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1 Inria Rennes-Bretagne Atlantique, Irisa, University of Rennes I, France,
eric.badouel@inria.fr

2 Faculty of Sciences, University of Douala, Cameroon
djeumenr@yahoo.fr

Abstract. Language oriented programming is an approach to software
composition based on domain specific languages (DSL) dedicated to spe-
cific aspects of an application domain. In order to combine such languages
we embed them into a host language (namely Haskell, a strongly typed
higher-order lazy functional language). A DSL is then given by an alge-
braic type, whose operators are the constructors of abstract syntax trees.
Such a multi-sorted signature is associated to a polynomial functor. An
algebra for this functor tells us how to interpret the programs. Using
Bekić’s Theorem we define a modular decomposition of algebras that
leads to a class of parametric multi-sorted signatures, associated with
regular functors, allowing for the modular design of DSLs.

Keywords: Abstract Syntax Trees · Catamorphisms · Bekić’s Theorem
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1 Introduction

Component-based design is acknowledged as an important approach to improv-
ing the productivity in the design of complex software systems, as it allows pre-
designed components to be reused in larger systems [14]. Instead of constructing
standalone applications the focus is on the use of libraries viewed as toolboxes
for the development of software product lines dedicated to some specific appli-
cation domain. Using such “components on the shelf” improves productivity in
developing software as well as the adaptability of the produced software with
respect to changes. Thus intellectual investment is better preserved. In order to
avoid redundancies a well designed domain specific library should have generic
constituents (using parametrization, inheritance or polymorphism) and then it
can be seen as a small programming language in itself. Language oriented pro-
gramming [22,5] is an approach to software composition based on domain specific
languages (DSL) dedicated to specific aspects of an application domain. A DSL
captures the semantics of a specific application domain by packaging reusable
domain knowledge into language features. It can be used by an expert of that
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domain who is provided with familiar notations and concepts rather that con-
fronted with a general purpose programming language.

Many DSLs have been designed and used in the past decades, however their
systematic study is a more recent concern. The design and implementation of a
programming language, even a simple one, is a difficult task. One has to develop
all the tools necessary to support programming and debugging in that language:
a compiler for source text analysis, type checking, generation and optimisation of
code, handling of errors... and also related tools for the generation of documen-
tation, the integration of graphic and text editing facilities, the synchronization
of multiple partial views, etc. Language adaptivity is another concern: it is very
hard to make a change to the design of a programming language. However some
domains of expertise may evolve in time, calling for frequent redesigns of the
associated DSL: will we have to go through the process all over again every
time? Finally, it might be difficult, if not impossible, to make different DSLs
collaborate within some application even though most applications do involve
different domains of expertise.

To alleviate these difficulties Hudak [10] suggested embedding the DSL into
a chosen general-purpose host language; and coined the expression Domain-
Specific Embedded Languages (or DSEL) to qualify them. Each DSEL inherits
from the host language all parts that are not specific to the domain. It also
inherits the compiler and the various tools used as a support to programming.
Finally each DSEL is integrated into a general-purpose language, namely its
host language; and several DSELs can communicate through their common host
language. A higher-order strongly-typed lazy functional language like Haskell is
an ideal host language since it can be viewed as a DSL for denotational semantics:
a language that can be used to describe the semantics of various programming
languages and thus also to combine them.

Recent language workbenches [7] like Intentional Programming [16,21] or the
Meta Programming System [5] from JetBrains envisage a system where one could
systematically scope and design DSLs with the ability to compose a language
for a particular problem by loading DSLs as various plug-ins. Each such plug-
in would incorporate meta-programming tools allowing one to program in the
corresponding DSL (browsing, navigating and editing syntax, extracting multi-
ple views or executable code). The core of such intensional representations are
abstract syntax trees associated to a multi-sorted signature whose operators are
the basic contructions of the language. These operators are usually interpreted
as closed higher-order functions (i.e., combinators). Following the higher-order
interpretation of attribute grammars [11,6,2] we shall assume that these com-
binators derive from the semantic rules of an attribute grammar built on the
multi-sorted signature.

Combining such DSLs requires considering a global grammar such that each
DSL is associated with some subgrammar. The global grammar need not be
constructed explicitly but we should be able to evaluate its abstract syntax trees
by combining the catamorphisms of the corresponding subgrammars.



In this paper we address this problem by introducing the so-called modular
grammars. The initial algebra of the polynomial functor associated with the
operators of the language coincides with its least fixed-point. This fixed-point
can be computed by a method of substitution using Bekić’s Theorem [4]. By
doing so the system of polynomial functors is transformed into a related system
of regular functors. We introduce a splitting operation on algebras producing an
algebra for the resulting system of regular functors from an algebra of the original
system of polynomial functors. This transformation preserves the interpretation
function (catamorphism).

2 Modular Domain Specific Languages

The syntax of a DSL is given by a multi-sorted signature Σ = (S,Ω) consisting
of a set of sorts S and a set of operators ω ∈ Ω where each operator has an
arity in S∗ and a sort in S. We let Ω(s1 · · · sn, s) denote the set of operators
ω ∈ Ω with arity s1 · · · sn ∈ S∗ and sort s ∈ S. Let us first assume that each
sort appears as the sort of some operator. Then the signature can be associated
with the endofunctor F : |Set|S → |Set|S such that

F (X)s =
∐

ω∈Ω(s1···sn,s)

Xs1 × . . .×Xsn

which we may write

F (X)s = {ω(x1, . . . , xn) | ω ∈ Ω(s1 · · · sn, s), (∀1 ≤ i ≤ n) xi ∈ Xsi }

where ω(x1, . . . , xn) is used to denote the element (x1, . . . , xn) ∈ Xs1 × . . .×Xsn

that lies in the component indexed by ω. It is a polynomial functor (a sum of
products) and it has a least fixed-point F † made of the sortedΣ-trees. We readily
show by induction that it is also the initial algebra. Hence there exists a unique
morphism of F -algebra ([ϕ])F : F † → A, called a catamorphism associated with
each F -algebra ϕ : F (A) → A. Note that such an F -algebra is nothing more
than a Σ-algebra, namely a carrier set As associated with each sort s ∈ S
together with an interpretation function ωϕ : As1 × Asn → As for each ω ∈
Ω(s1 · · · sn, s). And the catamorphism amounts to interpreting the tree in the
algebra by replacing each symbol ω by its interpretation ωϕ and evaluating the
resulting expression.

Sorts that are used (they appear in arities of some operator) but not defined
(they do not coincide with the sort of any operator) are called the parameters of
the signature. When parameters exists the corresponding functor is no longer an
endofunctor but has the form F : |Set|p+n → |Set|n where we have assumed an
enumeration of the sorts with parameters coming first. Since |Set|p+n ∼= |Set|p×
|Set|n, functor F can be viewed as a parametric endofunctor F : |Set|p →
(|Set|n → |Set|n), and we can apply the results of the above discussion to each
of the endofunctors Fζ for ζ ∈ |Set|p. We readily verify that the fixed-point
construction gives rise to a functor (the so-called type functor such that F †ζ =



(Fζ)†) and the isomorphim Fζ
(

F †ζ
)

∼= F †ζ is natural in ζ. We let inF,ζ :

Fζ
(

F †ζ
)

→ F †ζ and outF,ζ : F †ζ → Fζ
(

F †ζ
)

stand for the inverse bijections
associated with this isomorphism. Again a Σ-algebra is nothing more than a
map ϕ : Fζξ → ξ where ζ ∈ |Set|p and ξ ∈ |Set|n. The catamorphism ([ϕ])F,ζ :

F †ζ → ξ associated with ϕ and ζ is characterized by the identity:

([ϕ])F,ζ ◦ inF,ζ = ϕ ◦ Fζ ([ϕ])F,ζ

Haskell functions are however interpreted in the category H = DCPO⊥ of
pointed dcpos and continuous functions. Thus we should replace the category of
sets and functions in the above discussion byH. However (see [15,1]) the category
of pointed dcpos and continuous functions does not have coproducts and thus the
above functorial interpretation of a signature does not seem to be possible. The
trick used by Haskell to represent its data types is to resort to the subcategory
C = DCPO⊥! of pointed dcpos and strict continuous functions. Finite products
in C are given by the cartesian products and the finite coproduct of two dcpos is
their coalesced sum A⊕B obtained from their disjoint union by identifying their
respective least elements: ⊥A⊕B = ⊥A = ⊥B. The lifting operator (−)⊥ consists
in adding a new least element to a given dcpo: A⊥ = A ⊎ {⊥}. Finally, we let
the sum of pointed dcpos be given by

∑

1≤i≤n Ai = (A1)⊥ ⊕ · · · ⊕ (An)⊥ or
equivalently by

∑

1≤i≤n Ai = (A1 ⊎ · · · ⊎ An)⊥. When this sum has only two
operands it will be written with an infix notation: A+B = (A ⊎B)⊥. However,
we should pay attention to the fact that this binary operation is not associative
and that the corresponding n-ary operation cannot be presented as an iterated
application of the binary one: we rather have a family of operators indexed by
non-negative integers. The unary sum coincides with the lifting operator and the
nullary sum gives 1 = ()⊥ = {⊥, ()}. With these notations the following data
type definition in Haskell

data Tree a = Node a (Forest a)

data Forest a = Leaf | Cons (Tree a) (Forest a)

is associated with the (parametric) polynomial functor F : C3 → C2 such that
F (A, T, F ) = ((A × F )⊥, 1 + (T × F )). Now, by observing that C(A⊥, B) ∼=
H(A,B) we deduce that an F -algebra ϕ : Fζα → α boils down to a continu-
ous Σ-algebra in the sense that all the carrier sets are pointed dcpos and the
interpretation functions are continuous functions. Hence the constituents of an
algebra can be expressed by Haskell functions as intended.

All mentioned results holds more generally for locally continuous functors
and in particular for the class of regular functors which is the least family of
functors from Cn to Cm that contains the projections and is closed by sum,
product, composition and the formation of type functors.

In the remaining parts of this section we introduce an example that will help
us to explain our approach to modularity of domain specific languages embedded
in Haskell.



2.1 DSL associated with an algebra

Let us consider a toy language for assembling elementary boxes. The following
is an Haskell definition of a data structure for such boxes.

data Box = Elembox | Comp {pos :: Pos, first, second :: Box}
data Pos = Vert VPos | Hor HPos

data VPos = Left | Right

data HPos = Top | Bottom

Thus a box is either an elementary box (which we suppose has a unit size: its
depth and height is 1) or is obtained by composing two sub-boxes. Two boxes can
be composed either vertically with a left or right alignment or horizontally with a
top or bottom alignment. The corresponding signature has a unique sort (Box),
a constant standing for an elementary box and four binary operators associated
with the various ways of assembling two sub-boxes in order to obtained a new
box. The related notions of algebra and evaluation morphism can be expressed
in Haskell as follows.

data AlgBox a = AlgBox {elembox :: a, comp :: Pos -> a -> a -> a}
eval :: AlgBox a -> Box -> a

eval (AlgBox elembox comp) = f where

f Elembox = elembox

f (Comp pos box1 box2) = comp (f box1) (f box2)

Now we need to make explicit the semantic aspects attached to a box: these
are methods to extract useful information from a box. For instance we might be
interested in representing a box by the list of origins of its elementary boxes,
which of course depends on its own origin. Another property is the size of the
box given by its height and depth. Thus a semantical domain for boxes would
be an element of the following class:

data Size = Size {depth , height :: Double} deriving Show

data Point = Point {xcoord, ycoord :: Double} deriving Show

class SemBox a where

list :: a -> Point -> [Point]

size :: a -> Size

An implementation of the language of boxes is given by an algebra whose
domain of interpretation for boxes is an element of the class SemBox. One needs
to specify the computations of the attributes size and list of a given box. For
that purpose we use an attribute grammar that provides the required algebra
following the higher-order functional approach to attribute grammars introduced
in [11,6,2].

data SBox = SBox{list :: Point -> [Point]

,size :: Size}
instance SemBox SBox where

list = list



size = size

lang :: AlgBox SBox lang = AlgBox elembox comp where

elembox = SBox (\ pt -> [pt])(Size 1 1)

-- comp :: Pos -> SBox -> SBox -> SBox

comp pos box1 box2 = SBox list’ size’ where

list’ pt = (list box1 (pi1 pt))++(list box2 (pi2 pt))

size’ = case pos of

Vert -> Size (max d1 d2)(h1 + h2)

Hor -> Size (d1 + d2)(max h1 h2)

pi1 (Point x y) = case pos of

Vert Left -> Point x y

Vert Right -> Point (x + (max (d2-d1) 0)) y

Hor Top -> Point x y

Hor Bottom -> Point x (y + (max (h2-h1) 0))

pi2 (Point x y) = case pos of

Vert Left -> Point x (y+h1)

Vert Right -> Point (x + (max (d1-d2) 0)) (y+h1)

Hor Top -> Point (x+d1) y

Hor Bottom -> Point x (y + (max (h1-h2) 0))

Size d1 h1 = size box1

Size d2 h2 = size box2

Using the algebra lang we can define derived operators

ebox :: SBox

ebox = elembox lang

hb, ht, vl, vr :: SBox -> SBox -> SBox

hb = cmp (Hor Bottom)

ht = cmp (Hor Top)

vl = cmp (Vert Left )

vr = cmp (Vert Right )

cmp = comp lang

We can also define their extensions on non-empty lists of boxes

hb*, ht*, vl*, vr* :: [SBox] -> SBox

hb* = foldl hb

ht* = foldl ht

vl* = foldl vl

vr* = foldl vr

For instance the following expression

box :: SBox

box = hb (vl (hb ebox ebox) ebox)

(vr ebox (vl ebox (ht ebox ebox)))

is a description of the compound box displayed in Figure 1. The shape of this
expression follows exactly the shape of the corresponding data structure of type
Box but it is an Haskell function of type SBox; thus the expression size box
returns the size of that box
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Fig. 1. A language of boxes

size box = Size{depth =4, height =3}

and the expression list box (Point 0 0) returns the corresponding list of located
elementary boxes when the box is positioned at the origin.

list box (Point 0 0)= [Point{xcoord=0,ycoord=1},

Point{xcoord=1,ycoord=1}, Point{xcoord=0,ycoord=2},

Point{xcoord=3,ycoord=0}, Point{xcoord=2,ycoord=1},

Point{xcoord=2,ycoord=2}, Point{xcoord=3,ycoord=2}]

Therefore we have interpreted some static data structure as an active object
on which one may operate using the corresponding methods

ebox :: SBox
cmp :: Pos → SBox → SBox → SBox
size :: SBox → Size
list :: SBox → Point → [Point]

(together with the derived operators: hb, ht, vl, and vr and their inductive
extensions). That set of functions constitutes the interface of this embedded
tiny language with its host language (Haskell).

Note that this language contains both the interpretation functions of the
algebra (ebox and cmp) and the methods of the considered semantic domain
(size and list). The description of the datatype SBox is not exported by the
module dedicated to the language of boxes but only the functions that allows to
build such boxes (ebox and cmp) or to use them (size and list).

2.2 Extension of a domain specific language

Now, imagine that we seek to extend this language to allow an elementary box
to contain an image

data Image = Image {image :: a -> Point -> Maybe Color,

bb:: a -> Size}



represented as a function that returns the color of the point whose coordinates
relative to the upper left corner of the image are given as arguments. This func-
tion returns the undefined value Nothing (interpreted as “transparency”) if the
coordinates exceed the bounding box of the image. However, the image itself may
contain some transparent parts. In addition we may wish to allow sub-boxes to
be centered when composed (horizontally and vertically, see Fig. 2).

Hor
Bottom

Vert
Center

Hor
Center

Hor
Top

(0,0)

ord

abs

Fig. 2. A richer language of boxes

The definition of the language can be adapted as follows:

data Box = Elembox {image :: Image}
| Comp {pos :: Pos, first, second :: Box}

data Pos = Vert VPos | Hor HPos

data VPos = Left | Center | Right

data HPos = Top | Center | Bottom

class SemBox a where

list :: a -> Point -> [(Point,Image)]

size :: a -> Size

The interface of a DSL is given by its algebra. An algebra consists of the
choice of a carrier set for each sort (the semantic domains of interpretation) and
a function of interpretation for each operator. Note that the precise definitions
of the carrier sets are not made visible. They are represented as abstract data
types (given by the two functions list and size for the basic version of our
example). If we want to reuse this DSL without modifying the existing code we
should kept the carrier sets unchanged. We may associate new methods with the
carrier sets of the algebra. But we are limited in this if the carrier sets cannot
simultaneously be extended. As far as the type SBox is concerned, it is clear
that any such function should be definable directly in terms of list and size;
so these are just derived methods. Still, we may envisage adding new operators.
For instance we may add the two operators vc = Vert (Vpos Center ) and hc =
Hor (Hpos Center) to allow for extra ways of combining boxes. Then we should
be able to extend the interpretation functions (elembox and comp) for handling
these new operators while preserving the existing code. This problem has been
referred to as the “expression problem” by Philip Walder:



The goal is to define a data type by cases, where one can add new cases
to the data type and new functions over the datatype, without recompiling
existing code, and while retaining static type safety.

An elegant solution to this problem has been proposed byWouter Swierstra in
[18] using a method akin to an implementation of the visitor pattern. Nonetheless
this method is no longer applicable if we are forced to reshape the carrier sets of
the algebra, which is indeed the case for the extension considered here. We may
even face more drastic changes imposed by the introduction of new operators.
For instance the semantic representation of a box as a list of elementary boxes
(containing an image of a given size) will not allow us to add a frame (of a given
width and color) around a box using a function:

frame :: SBox → Double → Color → SBox

The only reasonable choice to interpret the corresponding boxes seems to be the
following:

class SemBox a where

at :: a -> Point -> Image

size :: a -> Size

where box ′at′ pt provides the image formed by anchoring the box at the given
point. As in the preceding case, we have no other choice than to completely
overwrite the interpretation functions elembox and comp.

3 Decomposition of catamorphisms

3.1 Modular grammar

The above example and discussion make it clear that a modular approach to
DSLs requires that a basic module is dedicated to a specific set of sorts. Its
interface is given by an algebra presented both by a set of interpretation functions
for the operators and by methods that allow using objects of the carrier sets of the
algebra. To be more precise let L be a language with signature Σ = (S,Ω) and
F : Cp+n → Cn be its associated polynomial functor. Suppose that n = n1 + n2

and that the sorts S2 corresponding to indices in n2 are those defined by a
particular module L2 of L. Note that S = S0 ⊎ S1 ⊎ S2 where S0, such that
|S0| = p are the parameters of the grammar and S1, such that |S1| = n1, are
the sorts defined by L outside the considered module. The signature of L2 is
Σ2 = (S,Ω2) where Ω2 is the set of operators in Ω whose sorts belong to S2. Its
associated polynomial functor is the composition of F with the second projection

π
(n1,n2)
2 : Cn → Cn2 , namely F2 = π

(n1,n2)
2 ◦ F : Cp+n → Cn2 . Note that the

parameters of Σ2 are the elements of S0 ∪S1. Thus the sorts defined outside the
module are extra parameters for this module. Of course a module would normally
be given on a smaller set of sorts S′′ ⊆ S because it is usually defined prior to
the language that uses it and we cannot anticipate all the potential usages of



a module. Nonetheless, and for ease of presentation we assume as above that
S′′ = S. Indeed any signature can be viewed as a signature over a larger set of
sorts where the additional sorts play the role of extra parameters, even though
the interpretation functions will not use these arguments.

In order to implement language L, assuming that its submodule L2 already
exists, we have to define the interpretation functions for the operators in Ω \Ω2,

namely to provide an algebra for the functor F1 = π
(n1,n2)
1 ◦ F : Cp+n → Cn1 .

The parameters of this polynomial functor are the elements of S0 ∪S2. However
we should distinguish between the parameters of the overall language L whose
carrier sets ζ ∈ |C|p can be arbitrarily chosen (parametric polymorphism) from

the sorts of S2 whose value should lie in F †
2 ζα1 if α1 ∈ |C|n1 corresponds to

the carrier sets for sorts in S1. Hence the data that is needed to reconstruct the
overall language from its submodule is an algebra for the residual functor F/F2

defined in the following categorical version of Bekić’s Theorem [4].

Theorem 1. Let a locally continuous functor F : Cp+n → Cn with n = n1 + n2

be decomposed on the form F = 〈F1, F2〉 where F1 = π
(n1,n2)
1 ◦ F : Cp+n → Cn1

and F2 = π
(n1,n2)
2 ◦ F : Cp+n → Cn2 where functors π

(n1,n2)
1 : Cn → Cn1 and

π
(n1,n2)
2 : Cn → Cn2 are the two canonical projections. Then

F † ζ = H ζ ×K ζ

where

F/F2 = F1 ◦
〈

idp+n1 , F
†
2

〉

: Cp+n1 → Cn1

H = (F/F2)
†

: Cp → Cn1

F ′
2 = F2 ◦ (〈idp, H〉 × idn2) : C

p+n2 → Cn2

K = F ′†
2 : Cp → Cn2

and idℓ : C
ℓ → Cℓ stands for the identity functor of Cℓ.

Bekić’s Theorem corresponds to the classical method of resolution by substitu-
tion. Indeed let y, x1 and x2 be variables ranging respectively over |C|

p
, |C|

n1

and |C|n2 . Variable x1 of system F becomes a parameter for its subsystem F2. By

solving the latter we obtain a parametric solution F †
2 : Cp+n1 → Cn2 . We substi-

tute this solution for variable x2 in the system F1 thus leading to a new system

F/F2 = F1◦
〈

idp+n1 , F
†
2

〉

: Cp+n1 → Cn1 in which variable x2 no longer appears.

Solving this new system provides us with the x1 component of the solution of the
original system thus given by H = (F/F2)

†
: Cp → Cn1 . We can substitute that

value into F2 in order to derive the system F ′
2 = F2 ◦ (〈idp, H〉 × idn2) : C

p+n2 →
Cn2 whose resolution gives the x2 component of the solution of the original sys-
tem. The following lemma says that the x2 component of the solution of the
original system can alternatively be obtained by substituting the x1 component
of the solution of the original system (given by H) in the parametric solution

F †
2 : Cp+n1 → Cn2 . The condition expressed by this lemma appears in several

axiomatizations of parametric fixed-point operators [17], and in particular in the
theory of traced monoidal categories [12].



Lemma 1. K ζ ≃ F †
2 ζ (H ζ)

Proof. First notice that F ′
2ζ (Kζ) = F2ζ (Hζ) (Kζ). The initial F ′

2, ζ-algebra

inF ′
2,ζ

: F2ζ (Hζ) (Kζ) → Kζ

is thus an F2-algebra with parameters ζ ×Hζ. We let

ι1 =
([

inF ′
2,ζ

])

F2,ζ×Hζ
: F †

2 ζ (H ζ) → Kζ

be the corresponding catamorphism which, by definition, satisfies

ι1 ◦ inF2,ζ×Hζ = inF ′
2,ζ

◦ F2ζ (Hζ) ι1

Symmetrically, since F2ζ(Hζ)
(

F †
2 ζ (Hζ)

)

= F ′
2ζ

(

F †
2 ζ (Hζ)

)

, we deduce that

the initial F2, ζ × Hζ-algebra inF2,ζ×Hζ : F2ζ(Hζ)
(

F †
2 ζ (Hζ)

)

→ F †
2 ζ (Hζ)

is an F ′
2, ζ-algebra. Let ι2 = ([inF2,ζ×Hζ ])F ′

2,ζ
: Kζ → F †

2 ζ (Hζ) denote

the corresponding catamorphism which, by definition, satisfies ι2 ◦ inF ′
2,ζ

=
inF2,ζ×Hζ ◦ F2ζ(Hζ)ι2 . On the one hand it follows

ι1 ◦ ι2 ◦ inF ′
2,ζ

= ι1 ◦ inF2,ζ×Hζ ◦ F2ζ(Hζ)ι2
= inF ′

2,ζ
◦ F2ζ (Hζ) ι1 ◦ F2ζ(Hζ)ι2

= inF ′
2,ζ

◦ F2ζ (Hζ) (ι1 ◦ ι2)
= inF ′

2,ζ
◦ F ′

2ζ (ι1 ◦ ι2)

and thus ι1 ◦ ι2 =
([

inF ′
2,ζ

])

F ′
2,ζ

= idKζ . On the other hand

ι2 ◦ ι1 ◦ inF2,ζ×Hζ = ι2 ◦ inF ′
2,ζ

◦ F2ζ (Hζ) ι1
= inF2,ζ×Hζ ◦ F2ζ(Hζ)ι2 ◦ F2ζ (Hζ) ι1
= nF2,ζ×Hζ ◦ F2ζ(Hζ) (ι2 ◦ ι1)

and thus ι2 ◦ ι1 = ([inF2,ζ×Hζ ])F2,ζ×Hζ = idF †ζ(Hζ). The pair of morphisms

ι1 : F †
2 ζ (H ζ) → Kζ and ι2 : Kζ → F †

2 ζ (Hζ) thus constitutes the required

isomorphism K ζ ≃ F †
2 ζ (H ζ). ⊓⊔

Corollary 1. F † = (F/F2)
†
⋊ F †

2

where operation ⋊ is given by

Definition 1. The semidirect product (or cascaded composition) of functors
H : Cp → Cn and T : Cp+n → Cm is given by

H ⋊ T = 〈H,T ◦ 〈idp, H〉〉 : Cp → Cn+m

A module should be able to import other modules. This means that we should
be able to apply a hierarchical decomposition of a signature. However, because of
the presence of the type functor F †

2 , we shall no longer stay within the frame of



polynomial functors. Nonetheless, if we start from polynomial functors all con-
structions involved in Beckić’s Theorem remain in the family of regular functors.
We thus model a modular grammar as a combination of a polynomial functor,
that describes the operators whose sorts are locally defined, and a regular functor
associated with the imported definitions.

Definition 2. A modular grammar G = (F,D) is a pair that consists of a
polynomial functor F : Cp+n+m → Cn and a regular functor D : Cp+n → Cm.
The signature Σ = (S,Ω) associated with F concretizes the sorts and operators
of the grammar where S = Sp ⊎ Sd ⊎ Si with |Sp| = p, |Sd| = n, and |Si| = m.
Sorts in Sp are the parameters of G. A sort is said to be defined (respectively
imported) by G if it belongs to Sd (resp. Si). The regular functor represents the
imported definitions of the grammar. The functor associated with the modular
grammar is the (regular) functor

FG = F ◦ 〈idp+n, D〉 : Cp+n → Cn

We let F (G) = F and D(G) = D denote the respective components of modular
grammar G.

The following proposition states that the family of modular grammars is
closed by the operation of decomposition of a system into a subsystem and the
corresponding residual system as described in Bekić’s Theorem.

Proposition 1. Let G = (F,D) be a modular grammar with polynomial functor
F : Cp+n+m → Cn and regular functor D : Cp+n → Cm. If n = n1 + n2 then

π
(n1,n2)
2 ◦ FG = FG2 and FG/G2

= FG/FG2 where the second projection G2 =

π
(n1,n2)
2 (G) of modular grammar G is given by

F (G2) = π
(n1,n2)
2 ◦ F (G) : C(p+n1)+n2+m → Cn2

D(G2) = D(G) : C(p+n1)+n2 → Cm

and the residual operation is defined as

F (G/G2) = π
(n1,n2)
1 ◦ F (G) : Cp+n1+(n2+m) → Cn1

D(G/G2) = F †
G2

⋊D(G) : Cp+n1 → Cn2+m

The situation is depicted in Figure 3 where we note that the sorts defined
by the residual grammar G/G2 (its outputs) are additional parameters for the
subgrammar G2, whereas the outputs of G2 are additional imported sorts for
G/G2

Proof. The identity π
(n1,n2)
2 ◦ FG = F

π
(n1,n2)
2 (G)

is immediate.

FG/FG2 = π
(n1,n2)
1 ◦ FG ◦ 〈idp+n1 , F

†
G2
〉

= π
(n1,n2)
1 ◦ F (G) ◦ 〈idp+n1+n2 , D(G)〉〈idp+n1 , F

†
G2
〉



Fig. 3. Decomposition of modular grammars

and
FG/G2

= F (G/G2) ◦ 〈idp+n1 , D(G/G2)〉

= π
(n1,n2)
1 ◦ F (G) ◦ 〈idp+n1 , F

†
G2

⋊D(G)〉

= π
(n1,n2)
1 ◦ F (G) ◦ 〈idp+n1 , 〈F

†
G2
, D(G) ◦ 〈idp+n1 , F

†
G2
〉〉〉

In order to prove FG/FG2 = FG/G2
if suffices to show that

〈idp+n1+n2 , D(G)〉〈idp+n1 , F
†
G2
〉 = 〈idp+n1 , 〈F

†
G2
, D(G) ◦ 〈idp+n1 , F

†
G2
〉〉〉

These two expressions are equal because they give rise to the same results when
composed with the three projections from C(p+n1)+n2+m to Cp+n1 , Cn2 , and Cm

respectively:
πp+n1,n2,m
1 ◦ E = idp+n1

πp+n1,n2,m
2 ◦ E = F †

G2

πp+n1,n2,m
3 ◦ E = D(G) ◦ 〈idp+n1 , F

†
G2
〉

⊓⊔

By Corollary 1 it follows that

Corollary 2. F †
G
=

(

F †

G/G2

)

⋊ F †
G2

3.2 Decomposition of algebras

Using Bekić’s Theorem we now define a decomposition of algebras.

Definition 3. We let F : Cp+n → Cn be a locally continuous functor with n =
n1+n2. Let moreover Φ : Fζα1α2 → α1×α2 be an Fζ-algebra (ζ ∈ |C|p) on the
domain α = α1 × α2 (α1 ∈ |C|n1 , and α2 ∈ |C|n2). Φ can be decomposed into

ϕ1 = π
(n1,n2)
1 (Φ) : F1 ζ α1 α2 → α1

ϕ2 = π
(n1,n2)
2 (Φ) : F2 ζ α1 α2 → α2



The (n1, n2)-splitting of Φ is the pair consisting of the (F/F2) ζ-algebra of domain
α1

πF/F2
Φ , ϕ1 ◦

(

F1 ζ α1 (|ϕ2|)F2,ζ×α1

)

: F1 ζ α1

(

F †
2 ζ α1

)

→ α1

together with the F2 (ζ × α1)-algebra of domain α2

πF2Φ , ϕ2 : F2 ζ α1 α2 → α2

The operation of decomposition of algebras is thus given as:

Split(n.m) : AlgF,ζ(α1 × α2) →
(

AlgF/F2,ζ(α1)
)

× (AlgF2,ζ×α1(α2))
Split(n1,n2) Φ =

(

πF/F2
Φ, πF2Φ

)

Thus an algebra Φ = ϕ1×ϕ2 : Fζα1α2 → α1×α2 is decomposed into an algebra
πF2Φ = ϕ2 : F2 ζ α1 α2 → α2 for the “subsystem” F2 together with an algebra
πF/F2

Φ : F/F2ζα1 → α1 for the “residual system” F/F2. The following result
shows that the catamorphism (evaluation function) associated with the algebra
Φ for the overall system can be reconstructed from the catamorphisms associated
respectively with πF2Φ and πF/F2

Φ using a semidirect product operation which
we first introduce.

In Definition 1 we defined the semidirect product of two functors H : Cp →
Cn and T : Cp+n → Cm as

H ⋊ T = 〈H,T ◦ 〈idp, H〉〉 : Cp → Cn+m

By functoriality of the product and composition we deduce a related operation
of semidirect product of natural transformations η : H

·
→ H ′ and τ : T

·
→ T ′

where H,H ′ : Cp → Cn and T, T ′ : Cp+n → Cm given by

(η ⋊ τ)ζ = ηζ × (τζ,H′ζ ◦ Tζηζ) = ηζ × (T ′ζηζ ◦ τζ,Hζ)

Considering the special case where the target functors H ′ and T ′ are constant
functors leads us to the following definition

Definition 4. The semidirect composition of two maps f : Hζ → α and g :
Tζα → β where H : Cp → Cn and T : Cp+n → Cm is the map f ⋊ g :
(H ⋊ T ) ζ → α× β given by (f ⋊ g) = f × (g ◦ Tζf).

Using this operation we can now state

Theorem 2. Up to the isomorphisms F †ζ = Hζ×Kζ and Kζ = F †
2 ζ (Hζ) one

has
([Φ])F,ζ =

([

πF/F2
Φ
])

F/F2,ζ
⋊ ([πF2Φ])F2,ζ×α1

Lemma 2. Up to the isomorphism F †ζ = Hζ × Kζ the initial algebra inF,ζ :
Fζ

(

F †ζ
)

→ F †ζ decomposes to the form inF,ζ = inH,ζ × inK,ζ where inH,ζ :
F1ζ(Hζ)(Kζ) → Hζ and inK,ζ : F2ζ(Hζ)(Kζ) → Kζ are respectively given by
inH,ζ = inF/F2,ζ ◦ (F1ζ(Hζ)ι2) and inK,ζ = inF ′

2,ζ
.



Proof. The initial algebra is an isomorphism and the converse also holds true
(any algebra which is an isomorphism is initial) when we have uniqueness of
fixed-point (up to isomorphism) which is indeed the case here.

inH,ζ = inF/F2,ζ ◦ (F1ζ(Hζ)ι2) : F1ζ(Hζ)(Kζ) → Hζ

and inK,ζ = inF ′
2,ζ

: F2ζ(Hζ)(Kζ) → Kζ are isomorphisms and thus

inH,ζ × inK,ζ : Fζ(Hζ)(Kζ) → Hζ ×Kζ

is the initial algebra of functor F . ⊓⊔

Corollary 3. Up to the isomorphism F †ζ = Hζ ×Kζ, the two parts f : Hζ →
α1 and g : Kζ → α2 of catamorphism ([Φ])F,ζ = f × g are characterized by
f ◦ inH,ζ = ϕ1 ◦ Fζfg and g ◦ inK,ζ = ϕ2 ◦ F2ζfg.

Lemma 3. For any morphism f : Hζ → α1 one has

([ϕ2 ◦ F2ζfα2])F ′
2,ζ

= ([ϕ2])F2,ζ×α1
◦
(

F †
2 ζf

)

◦ ι2 : Kζ → α2

and that morphism g(f) satisfies g(f) ◦ inK,ζ = ϕ2 ◦ (F2 ζ f g(f)).

Proof. By definition F †
2 ζf =

([

inF2,ζ×α1 ◦
(

F2 ζ f
(

F †
2 ζα1

))])

F2,ζ×Hζ
and

that morphism satisfies

F †
2 ζf ◦ inF2,ζ×Hζ = inF2,ζ×α1 ◦

(

F2 ζ f
(

F †
2 ζα1

))

◦ F2ζ (Hζ)
(

F †
2 ζf

)

It follows that

([ϕ2])F2,ζ×α1
◦
(

F †
2 ζf

)

◦ ι2 ◦ inF ′
2,ζ

= ([ϕ2])F2,ζ×α1
◦
(

F †
2 ζf

)

◦ inF2,ζ×Hζ ◦ F2ζ(Hζ)ι2

= ([ϕ2])F2,ζ×α1
◦ inF2,ζ×α1 ◦

(

F2 ζ f
(

F †
2 ζα1

))

◦ F2ζ (Hζ)
(

F †
2 ζf

)

◦

F2ζ(Hζ)ι2

= ϕ2 ◦ F2ζα1 ([ϕ2])F2,ζ×α1
◦
(

F2 ζ f
(

F †
2 ζα1

))

◦ F2ζ (Hζ)
(

F †
2 ζf ◦ ι2

)

= ϕ2 ◦ F2ζfα2 ◦ F2ζ (Hζ) ([ϕ2])F2,ζ×α1
◦ F2ζ (Hζ)

(

F †
2 ζf ◦ ι2

)

= (ϕ2 ◦ F2ζfα2) ◦ F2ζ (Hζ)
(

([ϕ2])F2,ζ×α1
◦ F †

2 ζf ◦ ι2

)

and thus ([ϕ2 ◦ F2ζfα2])F ′
2,ζ

= ([ϕ2])F2,ζ×α1
◦
(

F †
2 ζf

)

◦ ι2 . If we let g(f) ,

([ϕ2])F2,ζ×α1
◦
(

F †
2 ζf

)

◦ ι2 denote this morphism, we deduce g(f) ◦ inK,ζ =

ϕ2 ◦ F2ζfα2 ◦ F2ζ (Hζ) g(f) = ϕ2 ◦ F2 ζ f g(f) because inK,ζ = inF ′
2,ζ

. ⊓⊔

Lemma 4. If f : Hζ → α1 and g : Kζ → α2 are, up the isomorphism
F †ζ = Hζ × Kζ, the two parts of catamorphism ([Φ])F,ζ = f × g then f =
([

ϕ1 ◦ F1ζα1 ([ϕ2])F2,ζ×α1

])

F/F2,ζ
and g = ([ϕ2 ◦ F2ζfα2])F ′

2,ζ
.



Proof. By Corollary 3 the two parts f : Hζ → α1 and g : Kζ → α2 of the
catamorphism ([Φ])F,ζ = f × g are characterized by f ◦ inH,ζ = ϕ1 ◦ Fζfg and

g ◦ inK,ζ = ϕ2 ◦ F2ζfg. Set f ′ =
([

ϕ1 ◦ F1ζα1 ([ϕ2])F2,ζ×α1

])

F/F2,ζ
and g′ =

g(f ′) = ([ϕ2 ◦ F2ζf
′α2])F ′

2,ζ
. By the preceding lemma g′ ◦ inK,ζ = ϕ2 ◦F2 ζ f

′ g′

, moreover

f ′ ◦ inH,ζ

= f ′ ◦ inF/F2,ζ ◦ F1ζ(Hζ)ι2

= ϕ1 ◦ F1ζα1 ([ϕ2])F2,ζ×α1
◦ F1ζf

′
(

F †
2 ζf

′
)

◦ F1ζ(Hζ)ι2

= ϕ1 ◦ F1ζα1 ([ϕ2])F2,ζ×α1
◦ F1ζα1

(

F †
2 ζf

′
)

◦ F1ζf
′
(

F †
2 ζ(Hζ)

)

◦

F1ζ(Hζ)ι2

= ϕ1 ◦ F1ζα1 ([ϕ2])F2,ζ×α1
◦ F1ζα1

(

F †
2 ζf

′
)

◦ F1ζα1ι2 ◦ F1ζf
′(Kζ)

= ϕ1 ◦ F1ζα1

(

([ϕ2])F2,ζ×α1
◦ F †

2 ζf
′ ◦ ι2

)

◦ F1ζf
′(Kζ)

= ϕ1 ◦ F1ζα1g
′ ◦ F1ζf

′(Kζ)
= ϕ1 ◦ F1ζf

′g′

From which it follows that f ′ = f and g′ = g. ⊓⊔

Theorem 2 follows from Lemma 3 and Lemma 4.

4 Conclusion

In this paper we relied on a modular decomposition of a (multi-sorted) signature
based on a hiearchical decomposition of its set of sorts in order to reconstruct
a language, specified by an algebra, by composition of the algebras associated
with its sublanguages. As mentioned in the introduction the global laguage would
normally be left implicit. Our result represents it as a cascaded composition of
its constituent sublanguages. This representation preserves catamorphisms. One
can then adopt an incremental approach consisting of growing a DSL by an
operation of composition of modular grammars derived from Bekić’s Theorem.
This approach differs from the solution of the “expression problem” proposed by
Swierstra in [18] which allows adding new operators for a fixed sort (or a fixed
set of sorts) and thus stays confined to a given module in our context.

We intend to apply the work presented in this paper to Guarded Attribute
Grammars [3]. It is a declarative model that describes the different ways of per-
forming a task by recursively decomposing it into more elementary subtasks.
This is formalized by the productions of an abstract context-free grammar (i.e.
a multi-sorted signature). The actual way a task is decomposed depends on
the choices made by the person to whom the task is assigned and on the data
attached to the task (inherited attributes whose values are refined over time).
Productions of the grammar are associated with guards that filter the rules
applicable in a given configuration. The evaluation of these guards is done in-
crementally which means that a rule is allowed as soon as its guard is satisfied.



This allows the workspaces of different users to operate concurrently and in re-
active mode. The local grammar of a user specifies how he can behave in order
to solve the pending tasks in his workspace. It defines a DSL that captures the
user’s domain of expertise (his role). The lazy composition of roles is compatible
with the choice of Haskell as host language. Still, it remains to take side effects
into account, in particular for modelling user interactions. We might use the ap-
proach proposed in [18] to represent the set of involved input-output actions as
a datatype in order to isolate the input-output side effects from the hiearchical
description of the system that would be specified, using the method presented
in this paper, with ordinary Haskell functions (without side effects).

As we have seen above, the splitting of algebras is an approach to modular
attribute grammars. This approach is orthogonal to, and thus can be combined
with, alternative approaches of modularity in attribute grammars [13] such as
the descriptional composition [8,9] or the composition by aspects [19,20].
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