.1007/978-3-319-89743-1_54�. �hal-
01913925�

https://inria.hal.science/hal-01913925
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Unified-Processing of Flexible Division dealing
with Positive and Negative Preferences

Noussaiba BENADJIMI , Walid HIDOUCI

Laboratoire de la Communication dans les Systmes Informatiques
Ecole nationale Supérieure d’Informatique, BP 68M, 16309, Oued-Smar,

Alger, Algérie. http://www.esi.dz
an benadjimi@esi.dz , hidouci@esi.dz

Abstract. Nowadays, current trends of universal quantification-based
queries are been oriented towards flexible ones (tolerant queries and-or
those involving preferences). In this paper, we are interested in universal
quantification-like queries dealing with both positive or negative prefer-
ences (requirements or prohibitions), considered separately or simultane-
ously. We have emphasised the improvement of the proposed operator,
by designing new variants of the classical Hash-Division algorithm, pre-
sented in [1], for dealing with our context. The parallel implementation
is also presented, and the issue of answers ranking is dealt with. Com-
putational experiments are carried out in both sequential and parallel
versions. They shows the relevance of our approach and demonstrate
that the new operator outperforms the conventional one with respect to
performance (the gain exceeds a ratio of 40).

Keywords: Universal quantification-like queries, Relational division, Re-
lational anti-division, Preferences, Tolerant division, Hash-division.

1 Introduction

Relational operators including universal quantification are an interesting type of
queries. They are very useful for many applications, especially in business intel-
ligence applications and in recommendation systems [2]. In relational algebra,
universal quantification-like queries are the most complex operators. That is why
a lot of research focuses on their implementation, algorithms and optimisation[3].
Universal quantification-like queries are, often, about division or anti-division
operators. The division searches elements associated with all members of a set
of requirements, while the anti-division aims to find all elements that are asso-
ciated with none of the members of a set of prohibitions[4]. In this paper, we
are concerned with some relevant issues related to the improvement of queries
combining both of required and forbidden associations.

1.1 The division and anti-division operators

Relational division is used when an element that satisfies a whole set of require-
ments is sought for. Whereas, the anti-division operator is used to select elements

 http://www.esi.dz

that exclude any association with a set of prohibitions[6].
In relational algebra, the division (resp. anti-division) of relation r(X,Y), called
‘dividend’; by relation s(Y), called ‘divisor’; is a new relation q(X), called
‘quotient’ that includes some parts of Projection(r,X) satisfying the following
condition: x is in q(X) if and only if x is in Project(r,X) and for all (resp.
none) y in s(Y), r(X,Y) contains (resp. doesn’t contain) < x, y >[6]. X and
Y are two compatible sets of attributes. More formally, the relational division is
characterised by Equation 1, and the anti-division by Equation 2 :

Div(r, s,X, Y) = {x ∈ projection(r,X) | ∀y, (y ∈ s)⇒ (〈x, y〉 ∈ r)} (1)

Anti−Div(r, s,X, Y) = {x ∈ projection(r,X) | ∀y, (y ∈ s)⇒ (〈y, s〉 /∈ r)} (2)

Example 1: Consider a distribution company of some products. In its com-
mercial activity, the company wants to select its most valued customers (buy-
ers). Customers ranking is based on some categories of products. Let Cus-
tomer Order (#customer,#product,#order state), Critical Product
(#product,#order state) and Golden Product(#product,#order state) be three
crisp relations as sketched in Figure 1.

Fig. 1: Division query: “Which customers have made an approved order for
each golden products?”; Anti-division query: “Which customers have not made

an aborted order for any of the critical products?”

In the figure above, C1 and C3 are the resulting quotients of the division
because they have made an approved order for all golden products. Whereas, for
the anti-division, C1 and C2 are the valid quotients, since both of them have not
made an aborted order of any critical product.

1.2 Current trends

Both relational division and anti-division often provide an empty answer. This
is a widely studied problem in the last two decades[7]. Flexible operators (tol-

erant operators and operators dealing with user’s preferences), is the most desir-
able technique to solve this problem and improve the DBMS answer quality[8],
especially for recommender systems[9]. Flexible division (anti-division) consists
in the weakening of the quantifier all (none) used in the classical operator[6,10].

1.3 Related work and motivation

Two main areas of research on division and anti-division can be identified. The
first concerns the improvement of those operators, while the second area inves-
tigate them in a flexible context.

In literature, several studies have been focused on how to efficiently imple-
ment the division, including those surveyed in [1,2,3] in the relational model,
and [5] in the object-oriented model. Indeed, the approach proposed in [1] and
called ‘Hash-Division’, has proven through the experimental results to be bet-
ter than the traditional algorithms in processing time in most cases. Further,
there are only as far as we know, the work of Bosc et al. for the relational anti-
division[6,11]. Nonetheless, their implementation is based upon the SQL query
derivation and is far from being optimal.

In the flexible area, some authors have suggested new operators for rela-
tional division[10,12] and anti-division [6,11,13], which are tailored for the flex-
ible context. However, the performance aspect has not been adequately dealt
with. Besides, some extended variants of the hash-division algorithm have been
discussed in our earlier work [14] to tailor with some forms of the flexible divi-
sion and division with preferences. However, to the best of our knowledge, the
only experimentations done for the anti-division are those presented in [6,11].
Although, their implementation is based on the nested loops algorithm which
is far from being acceptable. Moreover, queries evaluation are performed with
a reduced size of data (dividend and divisor). This does not fit reality, espe-
cially for analysis treatments on extra-large databases. In addition, authors in
[15] have suggested a way for combining the division and the anti-division oper-
ators. However, neither implementation nor experimentations are presented in
the paper.

1.4 Main contributions in this paper

This paper is carried out as a continuation of our previous work detailed in
[14], which is proven to be an efficient processing of the flexible division. Hence,
extended variant will be proposed in this work to cover additional forms of the
universal-quantification based queries.

In fact, the main purpose of our work is to design a unified processing to han-
dle queries involving requirements and prohibitions simultaneously, with a single
operator. Such queries allow users to express several kinds of their preferences,
which is very useful in information systems especially in artificial intelligence.

We also address the performance enhancement of the new operator drawing
to the Hash-Division strategy as used in our previous work [14].

Example 2: Let’s take relations in the previous example. Thanks to the mixing
query, customers can be evaluated through the following query: “Find customers
who have made an approved order for all golden products and they haven’t
made any aborted order for the critical products?”.

Here, C3 is no longer a valid quotient because he has made an aborted order
of one of the critical products (P2). Idem for C2, he hasn’t made an approved
order for all golden product. Thus, we can conclude that the customers can
be better distinguished through the mixed query. In addition, a unified (single
operator) and fast processing of such queries will improve them even more. This
is the backdrop behind our work. Hereafter we summarise our contributions:

– Investigate performance enhancement of the flexible queries involving both
of division and anti-division, essentially for very large volumes of data.

– Investigate the parallel implementation feasibility for the extended approach.

We consider in this work the flexible division and anti-division over crisp databases
exclusively. Fuzzy relations will be studied in future work.

1.5 Outline of the paper

The remainder of this paper is organised as follows. In Section 2, we present
the classical Hash-Division algorithm. Section 3 gives an overview of the flexible
division and the flexible anti-division. In Section 4, our contribution is presented
together with analytics and discussion of the experimental results obtained. Sec-
tion 5 introduces a parallel implementation of the proposed operator. Finally,
Section 6 concludes the paper and suggests directions for future work.

2 Review of Hash-Division Algorithm

In this section, we give a brief description of the hash-division algorithm (HD)
(see [1] for further details). It uses two hash tables, in order to avoid the exhaus-
tive comparison, used in the traditional algorithms. The first table is for the
divisor and the second for the quotient. Thanks to these two structures, both
dividend and divisor relations are scanned exactly once, that makes the division
operator faster. Hash-Division algorithm is proceeding in three stage:

Stage 01: Building the hash-divisor table : during the scan of the divisor
table, we insert all divisor tuples into buckets in the hash-divisor table. Each
entry in this table, is stored together with an integer called divisor number
‘Num div’. Num div is initialized to 0 and it is incremented whenever a new
insertion in the hash-divisor table occurs.

Stage 02: Building the hash-quotient table: during the scan of the
dividend; for each row that corresponds to one of the divisors, stored in the
hash-divisor table, we insert a quotient candidate into hash buckets in the hash-
quotient table. Together with each inserted candidate, a bitmap is kept with one

bit for each divisor. All bits are initialized to 0, and updated to 1 whenever a
match with the corresponding divisor occurred.

Stage 03 (end): Building the result: in this last stage, we select from the
constructed hash-quotient table all quotient candidates whose bitmaps contain
only ones as valid quotients.

3 Review of Flexible Division and Flexible anti-division

Flexible (or tolerant) division and anti-division were essentially proposed in or-
der to avoid the empty result problem, which may occur mostly whenever we
use ‘for all’ or ‘for none’ quantifiers [6,10]. There are a plethora of suggestions,
in literature, showing that original relational division (anti-division) can be ex-
tended to different types of flexible queries. We are interested in this work on
the following forms of flexible operators : (i) Exception-based tolerant division,
(ii) Exception-based tolerant anti-division.

3.1 Principle

This category is based on exceptions into the requirements set for the division or
the prohibitions set for the anti-division (divisor). The principle is to weak the
quantifier ‘all’ (resp. ‘none’) to the fuzzy quantifier ‘almost all’ (resp. ‘almost
none’) to express tolerant division (resp. anti-division)[6,10,12]. Thus, depending
on the desired level of relaxation, some elements, in the divisor set, are allowed
to be not associated (resp. associated) with the quotient in the dividend relation.

3.2 Modelling

In fact, a maximum number of exceptions is allowed to be ignored. Satisfaction-
level SL of a quotient is measured by Equation 3 for the division and Equation 4
for the anti-division. A threshold is required for accepted quotients[10,13]. Valid
quotients are sorted depending on their satisfaction levels.

SLDivision =
Number of divisors associated with the candidate

total number of divisors
(3)

SLAnti−Division =
Number of divisors not associated with the candidate

total number of divisors
(4)

4 Our proposed approach for the mixed query

This section is devoted to a tolerant universal-quantification queries in which
both division and anti-division are considered simultaneously . We first give
a novel way for combining those two types of associations: required and forbid-
den associations. Then, the performance of the proposed approach is highlighted.

In fact, we propose to improve the effectiveness of the mixed query by in-
spiring from the strategy of the hash-division algorithm. We have made various
alterations to the structures and the procedures used in the classic algorithm, to
deal with the unified mixed operator. Moreover, we describe an adequate tech-
nique to better discriminate final quotients, with no additional cost.
It should be noted that our work differs from Bosc et al.’s work presented in
[15] in our formulating query. All preferences, requirements and prohibitions, are
expressed thanks to a single operator. While the key issue with the approach
presented in [15] is that is based on the decomposition of the mixed operator on
several successive relational division and-or anti-division operations, depending
on the number of layers, which is a very time-consuming process.

4.1 Strict and gradual Mixed Query

To deal with the mixed query, the divisor is subdivided into two sets, positive
part (requirements) P , and negative part (prohibitions) N .

In the strict version, to be selected as a valid quotient, an element x must
be associated with all values in P and must be not associated with any value
in N . Thereby, P and N must be totally independents. In this strict version, all
results are equally ranked. For the gradual mixed query, since some tolerances
are allowed in both subsets P and N , results are discriminated depending on
their satisfaction levels. Hence, for each accepted quotient we define two sub-
level: Sp and Sn stand for the satisfaction level for the positive and the negative
part respectively. Sp is computed as in Equation 3 with respect to the positive
part, and Sn is computed as in Equation 4 regarding the negative part.

4.2 Hash-mixed query: an improvement of the mixed query

Here we will describe how we have improved the processing time of the mixed
query relying on the Hash-Division like algorithm. Hence, the three altered
phases of the hash-mixed query are described hereafter.

The first stage:
As in the classic algorithm, we store all divisor tuples in a hash table. Whereas

for ours, each tuple is stored together with two integers:

– ind lyr: index of the layer, 0 for P and 1 for N . This integer is used to
indicate the offset of the divisor tuple inside the bitmap. Bits corresponding
to divisors in P are located, in the bitmap, before those belonging in N .

– num div lyr: the divisor number (rank) of the tuple in its layer (P or N).

The data structure of a divisor tuple in the hash-divisor table is shown in the
following figure.

Fig. 2: Data structure of a hash-divisor tuple

Hence, for each layer, P and N , we keep its own divisors counter. These two
counters are initialized to 0 and incremented whenever we insert a new divisor,
of the corresponding layer, into the hash-divisor table. Pseudo-code of the hash-
divisor table building for the mixed query is given hereafter:

Algorithm 1 Building of the hash-divisor table for the Hash-mixed query

num divisorsP ← 0; num divisorsN ← 0; /* initialize the two counters to zero */

for each tuple t in the divisor relation do
Calculate its hash bucket (Hdiv);
if t belongs in P then

divisor.ind lyr ← 0;
divisor.num div lyr ← num divisorP ; /*assign the offset to the current divisor*/

num divisorP ++;
end if
if t belongs in N then

divisor.ind lyr ← 1;
divisor.num div lyr ← num divisorN ; /*assign the offset to the current divisor*/

num divisorN ++;
end if
Insert the divisor tuple into the corresponding hash bucket (Hdiv);

end for

The second Stage:
In the second stage (Construction of the Hash-quotient table) of the hash-mixed

query, we have made two major differences from the basic algorithm. The first
is how to update the bitmap. Hence, if a divisor matching (P or N) with the
quotient candidate occurs, we set the bit to 1 whose position, in the quotient
bitmap1, is equal to ‘offst lyr+num div lyr’ where:

– num div lyr: the divisor number stored together with the matching divisor.
– offst lyr: is set to 0 if the matching divisor belongs to P , otherwise (belongs

to N) it is set to |P | (the cardinality of the positive subset).

Therefore, the data structure of the bitmap of candidates is as shown below:

.

Fig. 3: Data structure of the bitmap for hash-mixed query.

The second difference is that we kept with each quotient candidate counters of
ones (bit = 1), in its bitmap, for each layer. We called these counters Nb ones1

for the layer P and Nb ones2 for the layer N . These latter are incremented at
each bit switching (0 to 1) in the corresponding layer of the quotient candidate
bitmap. Hereafter is a pseudo-code of this stage:

1 As in the basic version, the bitmap is initialized with 0 in all their bits

Algorithm 2 Building of the hash-quotient table for the hash-mixed query

for each tuple t in the dividend table do
Calculate the hash bucket Hdiv over the divisor attributes of the tuple t;
if the divisor is contained in the hash-divisor table in the bucket Hdiv then

layer ← ind lyr of the matching divisor;
rank ← num div lyr of the matching divisor;
Calculate the hash bucket Hqot over the quotient attributes of the tuple t;
if the candidate (quotient value) is already contained in the hash-quotient table

at the bucket Hqot then
if rankth bit in the layerth part of the candidate bitmap is set to 0 then

Set this bit to 1;
Nb ones layer++; /*Increment the counter of ones in the corresponding layer*/

end if
else {/*quotient candidate does not yet exist*/}

Insert a new quotient candidate into the hash-quotient table at the bucket
Hqot, with a bitmap where all bits are set to zero;

Set the rankth bit in the layerth part of the bitmap to 1;
Nb ones layer ← 1; /*Initialize the counter of ones to 1*/

Set the other counter (Nb ones
layer

) to 0;
end if

end if
end for

The third stage:
In the third stage, and for the strict version of the mixed query, quotient

candidates whose bitmaps contain only ones in the positive part and only zeros
in the negative part will be selected as valid quotients. Thereby, all final results
will be equally ranked. Besides, for the tolerant version, we identify two manners
to consider the satisfaction sub-levels (Sp and Sn) mentionned in subsection 4.1
in order to discriminate and rank the accepted quotients:

– Strong symmetrical impact : both of positive and negative part have the
same impact on the result ranking. So the final satisfaction-level Sf is defined
as ‘Sf=Sp+Sn’. To sort accepted quotients, we propose to use a mechanism
close to that used in our previous work, where we have used an indexed table
for this sorting phase. Hence, a final quotient Q, whose satisfaction-level Sf

is greater than the threshold chosen by the user, is stored in a bucket of index
‘(|P|-Nb ones1)+ Nb ones2’ (see Figure 4 .a). Nb ones1 and Nb ones2 are
the two counters stored with the bitmap of the quotient candidate.

– Positive and negative part as hierarchical preferences: here, the posi-
tive and the negative part haven’t the same impact in results discrimination,
one part is more important than the other. Indeed, an indexed table with
two levels is used to rank valid quotients. The first level corresponds to the
most important part. Each level is subdivided according to the number of
exceptions allowed (seeFigure 4 .b). The positive bucket (level1 or level2) has
the index ‘|P|-Nb ones1’, while the negative one is equal to ‘Nb ones2’.

In such a way, final quotients are automatically sorted in decreasing order
according to their satisfaction levels. The cell whose index is 0 points the best
quotients (satisfying the whole set of requirements and dissatisfying all prohibi-
tions). Hence, to select the k − top answers, we just need to browse the indexed
table from the top (from quotients with the highest satisfaction-level to the
lowest ones); until k quotients are found. This sorting technique offers a better
discrimination between accepted quotients, while no additional costs is needed.

Fig. 4: Quotient Candidates Discrimination

In the light of the above, it can be said that we have been able to combine
two types of associations (positive and negative) in a single operator. The con-
ceived operator is not complex since it does not need to handle each operation
(Division and anti-division) separately. Furthermore, it requires no iterations.
Hence, thanks to th new unified operator, users can introduce simultaneously
requirements and prohibitions in a constructively simple manner.

4.3 Experimentations

We consider four sizes for the dividend relation: 3.104, 5.105, 3.106, and 5.108

tuples, randomly generated2. Sizes considered for the divisor relation are: 10,
20, 50, and 100 uniformly distributed over layers P and N. Obtained results are
gathered in Table 1. Run-time is measured in seconds.
Table 1 shows the run-times of our variants of the mixed query, comparing with
the classic one presented in [15] where several successive classical-divisions are
involved. We can notice that our approaches complete performance much faster
than the classic one for the four dividend sizes. Indeed, the run-time is improved
by several orders of magnitude (the gain factor is greater than 61 in the case of
5.108 dividend tuples). In addition, implementation requires roughly the same
run-time regardless of the investigated form of the mixed query. For the largest

2 In the literature, up to now and as far as we know, the largest set used in the
experimentations never exceed a cardinality of 3.104 tuples in the dividend relation.

dividend relation: run-time is approximately equal to 120s for the three variants
(strict form, symmetrical impact form, and the hierarchical form).

Table 1: Experimental results for the hash-mixed query algorithms

Size Classical
Mixed Query

Strict Hash-
Mixed Query

Gradual Hash-
Mixed Query

Dividend Divisor:P-N SSI a PN-HPb

3x104 5-5 3.11 0.01 0.02 0.02
5x105 5-15 87 0.165 0.173 0.169
3x106 30-20 598 3.44 3.42 3.5
5x108 50-50 7645 120.3 121.01 123.65

a : Strong symmetrical impact.
b : Positive and negative part as hierarchical preferences.

5 Parallel implementation

Parallel implementation is realized thanks to the PVM framework (Parallel

Virtual Machine), on machines based on an Intel i5 CPU and 8 Go RAM .
Experimentations were performed over 2, 4 and 6 nodes. The parallelism strategy
is as follows:

1. The hash-divisor table is created only once on a single node called master .
2. The master sends the hash-divisor table created to all other nodes.
3. The dividend table is uniformly partitioned between all nodes.
4. Each node builds its own hash-quotient table. The hash function may be

different between the nodes, depending on the memory space of each one.
5. When all sub-tables of the hash-quotient are completely constructed in all

nodes, the master collects those sub-tables. Then, it merges all of them in
one global hash-quotient table to select valid quotients.

The pseudo-code of the last step (point 5), in the master, is given hereafter:

Algorithm 3 Parallel implementation of the mixed query.

for each sub-hash-quotient table received from the slave nodes do
for each quotient-candidate in the sub-hash-quotient table do

Compute the hash bucket (Hqot) using the master hash function, over the
quotient value of the candidate;

if the candidate (quotient value) is already contained in the hash-quotient table,
constructed in the master, at the bucket Hqot then

Update the bitmap of the candidate by calculating the result of the binary
OR operator between the bitmap in the master and that received from the node;

else
Insert a new quotient candidate into the hash-quotient table of the master at

the bucket Hqot, with a bitmap equal to that received from the node;
end if

end for
end for

As well, Figure 5 illustrates the speed-up behaviour of the parallel algorithm
of the hash-mixed query over 2, 4 and 6 nodes.

Fig. 5: Speed-up for parallel algorithm of the hash-mixed query.

Through the results obtained from the parallel implementation of the hash-
mixed query and illustrated in the figure above, we observed a linear effect on
speed-up in the case of large dividend (≥ 3.106). However, an additional cost3,
but still negligible, for a relatively small size of the dividend (≤ 5.105) occurs.

In summary, first results of the hash-mixed query presented in this paper
are encouraging. The proposed approach has been successful in processing this
complex forms of the universal-quantification based queries effectively. Although,
there is still a need for multiple implementations in real SGBD, to firmly validate
the hash mixed approach proposed.

6 Conclusion and perspectives

We have presented in this paper a unified operator to deal with universal quan-
tification based queries involving positive and negative preferences (desired and
forbidden associations) simultaneously. Our new technique is then improved re-
lying on the hash-division algorithm. Moreover, the issue of answers ranking is
dealt with. We have conducted some experiments particularly for large-sized re-
lations, and compare execution time with the original approaches (nested loop
algorithms) proposed in the literature. As expected, the performance got is very
interesting. We have been able to improve the response time of some queries by
several orders of magnitude. We presented also a parallel version of the mixed
query, where we have obtained a near-linear speed-up, especially for large ta-
bles. We are currently designed new forms of complex queries where more than
two layers, several kinds of preferences, and several connectors come to play.
Furthermore, there is still a need for multiple implementations in real SGBD,
to firmly validate the hash mixed approach proposed. It will also be exciting to
look at other parallelism strategies which take into account the data skew issue
that causes deteriorations in performance.

3 The additional cost comes from the fact that the communication time between nodes
is more expensive than the run-time of algorithms in each node.

References

1. Graefe, Goetz. “Relational division: Four algorithms and their performance.” Data
Engineering, 1989. Proceedings. Fifth International Conference on. IEEE, 1989.

2. Rantzau, Ralf, et al. “Universal quantification in relational databases: A classifi-
cation of data and algorithms.” International Conference on Extending Database
Technology. Springer Berlin Heidelberg, 2002.

3. VAVERKA, Ondrej et VYCHODIL, Vilem. Relational division in rank-aware
databases. Information Sciences, 2016, vol. 366, p. 48-69.

4. BOSC, Patrick et PIVERT, Olivier. On some uses of a stratified divisor in an ordinal
framework. In : Uncertainty Approaches for Spatial Data Modeling and Processing.
Springer Berlin Heidelberg, 2010. p. 133-154.

5. MARIN, Nicols, MOLINA, Carlos, PONS, Olga, et al. Semantically-driven flexible
division in fuzzy object oriented models. In: IFSA/EUSFLAT Conf.2009. p.1039-
1044.

6. BOSC, Patrick, PIVERT, Olivier, et SOUFFLET, Olivier. Strict and tolerant an-
tidivision queries with ordinal layered preferences. International Journal of Approx-
imate Reasoning, 2011, vol. 52, no 1, p. 38-48.

7. BOSC, Patrick, HADJALI, Allel, et PIVERT, Olivier. Empty versus overabundant
answers to flexible relational queries. Fuzzy sets and systems, 2008, vol. 159, no 12,
p. 1450-1467.

8. ZADRONY, Sawomir et KACPRZYK, Janusz. Bipolarity in database querying:
Various aspects and interpretations. In : Flexible Approaches in Data, Information
and Knowledge Management. Springer International Publishing, 2014. p. 71-91.

9. PIGOZZI, Gabriella, TSOUKIAS, Alexis, et VIAPPIANI, Paolo. Preferences in
artificial intelligence. Annals of Mathematics and Artificial Intelligence, 2016, vol.
77, no 3-4, p. 361-401.

10. BOSC, Patrick, PIVERT, Olivier, et SOUFFLET, Olivier. On three classes of di-
vision queries involving ordinal preferences. Journal of Intelligent Information Sys-
tems, 2011, vol. 37, no 3, p. 315-331.

11. BOSC, Patrick, PIVERT, Olivier, et SOUFFLET, Olivier. Anti-division queries
with ordinal layered preferences. In : European Conference on Symbolic and Quan-
titative Approaches to Reasoning and Uncertainty. Springer Berlin Heidelberg, 2009.
p. 769-780.

12. TAMANI, Nouredine, LIETARD, Ludovic, et ROCACHER, Daniel. Bipolarity and
the relational division. In : The Joint 7th Conference of the European Society for
Fuzzy Logic and Technology (EUSFLAT’11) and Rencontres Francophones sur la
Logique Floue et ses Applications (LFA’11),. 2011. p. 424-430.

13. BOSC, Patrick et PIVERT, Olivier. A family of tolerant antidivision operators
for database fuzzy querying. In : International Conference on Scalable Uncertainty
Management. Springer Berlin Heidelberg, 2008. p. 92-105.

14. BENADJMI, Noussaiba et HIDOUCI, Khaled Walid. New Variants of Hash-
Division Algorithm for Tolerant and Stratified Division. In : International Con-
ference on Flexible Query Answering Systems. Springer, Cham, 2017. p. 99-111.

15. BOSC, Patrick et PIVERT, Olivier. Queries mixing positive and negative associ-
ations and their weakening. In : Fuzzy Information Processing Society (NAFIPS),
2010 Annual Meeting of the North American. IEEE, 2010. p. 1-6.

	Unified-Processing of Flexible Division dealing with Positive and Negative Preferences

