D. Jones, A taxonomy of global optimization methods based on response surfaces, Journal of Global Optimization, vol.21, pp.345-383, 2001.

O. P. Le-ma??trema??tre and O. M. Knio, Spectral methods for uncertainty quantification, 2010.

D. Xiu and G. E. Karniadakis, The wiener-askey polynomial chaos for stochastic differential equations, SIAM J Sci Comput, vol.24, issue.2, pp.619-644, 2002.

S. Rahman, A polynomial dimensional decomposition for stochastic computing, International Journal for Numerical Methods in Engineering, vol.76, pp.2191-2116, 2008.

M. Buhmann, Radial Basis Functions, 2003.

N. A. Cressie, Statistics for spatial data, 1993.

E. Bernardini, M. J. Seymour, D. Spence, A. Wei, and . Kareem, Aerodynamic shape optimization of civil structures: A CFDenabled Kriging-based approach, Journal of Wind Engineering and Industrial Aerodynamics, vol.144, pp.154-164, 2015.

I. M. Sobol, Sensitivity estimates for nonlinear mathematical models, Mathematical modelling & Computational Experiments, vol.1, pp.407-414, 1993.

I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and Computers in Simulations, vol.55, pp.271-280, 2001.

V. Yadav and S. Rahman, Adaptive-sparse polynomial dimensional decomposition methods for high-dimensional stochastic computing, Comput. Methods Appl. Mech. Engrg, vol.274, pp.56-83, 2014.
DOI : 10.1016/j.cma.2014.01.027

URL : http://arxiv.org/pdf/1402.3330

M. D. Mckay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol.21, issue.2, pp.239-245, 1979.

S. N. Lophaven, H. B. Nielsen, and J. Søndergaard, DACE: a MATLAB kriging toolbox, version 2.0, 2002.

J. S. Park, Optimal latin-hypercube designs for computer experiments, J. Stat. Plan. Inference, vol.39, pp.95-111, 1994.
DOI : 10.1016/0378-3758(94)90115-5

G. G. Wang, Adaptive response surface method using inherited latin hypercube design points, Journal of Mechanical Design, vol.125, pp.210-220, 2003.
DOI : 10.1115/1.1561044

URL : http://www.sfu.ca/%7Egwa5/index_files/Jmd-arsm.PDF

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer experiments, Statistical sciences, vol.4, issue.4, pp.409-435, 1989.

D. Jones, M. Schonlau, and W. J. Welch, Efficient global optimization of expensive black-box functions, Journal of Global Optimization, vol.13, pp.455-492, 1998.

J. A. Witteveen, A. Loeven, and H. Bijl, An adaptive stochastic finite elements approach based on newton-cotes quadrature in simplex elements, Computers & Fluids, vol.38, pp.1270-1288, 2009.

J. A. Witteveen and G. Iaccarino, Refinement criteria for simplex stochastic collocation with local extremum diminishing robustness

, SIAM J. Sci. Comput, vol.34, issue.3, pp.1522-1543, 2012.

J. A. Witteveen and G. Iaccarino, Simplex stochastic collocation with random sampling and extrapolation for nonhypercube probability spaces, SIAM J. Sci. Comput, vol.34, issue.2, pp.814-838, 2012.

J. A. Witteveen and G. Iaccarino, Simplex stochastic collocation with ENO-type stencil selection for robust uncertainty quantification, Journal of Computational Physics, vol.239, pp.1-21, 2013.

T. Coupez, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, Journal of Computational Physics, vol.230, pp.2391-2405, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00579536

T. Coupez, G. Jannoun, N. Nassif, H. C. Nguyen, H. Digonnet et al., Adaptive time-step with anisotropic meshing for incompressible flows, Journal of Computational Physics, vol.241, pp.195-211, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01470576

C. J. Audet and . Dennis, Mesh adaptive direct search algorithms for constrained optimization, SIAM Journal on Optimization, vol.17, issue.1, pp.188-217, 2006.

A. Conn, K. Scheinberg, and L. Vicente, Introduction to Derivative-Free Optimization, Society for Industrial and Applied Mathematics, 2009.

H. Gutmann, A radial basis function method for global optimization, Journal of Global Optimization, vol.19, issue.3, pp.201-227, 2001.

G. Rommel, C. A. Regis, and . Shoemaker, A stochastic radial basis function method for the global optimization of expensive functions, INFORMS Journal on Computing, vol.19, issue.4, pp.497-509, 2007.

G. Rommel and . Regis, Stochastic radial basis function algorithms for largescale optimization involving expensive black-box objective and constraint functions, Comput. Oper. Res, vol.38, issue.5, pp.837-853, 2011.

S. Jakobsson, M. Patriksson, J. Rudholm, and A. Wojciechowski, A method for simulation based optimization using radial basis functions, Optimization and Engineering, vol.11, issue.4, pp.501-532, 2010.

G. Blatman and B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probabilistic Engineering Mechanics, vol.25, pp.183-197, 2010.

G. Blatman and B. Sudret, Efficient computation of global sensitivity indices using sparse polynomial chaos expansions, Reliability Engineering & System Safety, vol.95, issue.11, pp.1216-1229, 2010.

X. Yang, M. Choi, G. Lin, and G. E. Karniadakis, Adaptive anova decomposition of stochastic incompressible and compressible flows, Journal of Computational Physics, vol.231, issue.4, pp.1587-1614, 2012.

Z. Zhang, M. Choi, and G. E. Karniadakis, Anchor points matter in anova decomposition

. Rønquist, Spectral and High Order Methods for Partial Differential Equations, pp.347-355, 2011.

X. Ma and N. Zabaras, An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations, Journal of Computational Physics, vol.229, issue.10, pp.3884-3915, 2010.

R. Caflisch, W. Morokoff, and A. Owen, Valuation of mortgage-backed securities using brownian bridges to reduce the effective dimension, Journal of Computational Finance, vol.1, pp.27-46, 1997.

G. Matheron, The theory of regionalised variables and its applications, 1971.

V. Picheny, Improving accuracy and compensating for uncertainty in surrogate modeling, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00770844

T. Goel, R. T. Hafkta, and W. Shyy, Comparing error estimation measures for polynomial and kriging approximation of noise-free functions. Structural and multidisciplinary optimization, vol.38, pp.429-442, 2009.

P. G. Constantine, E. Dow, and Q. Wang, Active subspace method in theory and practice: application to kriging surfaces, SIAM J. Sci. Comput, vol.36, issue.4, pp.1500-1524, 2014.

L. Margheri and P. Sagaut, A hybrid anchored-ANOVAPOD/kriging method for uncertainty quantification in unsteady highfidelity CFD simulations, Journal of Computational Physics, vol.324, pp.137-173, 2016.

R. M. Neal, Monte carlo implementation of gaussian process models for bayesian regression and classification, 1997.

J. Sacks, S. B. Schiller, and W. W. , Designs for computer experiments, Technometrics, vol.31, issue.1, pp.41-47, 1989.

G. Jannoun, Space-Time accurate anisotropic adaptation and stabilized finite element methods for the resolution of unsteady CFD problems. Theses, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01146245

R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: Basic analysis and examples, East-West J. Numer. Math, vol.4, pp.237-264, 1996.
URL : https://hal.archives-ouvertes.fr/inria-00343044

P. Houston and E. Süli, Stabilised hp-finite element approximation of partial differential equations with nonnegative characteristic form, Computing, vol.66, issue.2, pp.99-119, 2001.

R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numerica, vol.10, pp.1-102, 2001.

M. B. Giles and E. Süli, Adjoint methods for pdes: a posteriori error analysis and postprocessing by duality, Acta Numerica, vol.11, pp.145-236, 2002.

L. Demkowicz, J. Gopalakrishnan, and A. H. Niemi, A class of discontinuous petrov-galerkin methods, Adaptivity. Applied Numerical Mathematics, vol.62, issue.4, pp.396-427, 2012.

A. T. Patera and J. Peraire, A General Lagrangian Formulation for the Computation of A Posteriori Finite Element Bounds, pp.159-206

S. I. Repin, A posteriori error estimates for optimal control problems, 14th IFAC Workshop on Control Applications of Optimization, vol.42, pp.85-90, 2009.

R. Hartmann, Multitarget error estimation and adaptivity in aerodynamic flow simulations, SIAM Journal on Scientific Computing, vol.31, issue.1, pp.708-731, 2008.

K. Kenan, S. Prudhomme, L. Chamoin, and M. Laforest, A new goaloriented formulation of the finite element method, Computer Methods in Applied Mechanics and Engineering, vol.327, pp.256-276, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01633411

E. H. Van-brummelen, S. Zhuk, and G. J. Van-zwieten, Worst-case multiobjective error estimation and adaptivity, Computer Methods in Applied Mechanics and Engineering, vol.313, pp.723-743, 2017.

B. Endtmayer and T. Wick, A partition-of-unity dual-weighted residual approach for multi-objective goal functional error estimation applied to elliptic problems, vol.17, p.2017

M. Meckesheimer, R. R. Barton, T. W. Simpson, and A. Booker, Computationally inexpensive metamodel assessment strategies, AIAA Journal, vol.40, issue.10, pp.2053-2060, 2002.

A. Chkifa, A. Cohen, P. Passaggia, and J. Peter, A comparative study between kriging and adaptive sparse tensorproduct methods for multi-dimensional approximation problems in aerodynamics design, ESAIM: PROCEEDINGS AND SURVEYS, vol.48, pp.248-261, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01353245

J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numerische Mathematik, vol.2, pp.84-90, 1960.

J. Tryoen, P. M. Congedo, R. Abgrall, N. Villedieu, and T. E. Magin, Bayesian-based method with metamodels for rebuilding freestream conditions in atmospheric entry flows, AIAA Journal, vol.52, issue.10, pp.2190-2197, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00855898

P. Barbante, Accurate and efficient modelling of high temperature nonequilibrium air flows, 2001.

C. Park, R. Jaffe, and H. Partridge, Chemical-kinetic parameters of hyperbolic earth entry, Journal of Thermophysics and Heat Transfer, vol.15, issue.1, pp.76-90, 2001.

B. Van-leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to godunov's method, Journal of Computational Physics, vol.32, issue.1, pp.101-136, 1979.

S. Osher and F. Solomon, Upwind Difference Schemes for Hyperbolic Systems of Conservation Laws. Mathematics of Computation, vol.38, pp.339-374, 1982.

B. Bottin, O. Chazot, M. Carbonaro, V. Van-der-haegen, and S. Paris, The VKI Plasmatron Characteristics and Performance. Defense Technical Information Center, 2000.

J. Lachaud and N. N. Mansour, Porous-material analysis toolbox based on openfoam and applications, Journal of Thermophysics and Heat Transfer, vol.28, issue.2, pp.191-202, 2014.