D. Bestle and M. Zeitz, Canonical form observer design for non-linear time-variable systems, International Journal of Control, vol.38, issue.2, pp.419-431, 1983.

S. Cedervall and X. Hu, Nonlinear observers for unicycle robots with range sensors, IEEE Transactions on Automatic Control, vol.52, issue.7, pp.1325-1329, 2007.

D. Dochain, State and parameter estimation in chemical and biochemical processes: a tutorial, Journal of Process Control, vol.13, issue.8, pp.801-818, 2003.

H. Du, C. Qian, S. Yang, and S. Li, Recursive design of finite-time convergent observers for a class of time-varying nonlinear systems, Automatica, vol.49, issue.2, pp.601-609, 2013.

R. Engel and G. Kreisselmeier, A continuous time observer which converges in finite time, IEEE Transactions on Automatic Control, vol.47, issue.7, pp.1202-1204, 2002.

L. Freidovich and H. Khalil, Lyapunov-based switching control of nonlinear systems using high-gain observers, Automatica, vol.43, pp.150-157, 2007.

H. Hammouri, B. Targui, and F. Armanet, High gain observer based on a triangular structure, International Journal of Robust and Nonlinear Control, vol.12, issue.6, pp.497-518, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00524454

T. Insperger and G. Stepan, Stability chart for the delayed Mathieu equation, Proceedings of the Royal Society of London Series A, vol.458, 1989.

N. Kazantzis and C. Kravaris, Nonlinear observer design using Lyapunov's auxiliary theorem, System and Control Letters, vol.34, issue.5, pp.241-247, 1998.
DOI : 10.1109/cdc.1997.649779

H. Khalil and L. Praly, High-gain observers in nonlinear feedback control, International Journal of Robust and Nonlinear Control, vol.24, issue.6, pp.993-1015, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01248861

A. Levant, Robust exact di?erentiation via sliding mode technique, Automatica, vol.34, issue.3, pp.379-384, 1998.
DOI : 10.1016/s0005-1098(97)00209-4

M. Maliso? and F. Mazenc, Constructions of Strict Lyapunov Functions, Communications and Control Engineering Series, 2009.

I. Manchester, K. Andersson, N. Andersson, A. Shiriaev, and A. Eklund, A nonlinear observer for on-line estimation of the cerebrospinal fluid outflow resistance, Automatica, vol.44, issue.5, pp.1426-1430, 2008.

F. Mazenc, V. Andrieu, and M. Maliso?, Design of continuous-discrete observers for time-varying nonlinear systems, Automatica, vol.57, pp.135-144, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01198426

F. Mazenc, E. Fridman, and W. Djema, Estimation of solutions of observable nonlinear systems with disturbances, Systems and Control Letters, vol.79, pp.47-58, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01257327

F. Mazenc and M. Maliso?, Asymptotic stabilization for feedforward systems with delayed feedback, Automatica, vol.49, issue.3, pp.780-787, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00761317

F. Mazenc and M. Maliso?, Trajectory based approach for the stability analysis of nonlinear systems with time delays, IEEE Transactions on Automatic Control, vol.60, issue.6, pp.1716-1721, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01100347

T. Menard, E. Moulay, and W. Perruquetti, A global high-gain finite time observer, IEEE Transactions on Automatic Control, vol.55, issue.6, pp.1500-1506, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00455790

P. Menhold, R. Findeisen, and F. Allgower, Finite time convergent observers for linear time-varying systems, Proceedings of the Mediterranean Conference on Control and Automation, 2003.

P. Menhold, R. Findeisen, and F. Allgower, Finite time convergent observers for nonlinear systems, Proceedings of the IEEE Conference on Decision and Control, pp.5673-5678, 2003.

A. Pearson, Nonlinear system identification with limited time data, Automatica, vol.15, issue.1, pp.73-84, 1979.
DOI : 10.1016/0005-1098(79)90088-8

W. Perruquetti, T. Floquet, and E. Moulay, Finite time observers: application to secure communication, IEEE Transactions on Automatic Control, vol.53, issue.1, pp.356-360, 2008.
DOI : 10.1109/tac.2007.914264

URL : https://hal.archives-ouvertes.fr/inria-00176758

G. Phanomchoeng, R. Rajamani, and D. Piyabongkarn, Nonlinear observer for bounded Jacobian systems, with applications to automotive slip angle estimation, IEEE Transactions on Automatic Control, vol.56, issue.5, pp.1163-1170, 2011.

T. Ra? and F. Allgower, An impulsive observer that estimates the exact state of a linear continuous time system in predetermined finite time, Proceedings of the Mediterranean Conference on Control and Automation, 2007.

F. Sauvage, M. Guay, and D. Dochain, Design of a nonlinear finite time converging observer for a class of nonlinear systems, Journal of Control Science and Engineering, vol.36954, 2007.

Y. Shen and Y. Huang, Uniformly observable and globally Lipschitzian nonlinear systems admit global finite time observers, IEEE Transactions on Automatic Control, vol.54, issue.11, pp.2621-2625, 2009.

Y. Shen, Y. Huang, and J. Gu, Global finite time observers for Lipschitz nonlinear systems, IEEE Transactions on Automatic Control, vol.56, issue.2, pp.418-424, 2011.

Y. Shen and X. Xia, Semi-global finite time observers for nonlinear systems, Automatica, vol.44, issue.12, pp.3152-3156, 2008.
DOI : 10.1002/rnc.1471

Y. Song, Y. Wang, J. Hollway, and M. Krstic, Time-varying feedback for finite-time robust regulation of normal-form nonlinear systems, Proceedings of the IEEE Conference on Decision and Control, pp.3837-3842, 2016.

E. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, Texts in Applied Mathematics, vol.6, 1998.

L. Wang, D. Astolfi, L. Marconi, and H. Sua, High-gain observers with limited gain power for systems with observability canonical form, Automatica, vol.75, pp.16-23, 2017.
DOI : 10.1016/j.automatica.2016.09.006

URL : https://hal.archives-ouvertes.fr/hal-02096457

W. Wang, D. Nesic, and R. Postoyan, Observer design for networked control systems with FlexRay, Automatica, vol.82, pp.42-48, 2017.
DOI : 10.1016/j.automatica.2017.03.038

URL : https://hal.archives-ouvertes.fr/hal-01521591

P. Yan and H. Ozbay, Stability analysis of switched time-delay systems, SIAM Journal on Control and Optimization, vol.47, issue.2, pp.936-949, 2008.

P. Yan, H. Ozbay, and M. Sansal, Robust stabilization of parameter varying time delay systems by switched controllers, Applied and Computational Mathematics, vol.13, issue.1, pp.31-45, 2014.

M. Zeitz, The extended Luenberger observer for nonlinear systems, Systems and Control Letters, vol.9, issue.2, pp.149-156, 1987.

A. Zemouche and M. Boutayeb, On LMI conditions to design observers for Lipschitz nonlinear system, Automatica, vol.49, issue.2, pp.585-591, 2013.