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Abstract: We revisit the backstepping approach. We show how bounded globally asymptot-
ically stabilizing output feedbacks can be constructed for a family of nonlinear systems. The
approach relies on the introduction of a dynamic extension and a converging-input-converging-
state assumption. The technique presents several advantages. It provides control laws whose
expressions are simple. It makes it possible to stabilize systems in the presence of uncertain
terms which prevent the use of the classical backstepping technique. It applies in cases where
only part of the state variable is measured.
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1. INTRODUCTION

The backstepping approach is a fundamental technique
for constructing globally asymptotically stabilizing control
laws for nonlinear systems in feedback form, i.e., having a
lower triangular structure; see Dixon et al. (2000). Since
the pioneering contributions in Coron and Praly (1991)
and Tsinias (1997), it has been developed in many con-
tributions and is successfully used in many applications,
as illustrated for instance by Jiang and Nijmeijer (1999),
Pettersen and Nijmeijer (2002), Smaoui et al. (2006),
de Queiroz and Dawson (1996) and Lee et al. (2011).
Presentations of the backstepping technique can be found
in Maliso↵ and Mazenc (2009), Khalil (2002), Mazenc and
Bowong (2004), and many other research monographs and
papers.

One of the drawbacks of this technique is the complexity
of the formulas it sometimes provides, notably when it
is applied repeatedly and when size constraints on the
control laws have to be respected. This is a limitation of
the applicability of the classical backstepping and of the
bounded backstepping results of Mazenc and Iggidr (2004)
and Mazenc and Bowong (2004). Another limitation of
the approach is due to the fact that in general, it does
not apply when only a part of the state is measured. In
addition, it relies on the existence of a fictitious feedback
which has to be of class C

k when the backstepping is
applied k times. The presence of uncertainties in the
dynamics and in the output may also be an obstacle.

?
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To overcome these drawbacks, a new technique has been
proposed recently, based on control laws in which delays
are artificial, meaning there are delays in the state values
that are used in the controls even when there are no input
delays in the original systems. This technique has been
initiated in Mazenc and Maliso↵ (2016) and developed
and applied in Mazenc et al. (2016), Mazenc et al. (2017c)
and Mazenc et al. (2017b), where in particular, the case
of systems with delays in the input is considered and
where the initial fictitious control law is not required
to be of class C

1. A first adaptation of this technique
to uncertain outputs has also been studied in Mazenc
et al. (2017a). Due to the use of visual information, only
imprecise measurement of the first backstepping variable
was available.

In the present paper, we propose a new backstepping
design for globally uniformly asymptotically stabilizing
control laws for partially linearizable systems; see Isidori
(1995) for an introduction to partially linearizable sys-
tems. Its fundamental new aspect with respect to the
contributions that use artificial delays is that, instead of
introducing delays, a finite dimensional dynamic extension
is designed, making it possible to obtain feedbacks with-
out delays, which o↵er the following advantages: (i) they
are bounded in the cases where bounded feedbacks can
be expected, (ii) they are given by simple formulas, (iii)
they apply in cases where the subsystem from which the
backstepping starts is not known with accuracy, and (iv)
they apply in cases where only a part of the state variable
is measured and where some parts of the output are not
known with accuracy. The family of partially linearizable
systems we consider encompasses many systems that are
relevant from an applied point of view, as shown for



instance by Spong (1994) and Olfati-Saber (2001). The
advantages of the control laws we propose imply that
our new result is of interest even when boundedness of
the feedback is not desired. Also, with respect to the
backstepping with artificial delay methods from the works
Mazenc and Maliso↵ (2016) and Mazenc et al. (2016), the
main drawback of the main result of the present paper is
that it relies on a fictitious feedback of class C1. Besides,
comparisons between the performances of the control laws
of Mazenc and Maliso↵ (2016) and Mazenc et al. (2016)
and those of the present paper still have to be made and
will be the subject of future studies.

This paper is organized as follows. The main result is
shown in Section 2. Section 3 provides a technical lemma
that can facilitate checking our assumptions from Section
2. An example based on a direct drive manipulator is given
in Section 4. Concluding remarks are drawn in Section 5.

Our notation will be simplified whenever no confusion can
arise from the context. The dimensions of our Euclidean
spaces are arbitrary unless other indicated. The Euclidean
norm in Ra, and the induced norm of matrices, are denoted
by | · |, and | · |1 is the usual sup norm. Given a constant
J > 0, satJ denotes the symmetric saturation function
defined by sat

J

(x) = max{�J,min{J, x}} for all x 2 R,
where J is called the saturation level. We use the usual
class of comparison functions K1 from Khalil (2002).

2. MAIN STABILIZATION RESULT

2.1 The studied system

We consider the nonlinear time-varying system
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:

ẋ = f(t, x, g1)
ġ1 = a1,1g1 + a1,2g2

ġ2 = a2,1g1 + a2,2g2 + a2,3g3
...

ġ

n

= a

n,1g1 + a

n,2g2 + · · ·+ a

n,n

g

n

+u+ ⌦(Y(t, x), G)

(1)

where x is valued in Rp, G = (g1, ..., gn) is valued in Rn, f
is a nonlinear function that is locally Lipschitz with respect
to (x, g1) and piecewise continuous with respect to t, u is
the scalar-valued input, Y : R ⇥ Rp ! Rl is a continuous
function, each a

i,j

2 R is a constant, a

i,j+1 6= 0 holds
for i = 1, 2...n � 1 (with no sign constraint on the a

ij

’s),
and the function ⌦ is locally Lipschitz. This family of
systems has been studied in many papers because systems
of this type may result from partial linearization and are
frequently encountered in practice.

In this section, we assume that the Rl+n valued output is

Y (t) = (Y(t, x(t)), g1(t), . . . , gn(t))
>
. (2)

Our first assumption is:

Assumption 1. There are a Lipschitz continuous scalar
valued function  that is bounded by a known constant
 � 0 and a constant k > 0 such that for any continuous
function d : [0,1) ! R that converges exponentially to
the origin, all solutions (⇠,�1, ...,�n) : [0,1) ! Rp+n of
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<

>

>

>

:

⇠̇ = f(t, ⇠,�1 + d(t))
�̇1 = k[��1 + �2]
...

�̇

n

= k[��
n

+  (t,Y(t, ⇠))]

(3)

converge to the origin as t ! 1. Moreover the function ⌦
in (1) is bounded by a known constant ⌦ � 0.

In terms of the matrices

A =

2

6

6

6

6

6

4

a1,1 a1,2 0 . . . 0
a2,1 a2,2 a2,3 . . . 0
...

. . .
. . .

...
...

. . .
a

n�1,n

a

n,1 a

n,2 . . . . . . a

n,n

3

7

7

7

7

7

5

2 Rn⇥n (4)

for n > 1 and A = a1,1 for n = 1 and B = (0, 0, . . . , 1)> 2
Rn, our second assumption is:

Assumption 2. There is a locally Lipschitz function $ :
Rn ! R that is bounded by a known constant $ � 0,
such that the origin of the system

�̇(t) = A�(t) +B$(�(t)) (5)

is a globally asymptotically and locally exponentially sta-
ble equilibrium.

2.2 Statement of and discussion on theorem

We are ready to state and prove the following result:

Theorem 1. Let the system (1) satisfy Assumptions 1-2
and let ✏ > 0 be any constant. Then there are a constant
matrix L and constants c

j

for j = 1 to n+ 1 such that all
solutions of (x,G) : [0,1) ! Rp+n of (1) in closed loop
with the dynamic output feedback

u(G,Z, x) = �sat
Z

0

@

n

X

j=1

c

j

z

j

+ c

n+1 (t,Y(t, x))

1

A

+$ (G+ LZ)� ⌦ (Y(t, x), G)

ż1 = k[�z1 + z2]
...

ż

n�1 = k[�z

n�1 + z

n

]
ż

n

= k[�z

n

+  (t,Y(t, x))]

(6)

with Z = (z1, ..., zn) and the saturation level

Z = (1 + ✏)
n+1
X

j=1

|c
j

| 

asymptotically converge to 0 as t ! 1. ⇤

Before turning to the proof of Theorem 1, we make several
remarks on its motivation and value.

1) The feedback (6) is bounded by the constant Z+$+⌦.

2) The formula (6) for the control law does not incorporate
the first derivative of  (t,Y(t, x(t))), which plays the
role of the fictitious control of the classical backstepping
approach. Hence, it applies even when  (t,Y(t, x)) is not
of class C

1. However, in practice Theorem 1 can only
be applied when  is of class C

1 because checking that
Assumption 1 is satisfied frequently necessitates that  
be of class C

1, as we shall show in the next section. By
contrast, in Mazenc et al. (2016) and Mazenc et al. (2017c),
fictitious feedbacks of class C0 can be used.

3) One can use changes of variables and an appropriate
choice of feedback to transform the system (1) into a sys-
tem of the form (3) with d = 0 whose stability is ensured by
Assumption 1. This follows from our assumption that the



a

i,i+1’s are nonzero. However, in a sense, this result is not
satisfactory because the feedback obtained that way may
possess inappropriate properties. For instance, in general
they would be unbounded. This motivates our alternative
approach, based on dynamic extensions.

5) None of the assumptions of this paper imply that f

has to be known with accuracy. Also, we only require
measurements of  (t,Y(t, x)) and ⌦(Y(t, x), G), instead
of Y itself.

2.3 Proof of Theorem 1

A key aspect of the proof consists of making g1(t)� z1(t)
converge to zero instead of making g1(t)�  (t,Y(t, x(t)))
converge to zero, as traditionally done in classical back-
stepping. To achieve our goal, several changes of coordi-
nates are needed, as follows. We first assume that n > 1,
and we explain how these changes of variables can be
constructed by induction. Set l1,1 = �1 and r1 = g1 � z1.

Induction assumption: For all j 2 {1, ..., i} and 1 < i <

n, there are constants l

j,m

for m = 1 to j such that the
variables

r

j

= g

j

+
j

X

m=1

l

j,m

z

m

(7)

for j = 1 to i satisfy
8

>

>

<

>

>

:

ṙ1 = a1,1r1 + a1,2r2

ṙ2 = a2,1r1 + a2,2r2 + a2,3r3
...

ṙ

i�1 = a

i�1,1r1 + a

i�1,2r2 + · · ·+ a

i�1,iri.

(8)

First step: i = 2. Since r1 = g1 � z1, we have

ṙ1 = a1,1g1 + a1,2g2 � k[�z1 + z2]

= a1,1r1 + a1,2



g2 +
a1,1 + k

a1,2
z1 �

k

a1,2
z2

�

.

(9)

Then the variable

r2 = g2 +
a1,1 + k

a1,2
z1 �

k

a1,2
z2 (10)

satisfies
ṙ1 = a1,1r1 + a1,2r2 (11)

Thus the induction assumption is satisfied at the first step.

Step i: Assume that the induction assumption is satisfied
at a step i with 1 < i < n. Then since (7) holds for
j = 1, 2, . . . , i we have

ṙ

i

= a

i,1g1 + a

i,2g2 + ...+ a

i,i+1gi+1

+
i

X

m=1

l

i,m

k[�z

m

+ z

m+1]

= a

i,1r1 + a

i,2r2 + ...+ a

i,i

r

i

+ a

i,i+1gi+1

+a

i,1z1 � a

i,2(l2,1z1 + l2,2z2)� ...

� a

i,i

i

X

m=1

l

i,m

z

m

+
i

X

m=1

l

i,m

k[�z

m

+ z

m+1].

(12)

Thus, taking

r

i+1 = g

i+1 +
ai,1

ai,i+1
z1 � ai,2

ai,i+1
(l2,1z1 + l2,2z2)� ...

� ai,i

ai,i+1

i

P

m=1
l

i,m

z

m

+ 1
ai,i+1

i

P

m=1
l

i,m

k[�z

m

+ z

m+1]
(13)

we obtain

ṙ

i

= a

i,1r1 + a

i,2r2 + ...+ a

i,i+1ri+1, (14)

so the induction assumption is satisfied at the step i+ 1.

Taking the time derivative of (13) with the choice i = n�1,
we can then find a linear change of coordinates R = G+LZ

with R = (r1, ..., rn)> that transforms the system (1) into
8
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:

ẋ = f(t, x, z1 + r1)

ṙ1 = a1,1r1 + a1,2r2

ṙ2 = a2,1r1 + a2,2r2 + a2,3r3

...

ṙ

n

= a

n,1r1 + a

n,2r2 + · · ·+ a

n,n

r

n

+ u

+
n

X

j=1

l

n,j

z

j

+ l

n,n+1 (t,Y(t, x))

+⌦(Y(t, x), G).

(15)

If instead n = 1, then we again obtain (15) with only the
dynamics for x and r

n

present. Let c

j

= l

n,j

for j = 1 to
n+ 1. Then the closed-loop system is
8
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>

>

>

>

>

>
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>

>

>

>

>

>

>

>

:

ẋ = f(t, x, z1 + r1)

Ṙ = AR+B [$(R)

�sat
Z

0

@

n

X

j=1

c

j

z

j

+ c

n+1 (t,Y(t, x))

1

A

+
n

X

j=1

c

j

z

j

+ c

n+1 (t,Y(t, x))

3

5

ż1 = k[�z1 + z2]
...

ż

n

= k[�z

n

+  (t,Y(t, x))].

(16)

Consider any solution (x,R, z) : [0,1) ! Rp+2n of (16).

Since Assumption 1 ensures that  is bounded by  , it
follows from (16) that there is a finite value t

a

� 0 such
that for all t � t

a

, the inequality
�

�

�

�

�

�

n

X

j=1

c

j

z

j

(t) + c

n+1 (t,Y(t, x(t)))

�

�

�

�

�

�

 Z (17)

is satisfied. Hence, when t � t

a

, the closed-loop system is
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ẋ = f(t, x, z1 + r1)

Ṙ = AR+B$(R)

ż1 = k[�z1 + z2]
...

ż

n

= k[�z

n

+  (t,Y(t, x))].

(18)

Assumption 2 ensures that the R-subsystem of the system
(18) is globally asymptotically and locally exponentially
stable. Then Assumption 1 allows us to conclude.

3. TECHNICAL LEMMA

Assumption 2 is a simple classical assumption that can of-
ten be checked easily; see our illustration below. However,
checking Assumption 1 can be nontrivial. In this section,
we give conditions ensuring that Assumption 1 holds.

3.1 Assumptions and lemma

Consider the system
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>

>
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>

>

>

:

⇠̇ = f(t, ⇠,�1 + d(t))
�̇1 = k[��1 + �2]
...

�̇

n

= k[��
n

+  (t, y
⇠

)]

(19)

where y

⇠

= C⇠ and C 2 Rq⇥p is a constant matrix, the
constant k > 0 will be further restricted below, and the
function d : [0,1) ! R exponentially converges to 0. Then
(19) is a special case of the system (3) from Assumption
1. We add the following assumptions on (19):

Assumption 3. There is a function 1 2 K1 such that

| (t, y
⇠

)|+ |f(t, ⇠, w)|  1(|(⇠, w)|) (20)

holds for all t � 0, ⇠ 2 Rp and w 2 R. Also, the function  
is of class C1 and bounded by a known constant  . Finally,
there are two functions 2 and 3 of class K1, a function
V of class C1, and a positive definite function W such that

2(|⇠|)  V (t, ⇠)  3(|⇠|) for all (t, ⇠) 2 [0,1)⇥Rp (21)

and such that for any choice of the piecewise continuous
function �, the time derivative of V along all solutions

⇠̇(t) = f(t, ⇠(t), (t, C⇠(t)) + �(t)) (22)

satisfies the inequality V̇ (t)  �W (⇠(t)) + |�(t)|2 for all
t � 0, and f is locally Lipschitz.

Assumption 4. There are positive constants b
f

and b

s

such
that for the function W from Assumption 3, the inequality

�

�

�

@ 

@t

(t, C⇠) + @ 

@y⇠
(t, C⇠)Cf(t, ⇠, (t, C⇠) + �)

�

�

�

2

 b

f

W (⇠) + b

s

|�|2
(23)

holds for all t � 0, ⇠ 2 Rp and � 2 R.

We are ready to state and prove the following result:

Lemma 1. Let the system (19) satisfy Assumptions 3 and
4. Then for any k � k with

k = 3n
⇣

n+ n(n+1)
2 b

f

+ bs(n+1)
4

⌘

(24)

all solutions of (19) converge to 0 as t ! 1.

3.2 Proof of Lemma 1

Set s
i

= �

i

� (t, y
⇠

) for i = 1, 2, . . . , n and S = (s1, ..., sn).
Then (19) can be transformed into
8
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>
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>
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>

:

⇠̇ = f(t, ⇠, (t, y
⇠

) + s1 + d(t))

ṡ1 = k[�s1 + s2]�
@ 

@t

(t, y
⇠

)

� @ 

@y

⇠

(t, y
⇠

)Cf(t, ⇠, (t, y
⇠

) + s1 + d(t))

...

ṡ

n

= �ks

n

� @ 

@t

(t, y
⇠

)

� @ 

@y

⇠

(t, y
⇠

)Cf(t, ⇠, (t, y
⇠

) + s1 + d(t)) .

(25)

From Assumption 3, it follows that V̇ (t)  �W (⇠(t)) +
|s1(t) + d(t)|2 for all t � 0. Assumption 4 gives
�

�

�

�

@ 

@t

(t, y
⇠

)+
@ 

@y

⇠

(t, y
⇠

)Cf(t, ⇠, (t, y
⇠

) + s1 + d(t))

�

�

�

�

2

 b

f

W (⇠) + b

s

|s1 + d(t)|2
(26)

for all t � 0. Consider the positive definite quadratic
function

Q(S) = 1
2

n

X

i=1

is

2
i

. (27)

Then we can use the triangle inequality to obtain
n�1
X

i=1

is

i

s

i+1  1

2

n�1
X

i=1

i(s2
i

+ s

2
i+1)

=
1

2

 

n�1
X

i=1

is

2
i

+
n

X

i=2

(i� 1)s2
i

! (28)

and then the subadditivity of the square root to conclude
that along all solutions of (25) for all t � 0, we have

Q̇(t)  k

n�1
X

i=1

is

i

(�s

i

+ s

i+1)� kns

2
n

+
n

X

i=1

i|s
i

|
q

b

f

W (⇠) + b

s

|s1 + d(t)|2

 �k

2

 

n�1
X

i=1

is

2
i

�
n

X

i=2

(i� 1)s2
i

!

� kns

2
n

+
n

X

i=1

i|s
i

|
q

b

f

W (⇠) + b

s

|s1 + d(t)|2

 �k

2

n

X

i=1

s

2
i

+
n

X

i=1

i|s
i

|
q

b

f

W (⇠) + b

s

|s1 + d(t)|2

 �k

2

n

X

i=1

s

2
i

+
p

b

f

n

X

i=1

i|s
i

|
p

W (⇠)

+
p

b

s

n

X

i=1

i|s
i

||s1|+
n

X

i=1

i|s
i

|
p

b

s

|d(t)|.

(29)

Consider the candidate Lyapunov function

U(t, ⇠, S) =
n(n+ 1)

2
b

f

V (t, ⇠) +Q(S) (30)

and any trajectory of (25). Along the trajectories of (25),

U̇(t)  �n(n+ 1)

2
b

f

W (⇠)

+
n(n+ 1)

2
b

f

|s1(t) + d(t)|2

�k

2

n

X

i=1

s

2
i

+
p

b

f

n

X

i=1

i|s
i

|
p

W (⇠)

+
p

b

s

n

X

i=1

i|s
i

||s1|+
n

X

i=1

i|s
i

|
p

b

s

|d(t)| .

(31)

Using the triangle inequality to obtain
p

b

f

i|s
i

|
p

W (⇠)  1

2

�

b

f

W (⇠) + i

2
s

2
i

�

, (32)

we deduce that

U̇(t)  �nb

f

2
W (⇠)� k

2

n

X

i=1

s

2
i

+
n(n+ 1)

2
b

f

s

2
1

+
1

2

n

X

i=1

i

2
s

2
i

+
p

b

s

n

X

i=1

i|s
i

||s1|+
n(n+ 1)

2
b

f

d

2(t)

+n(n+ 1)b
f

s1d(t) +
n

X

i=1

i|s
i

|
p

b

s

|d(t)| .

(33)

Using
p
b

s

i|s
i

||s1|  i

2s
2
i

+ i

2bss
2
1, we obtain



U̇(t)  �nb

f

2
W (⇠)� k

2

n

X

i=1

s

2
i
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From (24), we deduce that
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Since each �

i

(and therefore also each s

i

) enters a fixed
compact set after a finite time (by the boundedness of  
and the structure of the system (19)), there are constants
⇤ > 0 and T

l

such that for all t � T

l

,
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+ d

]

(t) (36)

with d

]

(t) = n(n+1)b
f

d

2(t)+⇤|d(t)|. From this inequality,
we can conclude from Barbalat’s Lemma (applied to the
function in squared brackets in (36), using the fact that
d

]

(t) converges exponentially to the origin) that all the
solutions of (19) converge to the origin.

4. ILLUSTRATION

Consider a single-link direct-drive manipulator actuated
by a permanent magnet DC brush motor, which produces
the following model from Dawson et al. (1994) (after a
change of coordinates which removes a constant):

(

ẋ1 = x2

ẋ2 = g1 � q1 sin(x1)� q2x2

ġ1 = u� q3 arctan(x2)� a1,1g1

(37)

with the output Y = (x, g1) and the R2-valued state
x = (x1, x2), where a1,1 > 0 and q

i

> 0 for i = 1 to 3 are
constants. Assumption 2 is satisfied with $ = 0, and we
choose the bounded function ⌦(x, g1) = �q3 arctan(x2).

Let us check that Assumption 1 is satisfied with n = 1,
under the added assumptions that

q1q2

1 + q1
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q1

1 + q1
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q2

2
. (38)

Consider
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(39)

and any continuous function d : [0,1) ! R that exponen-
tially converges to 0 and
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>

>

<

>

>

>

:

⇠̇1 = ⇠2

⇠̇2 = �q1 sin(⇠1)� q2⇠2 + �1 + d(t)
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with k > 0 being a constant to be specified. The choice

s1 = �1 � q1 sin(⇠1) +
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Let us choose
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Then the first inequality in (38) and the triangle inequality
combine to give
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and so also
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along all solutions of (41) for all t � 0. where the first
inequality in (44) used the second inequality from (38)
and (43), the second equality in (44) used the relations
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and

⇠1p
1+⇠21

(s1 + d(t))  1
4

⇠

2
1

1+⇠21
+ (s1 + d(t))2,

and the last inequality in (44) use the inequality (a +
b)2  2a2 + 2b2 for suitable a and b.

Next let U(⇠, s1) = V (⇠) + 1
2s

2
1. Then (44) gives
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where c⇤ = 1
q2
+ 1

2 . Since (q1+1)|s1⇠2|  k
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it follows that if
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then
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(47)

It follows from integrating (47) and applying Barbalat’s
Lemma to the function in curly braces in (47) that As-
sumption 1 is satisfied. Hence, Theorem 1 applies to (40)
and provides the dynamic feedback

u(Z, x) = �sat
Z

(�z1 � k (x1)) + q3 arctan(x2)

ż1 = k



�z1 + q1 sin(x1)� x1p
1+x

2
1

�

with Z = (1 + ✏)(1 + k)(q1 + 1) and the choice (39) of  ,
since the proof of Theorem 1 gives c1 = �1 and c2 = �k.

5. CONCLUSIONS

We developed a new backstepping approach whose key
ingredient is a finite dimensional dynamic extension. Our
work is motivated by the ubiquity of engineering applica-
tions that produce the required cascade forms. Our variant
of backstepping o↵ers possible advantages in terms of the
design of output feedback control and boundedness. Since
it does not require artificial delays, it di↵ers from our
prior bounded backstepping works that used converging-
input-converging-state conditions. We hope to develop
local versions of our results for systems that are only
locally asymptotically stabilizable, and for cases where the
constants a

i,j

in (1) can depend on t, and to allow delays in
the input. We will also investigate what family of systems
can be stabilized by applying Theorem 1 repeatedly.
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