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Abstract. Searching in a dataset remains a fundamental problem for many
applications. The general purpose of many similarity measures is to focus
the search on as few elements as possible to find the answer. The current
indexing techniques divides the target dataset into subsets. However, in
large amounts of data, the volume of these regions explodes, which will
affect search algorithms. The research tends to degenerate into a complete
analysis of the data set. In this paper, we proposed a new indexing tech-
nique called GHB-tree. The first idea, is to limit the volume of the space.
The goal is to eliminate some objects without the need to compute their
relative distances to a query object. Peer-to-peer networks (P2P) are su-
perimposed networks that connect independent computers (also known as
nodes or peers). GHB-tree has been optimized for secondary memory in
peer-to-peer networks. We proposed a parallel search algorithm on a set
of real machine. We also discussed the effectiveness of construction and
search algorithms, as well as the quality of the index.

1 Introduction

Efficient indexing is an increasingly important area in computer science. In-
dexing techniques have been improved to deal with searches on large collec-
tions of data. However, it has been found that the indexing processes become
more difficult. It is difficult to compare these techniques [1,2,3], their effective-
ness depend on different factors (type of data, quality of the computing ma-
chine, etc.). Formally, a metric space is defined for a family of elements that
are comparable through a given distance. The distance function measures the
dissimilarity between two elements from a given database, in such a way that
smaller distances correspond to more similar elements. Let O be a set of ele-
ments. Let d : O × O → R+ be a distance function, which verifies: (i) non-
negativity: ∀(x, y) ∈ O2, d(x, y) ≥ 0, (ii) reflexivity: ∀x ∈ O, d(x, x) = 0,
(iii) symmetry: ∀(x, y) ∈ O2, d(x, y) = d(y, x), and (iv) triangle inequality:
∀(x, y, z) ∈ O3, d(x, y) + d(y, z) ≤ d(x, z). The concept of metric space is rather
simple and leads to a limited number of possibilities for querying an actual
database of such elements. These are called similarity queries and several vari-
ants exist. We consider k nearest neighbor (kNN) searches, i.e., searching for
the k closest objects with respect to a query object. There are two main types of
similarity queries: the range and the k-nearest neighbor queries.



Let q ∈ O be a query point and k ∈ N be the expected number of answers.
Then (O, d, q, k) defines a kNN query, the value of which is S ⊆ O such that
|S| = k (unless |O| < k) and ∀(s, o) ∈ S ×O, d(q, s) ≤ d(q, o).

The main factor that influence the efficiency of search algorithms, when
the dimension increases is called the dimensionality-curse problem. The cur-
rent methods have proven to be unreliable, it becomes hard to store, manage,
and analyze this amount of data. This problem is caused by inherent deficiencies
of space partitioning, and also, the overlap factor between regions that will in-
fluence subsequent performance search algorithms. So the problem is still open.
An efficient structure is based on a better grouping of similar objects in compact
clusters. In a previous work [4], we led our researches on indexing via tree struc-
ture. It is based on the successive division of the space with the spheres. It is a
technique that leads to simpler data structures, and therefore simple algorithms.

Moreover, on large scale, the regions of balls become very large, which could
degenerate the index. This subsequently reflects on the search algorithm. Dis-
tributed (P2P) systems, which are framed by similarly advantaged hubs inter-
facing with each other in a self-sorting out way, have been a standout amongst
the most critical models for information sharing. The main difficulty that one
faces when searching is a generalized version of the so-called ”‘multidimensional
curse problem”’. When distances tend to be close to each other, the objects be-
come almost indistinguishable, they cannot be grouped into clearly separated
clusters and, as reported by several authors, searches tend to degenerate into
full scans of the whole data set. These remarks open two possible directions
(that can possibly be combined as we discuss below): improve sequential scans;
provide parallel algorithms.

Our proposed system is based on the use of the most efficient indexing struc-
ture in the peer-to-peer (P2P) network, which are formed by equally privileged
nodes connecting to each other in a self-organizing way, and have been one of
the most important architectures for data sharing. While P2P networks are well
known for their efficiency, scalability and robustness.

The rest of the paper is organized as follows. Section 2 of the paper provides
an overview of Bag of features and adaboost algorithm. Section 3 deals with
the proposed algorithm and section 4 deals with the experimental analysis and
section 5 concludes the paper

2 Background

Based on these two partitioning techniques, the first class does not enforce a
partitioning of the space. The M-tree [5] builds a balanced index, allows incre-
mental updates. On the context of the reorganization of objects in compact clus-
ters, Almeida [6] proposed a new structure but just for an approximate search,
called Divisive-Agglomerative Hierarchical Clustering or DAHC-tree. In [7], the
authors proposed an extension of Slim-Tree named Slim*-tree, that exploits the
best properties from ball and the BST as a hash function to search within a



bucket file. The problem has not been resolved and the reinsertion of objects
remains costly on a large scale. A novel clustering based dynamic indexing and
retrieval approach is proposed, termed as CD-Tree [3], updates the structure
with constant insertion of data. The nodes in the CD-Tree are fitted by Gaussian
Mixture Models. In our opinion, the problem is not totally solved because the
update of construction phase remains slow, and becomes costly on a large scale.
The second class is based on the partitioning of the space. There have been
a number of longitudinal studies[8,9]. Two sub-approaches are included: the
first uses ball partitioning, like VP-tree [10,11,12]. In this method, the choice
of the pivots plays a very important role on the index structure, that is why,
Yianilos proposes the VP-tree [10] ,it is based on finding the median element
of a set of objects. The mVP-tree is a generalization of the VP-tree, the nodes
are divided into quantiles. This principle of partitioning eliminates the problem
of overlapping between shapes. However, in this type of approach, a problem
arises in cases where a demand point is close to the border between two re-
gions; it is necessary to visit all the neighboring regions which makes the index
less efficient. Combine two trees to improve the search time, an idea that has
been proposed by Ryan Curtin[13], it uses the kd-tree and ball-tree to take ad-
vantage of both information. Several difficulties were cited by the authors. The
main problem is that the efficiency decreases if the dimension is greater than 10.
Other techniques [14] have been proposed in the last two years trying to index
large-scale data but does not meet the exact but approximate queries, and other
try to compress the index [15]. This leaves the door open to other proposals in
the future.
In our previous work [4], we led our researches on indexing via tree structure. It
is based on the successive division of the space with the spheres. Moreover, with
the large amount of current data, the region of balls become very large, which
could degenerate the index. This subsequently reflects on the search algorithm.
This problem is caused by inherent deficiencies of space partitioning, and also,
the overlap factor between regions. This is one of the major problems in this type
of work. The Parallelism can and should certainly be part of a solution. We be-
lieve that no technical indexing can achieve a logarithmic search time. We know
that a logarithmic response time is achievable with parallel implementations.
On sequential version, a general sort is O(n.log(n)), where n is the number of
objects. On a parallel machine, a sort can be implemented in O(log(n)) time and
O(n) on the surface, namely the number of processors.

3 The proposed GHB-tree

The partitioning of space is a technique that leads to simpler data structures -
hence algorithms. Moreover, the problem of exponentially increasing volumes in
large spaces argues in favor of techniques that would otherwise reduce or at least
limit volumes, or even control their occupancy. We introduce a new structure
called GHB-tree (Generalised Hyper-plane Bucketed) [16], inspired from GH-tree.
The figure 1 illustrates the development of a tree. At each stage of the recursive
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Fig. 1. parallel version of GHB-tree

Algorithm 1 Insertion in GHB-tree

Insert-GHB

o ∈ O,
N ∈ N ,
cmax ∈ N∗,

 ∈ N

∆
=



(o,⊥,⊥,⊥) if N = ⊥
(p1, o,⊥,⊥) if N = (p1,⊥,⊥,⊥)
(p1, p2, Insert(o, d, cmax, G), D) if N = (p1, p2, L,R) ∧

d(p1, o) ≤ d(p2, o)
(p1, p2, L, Insert(o, d, cmax, D)) if N = (p1, p2, L,R) ∧

d(p1, o) > d(p2, o)

process of constructing the tree, two pivots are chosen from a subset of elements
cmax, they are chosen as the two objects furthest apart from each other. First, a
node NodesGHB - or only N - consists of two elements and two children:

(p1, p2, L,R) ∈ E × E ×NGHB ×NGHB . (1)

or : p1, p2 are two non-confused elements, d(p1, p2) > 0, called ”pivots”, they
thus define a hyper-plane; L and R are the subtrees associated with the elements
respectively in the ”left” parts. A (sub) tree can be empty, which is denoted by
⊥.

Construction of a GHB-tree Building a GHB-tree is realised incrementally. The
insertion is done in a top-down way. Algorithm 1 describes formally the incre-
mental insertion process. When the cardinal limit is reached, a leaf is replaced
by an inner node. Besides, the tree tends to be rather balanced, hence insert-
ing a new object is a logarithmic operation, in amortised cost. This algorithm is
implemented in the order of balancing network peer loads.

We have considered putting in place strategies to try to balance the tree,
such as choosing two elements furthest apart from each other. However, we
are careful not to use a function of more than linear complexity, otherwise the
algorithm will exceed a complexity in O(n. log n) which is the one it has in this
version.



Algorithm 2 Search kNN in GHB-tree

kNN-GHB


N ∈ N ,
q ∈ Rn,
k ∈ N∗,
d ∈ O ×O → R+,
rq ∈ R+ = +∞,
A ∈ (R+ ×O)N = ∅

 ∈ (R+ ×O)N

with :

– AL = kNN-GHB(L, q, k, d, rq, k-insertion(A, ((d(p1, q), p))));
– AR = kNN-GHB(R, q, k, d, rq, A);
– rLq = max{d : (d, o) ∈ AG} if |AL| = k else rq;
– rRq = max{d : (d, o) ∈ AD} if |AR| = k else rq ;
– ALR = kNN-GHB(O, q, k, d, rGq , A

G);
– ARL;

∆
=



A if N = ⊥
AL ifN = (p, r, L,R) ∧

d(q, p1)− rLq < d(q, p2) ∧
d(q, p1) < d(q, p2)

AR if N = (p, r, L,R) ∧
d(q, p1)− rRq > d(q, p2) ∧
d(q, p1) > d(q, p2)

ALR if N = (p, r, L,R) ∧
d(q, p1)− rLq ≤ d(q, p2) + rLq ) ∧
d(q, p1) < d(q, p2)

ARL ifN = (p, r, L,R) ∧
d(q, p1) + rRq ≥ d(q, p2)− rRq ) ∧
d(q, p1) > d(q, p2)

kNN Search in GHB-tree The algorithm 2, which formally describes the search
kNN in a GHB-tree, is also quite complex. The searches are made from balls
while the space has been partitioned. The search is done by calculating the dis-
tance between the query point and the two pivots, while descending into the
tree. Not counting the case of the empty tree, we can meet four cases when
passing through a tree node:

– The first case is where the search result is located entirely in the left subtree.
In other words, the search ball lies entirely in the left half-plane.Similarly,
the second case is where the search result is fully present in the right subtree.

– The third and fourth cases are those where the search must a priori be con-
tinued in the two subtrees because the search ball overlaps the two half-
spaces. What distinguishes the third of the fourth case is the position of the
center. If the center is in the left hyperplane, then the search will continue
first in the left son . Only if the search has not sufficiently reduced the radius



of the search ball will the pursuit take place in the right son.The search can
be modified a posteriori to finally get back to the first case. Obviously, the
fourth case is where the search in both threads is reversed.

Note that this algorithm is the same on all the stations of the network. It is on
this logical network that the query q is broadcast. In each time the indexes are
browsed, the value of the query radius rq decreases, which actually corresponds
to the distance to the ke object in the ordered list A.

The leaf nodes contain a subset of the indexed data with a maximum cardinal
equal to cmax. At the leaf level the procedure is quite simple. In order to find
the k closest neighbours of a leaf, just sort them according to their increasing
distances to the q request object. Then we return at most the first k sorted items.
Note that a real sort is not necessary; there is a variant, called ¡¡ k-sort ¿¿, which
is only in: O(cmax. log2 k). Note that cmax being either a constant, a logarithm of
the size of the collection, or its square root, the complexity of the operation on a
sheet is very fast, or even constant. The rq query radius plays the essential role
for search optimization (the minimum possible is a maximum of pruning). It is
initially set to +∞ by default, but we hopefully see it dwindle with each move
on an internal node.

Note, again, that this step does not really require sorting, but only a sequence
of mergers. The complexity is ”’constant”’, that is to say in:

O(2.k) (2)

rather than:
O(2.k. log2 k). (3)

4 Experiments and Comparison

In this section we provide experimental results on the performance of GHB-tree
on real data sets, in order to test and compare its effectiveness. We used tow
datasets. We started with the cities of France, which have a low dimensional.
We turned to the complex objects, good example is multimedia descriptors, we
used a subset of the the MPEG-7 Dominant Color Descriptor (KDD), it can be
found at http://kdd.ics.uci.edu. We run our structure with same datasets
on a workstations computers with the configuration Intel(R) Xeon(R) CPUs, and
8 GB of main memory. All index files were stored on a network partition.

We arrange the size of each tree node to be equal to the size of a disk page.
We compared ourselves to the MM-tree [17] its extension onion-tree, as well as
slim* [7], an improved version of the M-tree [5], and IM-tree[4]. We used the
library C++ GBDI Arboretum which implements these methods and we adapt
them to be executable in a P2P environment. 1 In Figure 2, we see that our
proposal is the most effective compared to others with a difference of over 30%

1 GBDI Arboretum is a library C++ that implements different metric access methods
(MAM) (cf. http://http://www.gbdi.icmc.usp.br/old/arboretum).

http://kdd.ics.uci.edu
http://http://www.gbdi.icmc.usp.br/old/arboretum
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Fig. 2. Performance statistics of construction algorithms in GHB-tree

with the onion-tree in the three collections (average and with the two values
of cmax), and with more than 40% compared to the Slim*-tree. The difference
from MM and onion-trees is easily explainable. The reason is the absence of the
respective semi-balancing algorithm and keep-small that require a number of
additional operations. In slim*-tree slim-down algorithm also has a significant
cost which was noted by its own authors [7]. Our approach, GHB-tree is simple
in the insertion of new objects, (which was one of the initial objectives with
respect to the complexity O(nlogn) reasonable) and provides an incremental
index competitive.

We vary in different ways the kNN searches. Firstly, for building the index,
we run with different values of cmax parameter which was chosen either as the
square root or as the logarithm of the size of the collection. Next, we run kNN
searches with k between 5 and 100. We note also that the difference between
the perfect version which is the most effective, and sequential versions is not
negligible. This allows us to say that there is a possibility of minimizing this gap
using techniques to find as soon as possible nearest neighbor with a minimum
of energy.

This proves that the creation of the index has been beneficial by the creation
of dense, even at large scale and also in large amount of data. For the parameter
k, we observe that if we increase its value of k, the performances decreases but
with a gap between less than 1% and to less than 2% when k = 50. So the value
of k has no major influence on the performance of the search algorithm. Figure 3
shows the elapsed time for building indexes for each of the three collections.

As shown from the figure, the elapsed time gradually decreases as the num-
ber of cores increases from 1 to 15. When using two machines, the time to build
index for the datasets, is 40,144s, 41,847s and 42,547s, respectively. In compar-
ison with 15 machines, we achieve a speed-up factor for all three datasets by
reducing their indexing time to 7000s. Recalling that sending the leaf nodes to
client machines is done with the principle of load balancing between machines.

We observed a logical breakdown of CPU time beside the number of machine.
We also noticed a logical increase compared to the complexity of the query while



Fig. 3. Elapsed time for building indexes for each of the three collections

increasing the parameter k as well the intrinsic dimension, We found that this
new approach is able to index up to twenty million objects distributed over fif-
teen clusters, which was our goal. We recall that the choice of destination clus-
ters between machines during the construction of the index was done in a way
that the distribution of objects was almost balanced on all machines. Note that
communication between client machines and also the exchanges of responses
plays a very important role in improving response time, so the effectiveness of
our index.

5 Conclusion

In this paper, we have clarified some methods of indexing in metric spaces. Ev-
erything is put on a taxonomy of most existing indexing techniques in the lit-
erature. Afterwards, we presented a study (GHB-tree), a proposition that was
inspired from GH-tree. This technique is incremental, not dependent on a de-
fined data type, and especially easy to construct the index. GHB-tree is a peer-
to-peer system supporting similarity search in metric spaces. Compared with
the available state-of-the-art, our method significantly improves the query re-
trieval process. Extensive experimental results show that this improvement, for
kNN queries, increases directly proportional with the size of the network, adding
ground to our scalability claims.
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