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Input and State Observability of Network Systems
with Time-Varying Topology

Sebin Gracy, Federica Garin and Alain Y. Kibangou.

Abstract—We aim to study the problem of reconstructing the
initial state as well as the sequence of unknown inputs (ISO) for
linear network systems having time-varying topology. Evolution
of such systems can be represented by a collection of graphs
{Gk}. We find conditions under which the system with a pattern
of fixed zeros imposed by {Gk} is ISO: a) for almost all choices
of edge weights in {Gk} (structural ISO); and b) for all non-
zero choices of edge weights in {Gk} (strongly structural ISO).
We introduce two suitable descriptions of the whole collection
of graphs {Gk} named as dynamic graph and dynamic bipartite
graph. Two equivalent characterizations of structural ISO are
then stated in terms of existence of a linking and a matching of
suitable size in the dynamic graph and in the dynamic bipartite
graph, respectively. For strongly structural ISO, we provide a
sufficient condition and a necessary condition, both concerning
the existence of a uniquely restricted matching of suitable size
in the dynamic bipartite graph and in a subgraph of it. When
there is no direct feedthrough of the input on the measurements,
the two conditions can be merged to give rise to a necessary and
sufficient condition.

Index Terms—Linear Network systems, Time-varying topology,
Input and State Observability (ISO), Structural ISO, Strongly
Structural ISO, Cyber-Physical Security.

I. INTRODUCTION

The idea of achieving system-theoretic properties like
controllability and observability in network systems has
recently drawn the attention of control theorists. While
there exist algebraic characterizations of such properties,
these depend on exact knowledge of coefficients of system
matrices, which are often not available in network systems.
Moreover, for large networks, checking such characterizations
is computationally heavy. This prompts one to use graphs
to represent and study such systems, by taking recourse to
the notion of structured systems. In such systems, the system
matrices have fixed zero patterns. The positions that are not
fixed to zero are referred to as free parameters. Under such
a setting, on the one hand, one seeks structural results i.e.,
results that are true for almost all choices. On the other hand,
there exists yet another line of work where one wants to
ensure that results are true for all non-zero choice of free
parameters, referred to as strongly structural (s-structural)
results.

The existing literature on structured systems is focused on
time-invariant topologies, and is primarily concerned with
controllability and observability (see seminal papers [1],
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[2], [3]; also see, surveys, [4], [5]). However, in reality, one
can find networks that exhibit time-varying behavior. For
instance, in social networks, the individuals are in contact
with each other only for a finite time interval, and such
relationships are often intermittent and recurrent [6], whereas
in communication networks, bursty transmission, packet loss,
variation of channel parameters etc., results in intermittent
communication [7] which leads to changes in the topology
of such networks. This motivates us to turn our attention to
time-varying topologies.

Dynamical systems could be affected by the presence of
unknown inputs, which could encompass unmodeled parts of
a system, faults or malicious attacks [8]. There exist scenarios
wherein it is essential to reconstruct not only the state vector
of a network but also the unknown inputs affecting it, as
was pointed out, among others, in [9, 10]. The problem of
reconstructing both the initial state and the unknown input is
referred to as input and state observability (ISO).

The problem of structural ISO for linear time-invariant (LTI)
systems has been studied in [11], [12]. Recently, under the
assumption that the topology of the network remains fixed but
the weights along the edges vary with time, a characterization
for structural ISO of linear time-varying (LTV) network
systems accounting for the presence of multiple unknown
inputs was given by the authors in [13]. On the other
hand, under suitable assumptions, a characterization for
s-structural ISO for LTI network systems affected by a single
unknown input was first given in [14], which, in [13], was
extended for LTV network systems while also accounting for
multiple unknown inputs. The findings in [13] had certain
limitations. First, the following assumptions were made on
the structure of input and output matrices: each unknown
input affected exactly one state; each state was affected by
at most one unknown input; direct measurements of a few
states were available (so-called dedicated sensors); and zero
feedthrough. As a consequence of such assumptions, the
problem of ISO was equivalent to an observability problem of
a suitably defined subsystem. Thereafter, one took advantage
of this equivalence to study structural (resp. s-structural)
ISO. However, the extension of these results accounting for
arbitrary structure of input and output matrices is non-trivial,
since one cannot rephrase ISO as an equivalent problem in
observability. Second, these results do not extend immediately
to the case wherein the topology of the network varies over
an interval. To the best of our knowledge, for linear network
systems wherein the underlying topology varies over an



interval, a characterization for structural (resp. s-structural)
ISO, factoring in arbitrary time-varying input, output and
feedthrough matrices, is still missing. The aim of the present
paper is to close this gap.

Our main contributions are threefold. Firstly, for non-zero
feedthrough, we provide an algebraic characterization for ISO
of linear network systems (see Prop. 2), which also applies, in
particular, to zero feedthrough. Secondly, for the case where
the topology of the network evolves over an interval, we give
two graphical characterizations for structural ISO that also
accounts for non-zero feedthrough (see Theorem 1). Thirdly,
under the aforesaid setting, for s-structural ISO, we provide
two conditions which are sufficient (item 1 in Theorem 2) and
necessary (item 2 in Theorem 2). Furthermore, under some
assumptions on the feedthrough matrix, the two conditions
can be combined to give a necessary and sufficient condition
for s-structural ISO (see Corollary 1). The results, namely
Theorem 1 and Theorem 2, are also applicable to time-
invariant topologies, and hence generalize the results in [15]
(resp. [16]) to the case of structural (resp. s-structural) ISO,
and also those in [13] by accounting for arbitrary structures
of input, output and feedthrough matrices.
The organization of the present paper is as follows: We first
state the problem under consideration in Section II. Thereafter,
in Section III, we give an algebraic characterization of ISO for
LTV systems with direct feedthrough matrix. Section IV lays
the groundwork for migrating to a graphical characterization.
Section V gives the first main result that deals with structural
ISO, while Section VI introduces the second main result that
concerns s-structural ISO. Section VII gives some concluding
remarks.

Notations

R and Z denote the set of real numbers and integers,
respectively. IN indicates an identity matrix of size N .
A = diag(A1, A2, . . . , AN ) represents a block diagonal ma-
trix whose blocks along the diagonal are A1, A2, . . . , AN .{
Ak}k1k0 denotes a sequence of matrices Ak with k = k0, k0 +

1, · · · , k1. |X | indicates cardinality of a set X . rank(A)
denotes the rank of a matrix A. [k0, k1] represents the discrete
interval k0, k0 + 1, . . . , k1 − 1, k1.

II. PROBLEM FORMULATION

Consider a discrete-time linear network of N nodes whose
dynamics are influenced by themselves and also by a set of P
external unknown inputs, and whose measurements are taken
from a set of M nodes. These nodes are referred to as state,
input and output nodes, respectively, and the corresponding
sets, are respectively denoted by X , U and Y . The graph
Gk = (V, Ek), where V = X ∪ U ∪ Y , Ek = EAk ∪ EBk ∪
ECk ∪ EDk , represents the underlying system at time instant
k. EAk ⊆ X ×X (resp. EBk ⊆ U ×X) represents the edges
going from a state (resp. input) vertex to another state vertex.
ECk ⊆ X×Y (resp. EDk ⊆ U×Y ) represents the edges going
from a state (resp. input) vertex to an output vertex. We define
wk : Ek → R, a function mapping the edges to their weights.

The dynamics of such a linear network system are given as
follows:

xk+1 = Akxk +Bkuk
yk = Ckxk +Dkuk

(1)

with state vector xk ∈ RN , unknown input vector uk ∈ RP
and output vector yk ∈ RM . Notice that each node has first-
order dynamics. The matrix Ak has entries equal to the edge
weights between the state vertices at time k. Hence, it satisfies
the following condition:

[Ak]ij =

{
wk(xj , xi) if (xj , xi) ∈ EAk
0 otherwise

Analogous conditions are satisfied by the matrices Bk, Ck
and Dk. Throughout this paper a numerical choice of free
parameters is regarded as a choice of edge weights, and
hence the terms “free parameters” and “edge weights” are
used interchangeably, depending on the context.
From hereon, over a given interval [k0, k1], the collection of
corresponding (possibly) time-varying graphs is denoted with
{Gk}. The term time-varying should be understood in the
following sense: any two graphs belonging to {Gk} have the
same vertex sets, but might have different edge sets.

We assume that, in general, for any k0, k0 + 1 the graphs
Gk0 = (V, Ek0) and Gk0+1 = (V, Ek0+1) might be different i.e.,
Ek0 6= Ek0+1. For an illustration see Figures 1a, 1b wherein
Gk is periodic with periodicity 2, i.e., Gk alternates between
the depicted topologies with period 2.

(a) G2k (b) G2k+1

Fig. 1: Evolution of an LTV system represented by time-
varying periodic graphs with periodicity 2.

We assume that the sequence of (possibly) time-varying
topologies is known. The setup described herein differs from
the one in [17] in the sense that there is no switching rule
governing the change in the network topology at each time
instant. Furthermore, it also differs from the framework in [9]
in the sense that while the unknown inputs are free to influence
any nodes at each time-instant, they have no impact on the
evolution of the topology of the network.
In this paper, we study network systems with time-varying
topologies. Firstly, we find algebraic conditions for the system
to be ISO. Secondly, we find graphical conditions under which
i) the system is structurally ISO (see Sect. V), and ii) the system
is s-structurally ISO (see Sect. VI).

III. ALGEBRAIC CHARACTERIZATIONS

The objective of this section is to provide two algebraic
criteria for ISO, which is defined as follows.

Definition 1: System (1) is ISO over [k0, k1] if the initial
condition xk0 ∈ RN and the unknown inputs sequence



{uk0 , uk0+1, . . . , uk1−1} can be uniquely recovered from the
measurements {yk0 , yk0+1, . . . , yk1}. �
Let Θk0,k1 , Γk0,k1 and Ψk0,k1 represent the observability
matrix, invertibility matrix and input and state observability
(ISO) matrix, respectively, over the interval [k0, k1]. These
are defined as follows:

Θk0,k1 =


Ck0

Ck0+1Ak0
Ck0+2Ak0+1Ak0

.

.

.
Ck1

Ak1−1 · · ·Ak0

 ,

Γk0,k1 =

 Dk0
. . . . . . 0

Ck0+1Bk0
Dk0+1 . . . 0

. . . . . . . .

. . . . Dk1−1 .

Ck1
Ak1−1 · · ·Ak0+1Bk0

. . . . Ck1
Bk1−1 Dk1

 ,
Ψk0,k1 = [Θk0,k1Γk0,k1 ]. (2)

Using the notation uk0:k1 = (uTk0 , u
T
k0+1, . . . , u

T
k1

)T and
yk0:k1 = (yTk0 , y

T
k0+1, . . . , y

T
k1

)T , it is immediate to obtain

yk0:k1 = Θk0,k1xk0+Γk0,k1uk0:k1 = Ψk0,k1

[
xk0
uk0:k1

]
. Then

the following result is immediate (see [18] for a similar result).
Proposition 1: System (1) is ISO over [k0, k1] if and only

if rank(Ψk0,k1) = N + (k1 − k0)P + rank(Dk1). �
Notice that Prop. 1 characterizes ISO in terms of products
of the system matrices. Consequently, the corresponding zero
pattern is lost. Hence, in this subsection, we will focus on
providing an alternative characterization that preserves the
zero pattern of the system matrices. We define

Jk0,k1 =

 Dk0,k1−1 0(k1−k0)M×P
0M×(k1−k0)P Dk1

Bk0,k1−1 0(k1−k0)N×P

Qk0,k1


where Dk0,k1−1 = diag (Dk0 , Dk0+1 . . . Dk1−1),
Bk0,k1−1 = diag (Bk0 , Bk0+1 . . . Bk1−1),

Qk0,k1 =


Ck0

0 . . . . . . 0

0 Ck0+1 . . . . . . 0

. . . . . . . . . . .

. . . . . . . . . . .
0 . . . . . . . . . Ck1

Ak0
−IN . . . . . . 0

0 Ak0+1 −IN . . . 0

. . . . . . . . . . .

. . . . . . . . . . .
0 . . . . . . Ak1−1 −IN

 .

Notice that Jk0,k1 has ((k1 − k0 + 1)M + (k1 − k0)N) rows
and (k1 − k0 + 1)P + (k1 − k0 + 1)N columns. Also, both
the state equation and output equation at each time instant can
be expressed as a linear combination of xk0 , xk0+1, . . . , xk1
as well as uk0 , uk0+1, . . . , uk1 . A suitable column permutation
of Jk0,k1 (denoted as J̃k0,k1 ) yields

J̃k0,k1

 uk0:k1−1
xk0:k1
uk1

=
[

yk0:k1
0(k1−k0)N

]
.

Therefore, the following result is immediate.
Proposition 2: System (1) is ISO over [k0, k1] if and only if

rank(Jk0,k1) = (k1−k0)P +(k1−k0 +1)N+rank(Dk1). �

In the sequel, we seek a graphical characterization for ISO.

IV. TRANSITION TO A GRAPHICAL CHARACTERIZATION

The focus of this section is to develop the framework for
migrating to a graphical characterization of ISO.

A. Structured Matrices

Since the ISO matrix Ψk0,k1 contains products of the system
matrices, the coefficients of Ψk0,k1 are either fixed zeros or
polynomials in the free parameters of the system matrices.
Inspired from [4], consider a matrix A that has fixed zero
positions and all its other entries are non-zero polynomials
in free parameters (say λ1, λ2, . . . , λµ). Let us call such a
matrix as a structured matrix. Let λ =

[
λ1 λ2 . . . λµ

]
denote the vector of free parameters in Rµ. Each vector in Rµ
denotes a particular numerical choice of free parameters. We
use the term pattern matrix to represent a particular instance
of a structured matrix, and we define it as follows.

Definition 2: Let A be a structured matrix. A is a pattern
matrix if each non-zero polynomial in A is of the form λi
with all i’s being distinct. �

B. Relevant Graph Terminology

The zero/non-zero pattern of structured matrices allows one
to study structured systems by employing tools from graph
theory, and hence we will briefly recall a few graph-theoretic
notions. Given a graph G = (V, E) we say that two paths
are vertex-disjoint if they do not have any vertex in common.
Next, we define a linking in a graph:

Definition 3: Let S and T be two sets of vertices of a
directed graph. A collection of vertex-disjoint paths from set
S to set T is called a linking from S to T . �
We say that a linking saturates a vertex if the said vertex is
one of the vertices along the paths in the linking.
The notion of matching, which is closely related to linking, is
defined as follows:

Definition 4: A matching is a collection of edges such that
no two edges share a vertex. �

The size of a matching is the number of edges contained in
it; if a matching has maximum size among all the matchings
in the same graph, then it is a maximum matching. We say
that a matching saturates a vertex if the said vertex is one of
the vertices of the edges contained in the matching. Closely
related is the concept of uniquely restricted matching, which
is given by the following definition.

Definition 5 (Definition 2.4 [19]): Let B = {V +, V −, E} be
a bipartite graph. A matching of size t is said to be uniquely
restricted if it is the only matching of size t in B between
{i1, . . . , it} and {j1, . . . , jt}, where {i1, . . . , it} ∈ V + and
{j1, . . . , jt} ∈ V −. �

C. Ranks of structured matrices

The rank of a structured matrix A is evaluated with respect to a
choice of free parameters. However, notions like term-rank and
generic rank do not depend on the choice of free parameters,
and hence in the following we shall briefly discuss the same.
We shall do so by recalling relevant material from Chapter 2
in [4].



We can associate a bipartite graph to the structured matrix
A in the following manner; B(A) = {V +, V −, E(A)} where
V + is the set of all columns in A, V − is the set of all rows
in A and E(A) = {(i, j) | i ∈ V +, j ∈ V −, [A]ji 6= 0} is
the edge set corresponding to positions in A being non-zero
polynomials in the free parameters. With the bipartite graph
B(A) in place, the definition of term-rank(A) follows.

Definition 6: The term-rank(A) is equal to the maximum
size of a matching in the bipartite graph B(A). �
As far as the notion of generic rank of a structured matrix
is concerned, recall that the entries of A are polynomials in
µ free parameters. We know that any subdeterminant of A
is a polynomial in the free parameters λ1, λ2, . . . , λµ, which
brings us to the following definition.

Definition 7: The generic rank (denoted as gen-rank) of A
is the maximum size of a square submatrix whose determinant
is a non-zero polynomial. �
It turns out that the rank(A) is the same for almost all choices
of free parameters of A. This can be immediately seen by
noticing that the aforementioned polynomial yields zero only
when evaluated for elements in its zero set.
The main results from [4] that would be used in the sequel
are given in the following result.

Lemma 1 (Chapter 2 [4]): Let A be a structured matrix
having λ ∈ Rµ as its vector of free parameters. Then the
following statements are true:

1) gen-rank(A) = max
λ∈Rµ

rank(A);

2) For almost all choices of λ, rank(A) = gen-rank(A);
3) gen-rank(A) is bounded from above by term-rank(A);

If A is a pattern matrix, gen-rank(A) = term-rank(A) �

Next, we recall a result which gives a necessary and sufficient
condition such that a pattern matrix has the same rank for
every non-zero choice of free parameters.

Lemma 2 (Thm. 3.9 [19]): Let A be an m×n pattern matrix
and B(A) be a bipartite graph obtained from A, and let r be
a nonnegative integer. Then the following are equivalent:

1) rank(A) equals r for every non-zero choice of free
parameters.

2) In B(A), there exists no matching of size greater than r,
and there exists at least one uniquely restricted matching
of size r. �

D. Dynamic Graph

Inspired by [4], we introduce the notion of dynamic graph,
denoted as Sk0,k1 , and we show a relation between the entries
in Ψk0,k1 and the paths in Sk0,k1 .
The dynamic graph is constructed in the following manner:
First, create (k1 − k0 + 1) copies of vertex sets X , U and
Y , respectively. Label these copies as Xk0 , Xk0+1, . . . , Xk1 .
Analogously label the copies of U and Y . Let xik (resp. uik and
yik) be the vertex associated with the ith entry of the vertex
set Xk (resp. Uk and Yk). Second, we assign edges and their
weights as follows: There exists an edge between vertices xik
and xjk+1 if and only if (xi, xj) ∈ EAk ; the weight on such an
edge is wk(xi, xj). Analogously, the edges between vertices
uik and xjk+1, between xik and yjk, and between uik and yjk are

obtained with the corresponding edge weights. For a pictorial
description of the aforesaid, see Figure 2.

Fig. 2: Dynamic graph Sk0,k1

Let X̄ = Xk0∪Xk0+1∪. . .∪Xk1 . Analogously, we define Ū
and Ȳ . Notice that, for Ψk0,k1 , the rows correspond to vertices
in Ȳ , while the first N columns correspond to vertices of
Xk0 , and the remaining (k1 − k0 + 1)P columns correspond
to vertices of Ū .
In the dynamic graph Sk0,k1 we define the cost of a path
as the product of the weights along the edges of the path.
The following remark describes the relation between entries
of matrix Ψk0,k1 and the cost of paths from Xk0 ∪ Ū to Ȳ in
the dynamic graph.

Remark 1: Notice that [Ck+`Ak+`−1 . . . Ak]ij=∑
h1

∑
h2

. . .
∑
h`

[Ck+`]ih` [Ak+`−1]h`h`−1
. . . [Ak]h0j , and hence

it equals the sum of costs over all paths from xjk to
yik+` in Sk0,k1 . Similarly, [Ck+`Ak+`−1 . . . Ak+1Bk]ij =∑
h1

∑
h2

. . .
∑
h`

[Ck+`]ih` [Ak+`−1]h`h`−1
. . . [Ak+1]h1h0

[Bk]h0j ,

and hence it equals the sum of costs over all paths from ujk
to yik+` in Sk0,k1 . �

E. Dynamic bipartite graph

Similar to the dynamic graph Sk0,k1 introduced in the previ-
ous subsection, there exists yet another equivalent graphical
representation: the dynamic bipartite graph. In this subsection
we shall acquaint ourselves with the same.
Notice that Jk0,k1 is a structured matrix and let B(Jk0,k1)
be the bipartite graph associated with it, as described in
Sect. IV-C. We shall refer to B(Jk0,k1) as the dynamic
bipartite graph of the system. In B(Jk0,k1), the left vertex
set (corresponding to columns of Jk0,k1 ) is Ū ∪ X̄ . The
right vertex set (corresponding to rows) is X̄ ′ ∪ Ȳ , where
X̄ ′ = X ′k0+1 ∪ . . .∪X ′k1 , each X ′k denoting a copy of the set
Xk. We will use the notation xi′k for ith vertex in the set X ′k.
In order to better highlight the connection between B(Jk0,k1)
and Sk0,k1 , it is convenient to draw B(Jk0,k1) reordering the
left vertex set as Xk0 , Uk0 , Xk0+1, Uk0+1, . . . , Xk1 , Uk1 ,
and the right vertex set as Yk0 , X ′k0+1, Yk0+1, X ′k0+2, . . . ,
Yk1 , as it is illustrated in Figure 3. Some non-zero entries
of Jk0,k1 are equal to -1 (within the −I blocks); we will
refer to the corresponding edges in B(Jk0,k1) as new edges.
All other non-zero entries of Jk0,k1 are independent free
parameters, obtained by looking at the matrices {Ak}k1−1k0

,
{Bk}k1−1k0

, {Ck}k1k0 and {Dk}k1k0 ; all such edges are in one-to-
one correspondence with the edges in Sk0,k1 , and we will call
them old edges.



Fig. 3: Dynamic bipartite graph B(Jk0,k1)

V. STRUCTURAL ISO
The main objective of this section is to seek graphical condi-
tions such that the system (1) is ISO for almost all choices
of edge weights in {Gk}, where “almost all” means for all
choices of free parameters except for those (possibly) lying
on an algebraic variety of the space of free parameters [5].
Towards this end, we first define structural ISO and thereafter
provide a graphical characterization for the same.
We define structural ISO as follows:

Definition 8: System (1) with the pattern of fixed zeros
given by the graphs {Gk} is structurally ISO over [k0, k1],
if system (1) is ISO for almost all choices of edge weights in
{Gk}. �
Recall that each choice of edge weight in {Gk} represents a
choice of the free parameters of the structured system matrices
(Ak, Bk, Ck, Dk).

A. Main Result

Theorem 1: Consider the system (1) with the pattern of fixed
zeros given by the graphs {Gk}. Let Sk0,k1 and B(Jk0,k1) be
the corresponding dynamic graph and dynamic bipartite graph,
respectively. The following statements are equivalent:
(a) System (1) is structurally ISO over [k0, k1];
(b) there exists a linking of size N + (k1 − k0)P +

term-rank(Dk1) from Xk0∪Ū to Ȳ in the dynamic graph
Sk0,k1 ;

(c) there exists a matching of size (k1 − k0 + 1)N + (k1 −
k0)P + term-rank(Dk1) in the dynamic bipartite graph
B(Jk0,k1). �

Our main result should be understood in the following sense:
if the condition is satisfied, then, over [k0, k1], for almost all
choices of free parameters except (possibly) for those lying on

Fig. 4: Dynamic graph S0,2 for Example 1. The edges in
dashed blue form a linking, L0,2, from X0 ∪ Ū to Ȳ on S0,2

a subvariety of the space of free parameters, the corresponding
system is ISO. On the other hand, if the condition is violated,
then, over [k0, k1], for almost all choices of free parameters,
the corresponding system is not ISO. However, for at most few
choices of free parameters, over [k0, k1], the corresponding
system might be ISO. We would like to point out that for the
case of zero-feedthrough, if the given condition is violated,
then since Dk1 = 0, from Prop. 6 in [13], for every choice of
free parameters, the corresponding system is not ISO.
We shall now apply the conditions given in Theorem 1 to the
example given in Figure 1.

Example 1: Consider the time-varying system shown in Fig-
ure 1. Here N = 4, M = 2, P = 1 and Dk = 02×1, for all k.
We consider the time interval [0 2]. The dynamic graph
S0,2 associated with it is given in Figure 4, wherein it is
highlighted, in dashed blue, a collection of vertex-disjoint
paths, namely x10 → y10 , x20 → y20 , x30 → x31 → y11 , x40 →
x41 → y21 , u10 → x11 → x12 → y12 , u11 → x22 → y22 . Thus,
condition (b) in Theorem 1 is satisfied, and consequently the
structured system represented by Figure 1 is structurally ISO
over the interval [0, 2]. �

B. Proof of Theorem 1

We prove the following circular implications: (b) implies
(a), (a) implies (c), and (c) implies (b). Throughout this proof,
we will use the short-hand notation m1 = N + (k1 − k0)P +
term-rank(Dk1), m2 = (k1 − k0 + 1)N + (k1 − k0)P +
term-rank(Dk1).

Proof of (b) =⇒ (a): We divide this proof in two parts:
first, given a linking as in (b) we construct one choice of free
parameters such that this particular numerical realization of the
system is ISO over [k0, k1]; second, we show that this further
implies that the system is structurally ISO over [k0, k1].

Part 1. By assumption, in the dynamic graph Sk0,k1 there
is a linking L from Xk0 ∪ Ū to Ȳ , of size m1. We choose
the free parameters according to the following construction.
If there exists an edge in L between xjk and xik+1, then set
[Ak]ij to 1 else set it to 0. Similarly, if there exists an edge
in L between ujk and xik+1, then set [Bk]ij to 1 else set it to



0. If there exists an edge in L between xjk and yik, then set
[Ck]ij to 1 else set it to 0. Similarly, if there exists an edge
in L between ujk and yik, then set [Dk]ij to 1 else set it to 0.
Recall that Remark 1 relates entries of Ψk0,k1 and costs of
paths in Sk0,k1 : labeling columns of Ψk0,k1 with vertices in
Xk0 ∪ Ū and rows with vertices in Ȳ , the entry in row y and
column v is equal to the sum of costs of all paths from v to
y. The key remark is that, with our choice of parameters, if a
path in Sk0,k1 belongs to the linking L, it has cost 1; otherwise
cost 0. This, together with the definition of linking, implies that
Ψk0,k1 has m1 columns (corresponding to vertices in Xk0 ∪ Ū
saturated by L) such that each column has exactly one 1 and
all other entries are 0, and moreover the 1’s are in distinct rows
(since paths in the linking are vertex-disjoint, their final ver-
tices in Ȳ are all distinct). The remaining P−term-rank(Dk1)
columns are all-zero. Therefore, rank(Ψk0,k1) = m1.

Part 2. Given one choice of parameters such that
rank(Ψk0,k1) = m1, we show that gen-rank(Ψk0,k1) = m1,
and hence the system is structurally ISO over [k0, k1] (by
Prop. 1).

By item 1) of Lemma 1, the generic rank is the maximum
rank among all choices of parameters. Having one choice of
parameters giving rank m1, we have gen-rank(Ψk0,k1) ≥ m1.
Then we notice that, for any choice of parameters, Ψk0,k1 can
have at most m1 independent columns, since the rank of the
block with the last P columns is rankDk1 ≤ term-rankDk1 .
This shows that gen-rank(Ψk0,k1) ≤ m1, ending the proof.

Proof of (a) =⇒ (c): We prove that negating (c) implies
negating (a).
Suppose that there exists no matching of size m2 in
the dynamic bipartite graph B(Jk0,k1), which implies
term-rank(Jk0,k1) < m2. This implies that, for all parameter
choices, rank(Jk0,k1) < m2; indeed, by items 1) and 3)
in Lemma 1, rank(Jk0,k1) ≤ term-rank(Jk0,k1). Moreover,
since Dk1 is a pattern matrix, by item 3) in Lemma 1
gen-rank(Dk1) = term-rank(Dk1), i.e., rank(Dk1) =
term-rank(Dk1) for almost all parameters. Hence, except
for the parameters belonging to the proper subvariety where
rank(Dk1) < term-rank(Dk1), rank(Jk0,k1) < m2. There-
fore, from Prop. 2, system (1) is not structurally ISO over
[k0, k1].

Proof of (c) =⇒ (b): Given a matching as in (c), we
construct a linking L as in (b).

Consider a given matchingM in B(Jk0,k1), of size m2. The
first remark is thatM saturates all vertices of X̄∪Ū \Uk1 , and
exactly term-rank(Dk1) vertices of Uk1 . Indeed, any matching
in B(Jk0,k1) can saturate at most term-rank(Dk1) vertices of
Uk1 (since vertices in Uk1 only have edges corresponding to
Dk1 ), and at most

∣∣X̄ ∪ Ū \ Uk1∣∣ = m2 − term-rank(Dk1)
vertices of X̄ ∪ Ū \Uk1 , so thatM must achieve both bounds
with equality.

Recall that edges of B(Jk0,k1) are partitioned in old edges,
in one-to-one correspondence with edges in Sk0,k1 , and new
edges of the form (xjk, x

j′
k ). We will show how to find a

suitable set of old edges fromM, such that the corresponding
edges in Sk0,k1 form a linking L with m1 paths; such paths

will start from a) all the vertices of Xk0 , and b) those vertices
of Ū saturated by M, and will end in Ȳ . The construction is
the following. Starting from xjk0 ∈ Xk0 , we consider the edge
that saturates xjk0 in M. If this edge is (xjk0 , yik0 ) for some
yik0 ∈ Ȳ , we add (xjk0 , y

i
k0

) as a path of length 1 in L. Else,
the edge is (xjk0 , xj1′k0+1) for some xj1′k0+1 ∈ X̄ ′. In the latter
case, we add the edge (xjk0 , xj1′k0+1) to our path construction
and then we look at the vertex xj1k0+1 in B(Jk0,k1), noticing
that it is saturated in M by some old edge. Indeed, it cannot
be saturated by its new edge (xj1k0+1, x

j1′
k0+1), since xj1′k0+1 is

already saturated by (xjk0 , xj1′k0+1). Consequently, xj1k0+1 is
saturated by an old edge, connecting it either to yik0+1 or
to xj2′k0+2, and we can include the corresponding edge in our
path construction. The process repeats until a vertex in Ȳ is
reached. Notice that this process surely reached Ȳ . Indeed,
recall that all vertices in X̄ are saturated; moreover, in case
the construction does not reach any vertex in Ȳ \ Yk1 , then
it reaches some vertex in Xk1 , and from there, it necessarily
reaches a vertex in Yk1 , because there is no vertex set Xk1+1.

This construction gives paths from each vertex of Xk0 to Ȳ
in Sk0,k1 . Analogously, paths can be constructed from every
ujk ∈ Ū \ Uk1 and for every ujk1 ∈ Uk1 saturated by M.

By construction, since all edges in the paths correspond to
some edges in M, the paths are vertex-disjoint. Hence, by
Definition 3, they form a linking from Xk0 ∪ Ū to Ȳ in the
dynamic graph Sk0,k1 . Moreover, the linking has size m1, thus
ending the proof.

An illustration of this proof technique is as follows: B(J0,2)
is the dynamic bipartite graph shown in Figure 5. A matching
M0,2, on B(J0,2), that saturates all the vertices in X0 ∪U0 ∪
X1 ∪U1 ∪X2 is shown in Figure 6a. Notice that in Figure 6a
the matching M0,2 connects vertices in X0 ∪ Ū to Ȳ in the
following manner: x10 → y10 , x20 → y20 , x30 → x3′1 x31 → y11 ,
x40 → x4′1 x41 → y21 , u10 → x1′1 x11 → x2′1 x21 → y12 , u11 → x2′2
x22 → y22 . Hence, we can construct a linking of size 6, on S0,2,
from X0 ∪ Ū to Ȳ , as depicted in Figure 4.

VI. S-STRUCTURAL ISO

The main objective of this section is to seek graphical con-
ditions such that the system (1) is ISO for all non-zero edge
weights in {Gk}. Notice that, under such a setting, each and
every element in a vector of free parameters should be non-
zero. Towards this end, we first define s-structural ISO and
thereafter provide a graphical characterization for the same.

Definition 9: System (1) with the pattern of fixed zeros
given by the graphs {Gk} is s-structurally ISO over [k0, k1],
if system (1) is ISO for all non-zero choices of edge weights
in {Gk}. �
Definition 9 should be understood as follows: System (1) being
s-structurally ISO means that for every non-zero choice of
edge weights in {Gk} (or equivalently, for every non-zero
choice of free parameters in the structured system matri-
ces), the corresponding quadruplet {Ak, Bk, Ck, Dk} satisfies
rank(Jk0,k1) = (k1 − k0 + 1)N + (k1 − k0)P + rank(Dk1).



Fig. 5: Dynamic bipartite graph B(J0,2) of Example 1. The
edges in black are old edges, in one-to-one correspondence
with the edges in the dynamic graph S0,2 shown in Figure 4,
while the edges in dashed blue are new edges, corresponding
to blocks −I4×4 in J0,2

(a) M0,2 (b) M̃0,2

Fig. 6: Matchings on the dynamic bipartite graph B(J0,2) of
Example 1

A. Main Result

It turns out that thanks to Definition 5 and Lemma 2 one can
obtain a sufficient condition for s-structural ISO. In order to
find a necessary condition for s-structural ISO, we restrict our

attention to the following submatrix of Jk0,k1 :

Pk0,k1 =

 Dk0,k1−1
0M×(k1−k0)P
Bk0,k1−1

Qk0,k1


where Pk0,k1 has (k1 − k0 + 1)M + (k1 − k0)N rows and
(k1 − k0)P + (k1 − k0 + 1)N columns, and let B(Pk0,k1) ⊆
B(Jk0,k1) be the bipartite graph associated with Pk0,k1 . With
these in place, our second main result is stated as follows:

Theorem 2: Consider the system (1) with the pattern of fixed
zeros given by the graphs {Gk}. Let B(Jk0,k1) and B(Pk0,k1)
be as defined. System (1) is s-structurally ISO, over [k0, k1],

1) if there exists a uniquely restricted matching of size (k1−
k0 + 1)N + (k1−k0)P + term-rank(Dk1) in B(Jk0,k1).

2) only if there exists a uniquely restricted matching of size
(k1 − k0)P + (k1 − k0 + 1)N in B(Pk0,k1). �

Notice that there exists a gap between the sufficient condition
and the necessary conditions given in Theorem 2, as the
latter pertains to a submatrix, namely Pk0,k1 . However, for the
case when Dk1 = 0, from Theorem 2, we can obtain a full
characterization of s-structural ISO, and is given as follows.

Corollary 1: If Dk1 = 0, then system (1) is s-structurally
ISO, over [k0, k1], if and only if there exists a uniquely
restricted matching of size (k1 − k0)P + (k1 − k0 + 1)N in
B(Jk0,k1). �
We shall now apply the conditions given in Theorem 2 to our
example shown in Figure 1.
Example 1 (continued): Notice that matching M0,2, see Fig-
ure 6a, in B(J0,2) saturates all the vertices in X0∪U0∪X1∪
U1 ∪ X2. It can also be seen that over the same choice of
vertex sets, there exists another matching, namely M̃0,2, as
depicted in Figure 6b. Moreover, there does not exist another
choice of vertex sets of size 14 either in the left vertex set,
i.e., X0 ∪ U0 ∪X1 ∪ U1 ∪X2, or in the right vertex set, i.e.,
Y0 ∪X ′1 ∪ Y1 ∪X ′2 ∪ Y2. Consequently, there does not exist a
uniquely restricted matching of size 14 in B(J0,2). Therefore,
from item 2) in Theorem 2, we can conclude that the structured
system shown in Figure 1 is not s-structurally ISO. �

B. Proof of Theorem 2

First we prove that the condition given in item 1) is
sufficient for s-structural ISO over [k0, k1], and then we prove
that the condition given in item 1) is necessary for s-structural
ISO over [k0, k1].

Proof of sufficiency of 1): Recall that some non-zero entries
of Jk0,k1 are −1, and all other non-zero entries are distinct free
parameters. Let J̄k0,k1 be the pattern matrix equal to Jk0,k1 ,
except that the −1’s are replaced by free parameters, distinct
from each other and from other parameters, so that J̄k0,k1 is a
pattern matrix, and Jk0,k1 is obtained from it by fixing some
parameters to −1.

The assumption in 1) is that there exists a uniquely re-
stricted matching of size (k1 − k0 + 1)N + (k1 − k0)P +
term-rank(Dk1) in the dynamic bipartite graph B(Jk0,k1).
Notice that B(Jk0,k1) = B(J̄k0,k1). Therefore, from Lemma 2,
the matrix Jk0,k1 has rank equal to (k1 − k0 + 1)N +
(k1 − k0)P+ term-rank(Dk1) for all non-zero choices of



free parameters. In particular, this remains true when fixing
some parameters to −1 to obtain Jk0,k1 . Therefore, from
Definition 9, System (1) is s-structurally ISO over [k0, k1].

Proof of necessity of 2): In order to prove that the condition
in 2) is necessary, we prove a slightly stronger result, given
in Lemma 3 below, involving submatrices of Pk0,k1 obtained
considering r columns, and involving the corresponding bi-
partite graph as described in Sect. IV-C.

Lemma 3: Let r be any integer 1 ≤ r ≤ (k1−k0)P +(k1−
k0 + 1)N . For any submatrix L formed with r columns of
Pk0,k1 , if there exists no uniquely restricted matching of size
r in the associated bipartite graph B(L), then there exists a
non-zero choice of free parameters such that the corresponding
numerical realization of L has rankL < r. �
The Lemma’s statement specialized to r = (k1 − k0)P +
(k1 − k0 + 1)N concerns L = Pk0,k1 and gives the desired
result: if there exists no uniquely restricted matching of size
(k1 − k0)P + (k1 − k0 + 1)N in the dynamic bipartite
graph B(Pk0,k1), then there exists a non-zero choice of free
parameters such that the corresponding numerical realization
of Pk0,k1 has rankPk0,k1 < (k1−k0)P +(k1−k0+1)N ; this
further implies that there is a non-zero choice of parameters
for which rankJk0,k1 < (k1 − k0)P + (k1 − k0 + 1)N +
term-rank(Dk1), and hence the system is not s-structurally
ISO over [k1, k1].

The formulation for general r is introduced because it allows
a proof by induction on r, as follows.

Proof of Lemma 3: The proof is by induction on r, similar
to the proof of Theorem 3.4 in [19], but adapted to the fact
that Pk0,k1 is not a pattern matrix, since it has some entries
fixed to −1. It will be crucial to recall that Pk0,k1 inherits
from Jk0,k1 the following property: its entries are some 0’s,
some distinct free parameters, and some −1’s, with at most
one −1 per row.

The base case is r = 1, where L has only one column, and
B(L) has only one vertex in its left vertex set. A matching of
size 1 is simply one edge; by Definition 5, every matching of
size 1 is a uniquely restricted matching. Consequently, if there
exist no uniquely restricted matching of size 1 in B(L), then
there exists no matching in B(L), and hence there exists no
edge either. This implies that L is all-zero, so that rank(L) =
0.

Now we assume that the claim holds for r − 1 (inductive
assumption), and we prove that this implies the claim holds
for r. We consider any L obtained taking r columns of Pk0,k1 .
Matrix L might or might not have a row with exactly one non-
zero element, and the two cases require a different proof.

Case a: there exists a row i of L having exactly one non-
zero term; say this term is in position (i, j).
Let L:,−j denote the submatrix of L obtained by removing
the jth column; notice that this is a matrix containing some
r− 1 columns of Pk0,k1 . By assumption, there is no uniquely
restricted matching of size r in B(L). This implies that there
is no uniquely restricted matching of size r − 1 in B(L:,−j).
Indeed, if there was one, then it would be possible to construct
a uniquely restricted matching of size r in B(L) by adding the
edge corresponding to the (i, j)th entry of L.
Now we can apply the inductive assumption to L:,−j : since it

is a matrix formed with r−1 columns of Pk0,k1 , and having no
uniquely restricted matching of size r−1 in the corresponding
bipartite graph, there exists a non-zero choice of parameters
such that the corresponding numerical realization of L:,−j has
rankL:,−j < r − 1. Then take the same parameters for the
entries of L, together with an arbitrary value for the (i, j)th
entry in case it is not already fixed to −1; this numerical
realization of L has rankL < r.

Case b: no row of L has exactly one non-zero term. In this
case we can find a non-zero choice of free parameters such that
the corresponding numerical realization of L has rankL < r.,
without using the inductive assumption nor the assumption
about non-existence of uniquely restricted matching. Indeed,
we can find a non-zero choice of parameters such that all
rows have zero row-sum, for example with the following
construction. Recall that we are in case b) (no row has exactly
one non-zero term) and that L is a submatrix of Pk0,k1 and
hence it has at most one −1 per row. Hence, there can be only
three kinds of row: i) an all-zero row; ii) a row with exactly
one −1 and with p ≥ 1 free parameters; iii) a row with no −1
and with p ≥ 2 free parameters. Rows of kind i) already have
zero row-sum. For rows of kind ii), fix p−1 parameters to −1
(skipping this step if p = 1), and then fix the last parameter
to p. For rows of kind iii), fix p − 1 parameters to −1 and
then fix the last parameter to p− 1. With this non-zero choice
of parameters, the sum of elements along each row of L is 0,
which means that the sum of all columns of L is a zero vector
and hence the columns are not linearly independent, so that
this numerical realization of L has rankL < r.. �

VII. CONCLUSION

This paper focuses on discrete-time linear network systems
with time-varying topologies. Firstly, it gives a full charac-
terization of structural ISO in terms of existence of a linking
of an appropriate size on the corresponding dynamic graph.
Secondly, for s-structural ISO, a sufficient condition and a
necessary condition are provided. Furthermore, under suitable
assumptions on the feedthrough matrix, namely Dk1 = 0,
a full characterization for s-structural ISO is also provided.
We would like to point out that, for s-structural ISO, for
the case of Dk1 6= 0, there is a gap between necessary and
sufficient conditions, and remains open. Also, throughout this
paper we have assumed first order dynamics on each node.
On the other hand, if the nodes were to have higher-order
dynamics, then the local dynamics could impose constrains
on the free parameters. This differs from the setting discussed
in the present paper, and remains open.
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