A. Bush and A. Cool, The e?ect of time delay and growth rate inhibition in the bacterial treatment of wastewater, Journal of Theoretical Biology, vol.63, pp.385-396, 1975.

T. Caraballo, X. Han, and P. Kloeden, Nonautonomous chemostats with variable delays, SIAM Journal on Mathematical Analysis, vol.47, pp.2178-2199, 2015.

P. Collet, S. Martinez, S. Meleard, and J. San-martin, Stochastic models for a chemostat and long time behavior, Advances in Applied Probability, vol.45, pp.822-837, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00708680

Y. Collos, Time-lag algal growth dynamics: biological constraints on primary production in aquatic environments, Marine Ecology Progress Series, vol.33, pp.193-206, 1986.

S. Dikshitulu, B. Baltzis, G. Lewandowski, and S. Pavlou, Competition between two microbial populations in a sequencing fed-batch reactor: theory, experimental verification, and implications for waste treatment applications, Biotechnology and Bioengineering, vol.42, pp.643-656, 1993.

S. Ellermeyer, Competition in the chemostat: global asymptotic behavior of a model with delayed response in growth, SIAM Journal on Applied Mathematics, vol.54, pp.456-465, 1994.

C. Fritsch, J. Harmand, and F. Campillo, A Modeling approach of the chemostat, Ecological Modelling, vol.299, pp.1-13, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00998194

J. Gouzé and G. Robledo, Feedback control for nonmonotone competition models in the chemostat, Nonlinear Analysis: Real World Applications, vol.6, pp.671-690, 2005.

F. Grognard, F. Mazenc, and A. Rapaport, Polytopic Lyapunov functions for persistence analysis of competing species, Discrete and Continuous Dynamical Systems Series B, vol.8, pp.73-93, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00000873

H. Guo and S. Zheng, A competition model for two resources in un-stirred chemostat, Applied Mathematics and Computation, vol.217, pp.6934-6949, 2011.

B. Haegeman and A. Rapaport, How flocculation can explain coexistence in the chemostat, Journal of Biological Dynamics, vol.2, pp.1-13, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00857826

G. Hardin, Competitive exclusion principle, Science, vol.131, pp.1292-1297, 1960.

X. He and S. Ruan, Global stability in chemostat-type plankton models with delayed nutrient recycling, Journal of Mathematical Biology, vol.37, pp.253-271, 1998.

S. Hsu, A competition model for a seasonally fluctuating nutrient, Journal of Mathematical Biology, vol.9, pp.115-132, 1980.

S. Hsu and T. Hsu, Competitive exclusion of microbial species for a single nutrient with internal storage, SIAM Journal on Applied Mathematics, vol.68, pp.1600-1617, 2008.

S. Hsu and P. Waltman, On a system of reaction-di?us ion equations arising from competition in an unstirred chemostat, SIAM Journal on Applied Mathematics, vol.53, pp.1026-1044, 1993.

J. Jia and H. Zhang, Existence and global attractivity of periodic solutions for chemostat model with delayed nutrients recycling, Di?erential Equations and Applications, vol.6, pp.275-286, 2014.

H. Khalil, Nonlinear Systems, Third Edition, 2002.

P. Lenas and S. Pavlou, Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate, Mathematical Biosciences, vol.129, pp.111-142, 1995.

B. Li and H. Smith, Competition for essential resources: a brief review, Dynamical Systems and its Applications in Biology, pp.213-227, 2003.

S. Liu, X. Wang, L. Wang, and H. Song, Competitive exclusion in delayed chemostat models with di?erential removal rates, SIAM Journal on Applied Mathematics, vol.74, pp.634-648, 2014.

C. Lobry, F. Mazenc, and A. Rapaport, Persistence in ecological models of competition for a single resource, Comptes Rendus Mathematique, vol.340, pp.199-204, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01001120

Z. Lu, Global stability for a chemostat-type model with delayed nutrient recycling, Discrete and Continuous Dynamical Systems Series B, vol.4, pp.663-670, 2004.

M. Maliso? and F. Mazenc, Constructions of Strict Lyapunov Functions, 2009.

F. Mazenc, J. Harmand, and M. Maliso?, Stabilization in a chemostat with sampled and delayed measurements, Proceedings of the 2016 American Control Conference, pp.1857-1862, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01389864

F. Mazenc and Z. Jiang, Global output feedback stabilization of a chemostat with an arbitrary number of species, IEEE Transactions on Automatic Control, vol.55, pp.2570-2575, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00547741

F. Mazenc, G. Robledo, and A. Michael-malisoff,

F. Mazenc and M. Maliso?, Stabilization of a chemostat model with Haldane growth functions and a delay in the measurement, Automatica, vol.46, pp.1428-1436, 2010.

F. Mazenc and M. Maliso?, Stability and stabilization for models of chemostats with multiple limiting substrates, Journal of Biological Dynamics, vol.6, pp.612-627, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00776930

F. Mazenc, M. Maliso?, and P. De-leenheer, On the stability of periodic solutions in the perturbed chemostat, Mathematical Biosciences and Engineering, vol.4, pp.319-338, 2007.

F. Mazenc, M. Maliso?, and J. Harmand, Further results on stabilization of periodic trajectories for a chemostat with two species, IEEE Transactions on Automatic Control, vol.53, pp.66-74, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00857806

X. Meng, Q. Gao, and Z. Li, The e?ects of delayed growth response on the dynamic behaviors of the Monod type chemostat model with impulsive input nutrient concentration, Nonlinear Analysis: Real World Applications, vol.11, pp.4476-4486, 2010.

X. Meng, Z. Li, and J. Nieto, Dynamic analysis of Michaelis-Menten chemostat-type competition models with time delay and pulse in a polluted environment, Journal of Mathematical Chemistry, vol.47, pp.123-144, 2010.

G. Meszéna, M. Gyllenberg, L. Pásztor, and J. Metz, Competitive exclusion and limiting similarity: a unified theory, Theoretical Population Biology, vol.69, pp.68-87, 2006.

J. Monod, La technique de culture continue, théorie et applications, Annales de l'Institut Pasteur, vol.79, pp.390-410, 1950.

C. Neill, T. Daufresne, and C. Jones, A competitive coexistence principle?, Oikos, vol.118, pp.1570-1578, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00282709

H. Nie and J. Wu, Coexistence of an unstirred chemostat model with Beddington-De Angelis functional response and inhibitor, Nonlinear Analysis: Real World Applications, vol.11, pp.3639-3652, 2010.

A. Novick and L. Szilard, Description of the chemostat, Science, vol.112, pp.715-716, 1950.

S. Pavlou, Microbial competition in bioreactors, Chemical Industry and Chemical Engineering Quarterly, vol.12, pp.71-81, 2006.

G. Robledo, F. Grognard, and J. Gouzé, Global stability for a model of competition in the chemostat with microbial inputs, Nonlinear Analysis: Real World Applications, vol.13, pp.582-598, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00848445

S. Ruan, The e?ect of delays on stability and persistence in plankton models, Nonlinear Analysis: Theory, Methods, and Applications, vol.24, pp.575-585, 1995.

H. Smith, Competitive coexistence in an oscillating chemostat, SIAM Journal on Applied Mathematics, vol.40, pp.498-522, 1981.

H. Smith and P. Waltman, The Theory of the Chemostat. Dynamics of Microbial Competition, 1995.

W. Mathematica, The world's definitive system for modern technical computing, 2016.

G. Wolkowicz and H. Xia, Global asymptotic behavior of a chemostat model with discrete delays, SIAM Journal on Applied Mathematics, vol.57, pp.1019-1043, 1997.

G. Wolkowicz and X. Zhao, N-species competition in a periodic chemostat, Di?erential Integral Equations, vol.11, pp.465-491, 1998.

H. Zhang, L. Chen, and J. Nieto, A delayed epidemic model with stage-structure and pulses for pest management strategy, Nonlinear Analysis: Real World Applications, vol.9, pp.1714-1726, 2008.

H. Zhang, P. Georgescu, J. Nieto, and L. Chen, Impulsive perturbation and bifurcation of solutions for a model of chemostat with variable yield, Applied Mathematics and Mechanics, vol.30, pp.933-944, 2009.