R. Ahsan, R. Neamtu, and E. Rundensteiner, Towards Spreadsheet Integration Using Entity Identification Driven by a Spatial-temporal Model, ACM SAC, pp.1083-1085, 2016.

R. Bar-haim, I. Bhattacharya, F. Dinuzzo, A. Saha, and N. Slonim, Stance Classification of Context-Dependent Claims, EACL, pp.251-261, 2017.

S. Brin and L. Page, The Anatomy of a Large-Scale Hypertextual Web Search Engine, Computer Networks, vol.30, pp.107-117, 1998.

T. D. Cao, I. Manolescu, and X. Tannier, Extracting Linked Data from Statistic Spreadsheets, Proceedings of The International Workshop on Semantic Big Data (SBD), 2017.
DOI : 10.1145/3066911.3066914

URL : https://hal.archives-ouvertes.fr/hal-01915148

T. D. Cao, I. Manolescu, and X. Tannier, Searching for Truth in a Database of Statistics, Proceedings of The International Workshop on Web and Databases (WebDB), 2018.
URL : https://hal.archives-ouvertes.fr/hal-01745768

S. Cazalens, P. Lamarre, J. Leblay, I. Manolescu, and X. Tannier, A Content Management Perspective on Fact-Checking, The Web Conference 2018-alternate paper tracks "Journalism, Misinformation and Fact Checking, pp.1-10, 2018.
DOI : 10.1145/3184558.3188727

URL : https://hal.archives-ouvertes.fr/hal-01722666

Z. Chen and M. Cafarella, Automatic Web Spreadsheet Data Extraction, Proceedings of the 3rd International Workshop on Semantic Search Over the Web, 2013.
DOI : 10.1145/2509908.2509909

URL : http://web.eecs.umich.edu/~michjc/papers/spreadsheets_ssw2013.pdf

E. Xin-luna-dong, G. Gabrilovich, W. Heitz, K. Horn, S. Murphy et al., From Data Fusion to Knowledge Fusion, PVLDB, vol.7, 2014.

S. Elbassuoni and R. Blanco, Keyword Search over RDF Graphs, ACM International Conference on Information and Knowledge Management (CIKM), pp.237-242, 2011.
DOI : 10.1145/2063576.2063615

H. Elmeleegy, J. Madhavan, and A. Halevy, Harvesting Relational Tables from Lists on the Web, The VLDB Journal, vol.20, issue.2, pp.209-226, 2011.
DOI : 10.1007/s00778-011-0223-0

URL : http://www.vldb.org/pvldb/2/vldb09-325.pdf

R. Fagin, A. Lotem, and M. Naor, Optimal Aggregation Algorithms for Middleware, J. Comput. Syst. Sci, vol.66, issue.4, pp.614-656, 2003.
DOI : 10.1016/s0022-0000(03)00026-6

URL : https://doi.org/10.1016/s0022-0000(03)00026-6

F. Goasdoué, K. Karanasos, Y. Katsis, J. Leblay, I. Manolescu et al., Fact Checking and Analyzing the Web (demonstration), ACM SIGMOD, 2013.

H. Gonzalez, A. Halevy, C. Jensen, A. Langen, J. Madhavan et al., Google Fusion Tables: Data Management, Integration, and Collaboration in the Cloud, SOCC, 2010.
DOI : 10.1145/1807128.1807158

J. Gray, L. Chambers, and L. Bounegru, The Data Journalism Handbook: How Journalists can Use Data to Improve the News, 2012.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart et al., Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and SubTotals, 2007.
DOI : 10.1109/icde.1996.492099

URL : http://arxiv.org/pdf/cs/0701155

V. Hristidis and Y. Papakonstantinou, DISCOVER: Keyword Search in Relational Databases, Very Large Databases Conference (VLDB), pp.670-681, 2002.

M. Kohlhase, C. Prodescu, and C. Liguda, XLSearch: A Search Engine for Spreadsheets, EuSpRIG, 2013.

J. D. Lafferty, A. Mccallum, and F. C. Pereira, Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data, ICML, pp.282-289, 2001.

W. Le and F. Li, Anastasios Kementsietsidis, and Songyun Duan, IEEE TKDE, vol.26, p.11, 2014.

J. Leblay, I. Manolescu, and X. Tannier, Computational factchecking: problems, state of the art, and perspectives, The Web Conference (tutorial), 2018.
URL : https://hal.archives-ouvertes.fr/hal-01791232

R. Levy, Y. Bilu, D. Hershcovich, E. Aharoni, and N. Slonim, Context Dependent Claim Detection, COLING, pp.1489-1500, 2014.

F. Mahdisoltani, J. Biega, and F. M. Suchanek, YAGO3: A Knowledge Base from Multilingual Wikipedias, CIDR, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01699874

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed Representations of Words and Phrases and their Compositionality, NIPS, pp.3111-3119, 2013.

R. Radim and S. Petr, Software Framework for Topic Modelling with Large Corpora, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp.45-50, 2010.

A. Rajadesingan and H. Liu, Identifying Users with Opposing Opinions in Twitter Debates, International Conference on Social Computing, BehavioralCultural Modeling and Prediction, pp.153-160, 2014.

M. Sayyadian, H. Lekhac, A. Doan, and L. Gravano, Efficient Keyword Search Across Heterogeneous Relational Databases, IEEE International Conference on Data Engineering (ICDE, 2007.

, Best Practices for Publishing Linked Data, 2014.

M. Thomas, B. Pang, and L. Lee, Get out the vote: Determining support or opposition from Congressional floor-debate transcripts, pp.327-335, 2006.

F. Tschirschnitz, T. Papenbrock, and F. Naumann, Detecting Inclusion Dependencies on Very Many Tables, ACM Trans. Database Syst, vol.18, p.29, 2017.

W. , SPARQL Protocol and RDF Query Language, 2008.

Y. Wu, P. K. Agarwal, C. Li, J. Yang, and C. Yu, Toward Computational Fact-Checking, PVLDB, vol.7, pp.589-600, 2014.