N
N

N

HAL

open science

A workflow for designing stylized shading effects

Alexandre Bléron, Romain Vergne, Thomas Hurtut, Joélle Thollot

» To cite this version:

Alexandre Bléron, Romain Vergne, Thomas Hurtut, Joélle Thollot. A workflow for designing styl-
ized shading effects. [Research Report] RR-9225, Inria Grenoble Rhéne-Alpes. 2018, pp.1-29. hal-

01919501

HAL Id: hal-01919501
https://inria.hal.science/hal-01919501
Submitted on 16 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01919501
https://hal.archives-ouvertes.fr

A workflow for designing
stylized shading effects

Alexandre Bléron, Romain Vergne, Thomas Hurtut, Joelle Thollot

RESEARCH
REPORT

N° 9225

October 2018

ISSN 0249-6399 ISRN INRIA/RR--9225--FR+ENG

Project-Team Maverick

V4

: in]armu!ics,mathematics

A workflow for designing stylized shading
effects

Alexandre Bléron, Romain Vergne, Thomas Hurtut, Joelle
Thollot

Project-Team Maverick

Research Report n° 9225 — October 2018 — [29] pages

Abstract: In this report, we describe a workflow for designing stylized shading effects on a
3D object, targeted at technical artists. Shading design, the process of making the illumination
of an object in a 3D scene match an artist vision, is usually a time-consuming task because of
the complex interactions between materials, geometry, and lighting environment. Physically based
methods tend to provide an intuitive and coherent workflow for artists, but they are of limited use
in the context of non-photorealistic shading styles. On the other hand, existing stylized shading
techniques are either too specialized or require considerable hand-tuning of unintuitive parameters
to give a satisfactory result. Our contribution is to separate the design process of individual
shading effects in three independent stages: control of its global behavior on the object, addition
of procedural details, and colorization. Inspired by the formulation of existing shading models, we
expose different shading behaviors to the artist through parametrizations, which have a meaningful
visual interpretation. Multiple shading effects can then be composited to obtain complex dynamic
appearances. The proposed workflow is fully interactive, with real-time feedback, and allows the
intuitive exploration of stylized shading effects, while keeping coherence under varying viewpoints
and light configurations. Furthermore, our method makes use of the deferred shading technique,
making it easily integrable in existing rendering pipelines.

Key-words: non-photorealistic rendering, shading model, real-time rendering

RESEARCH CENTRE
GRENOBLE - RHONE-ALPES

Inovallée
655 avenue de I'Europe Montbonnot
38334 Saint Ismier Cedex

Un outil de conception d’effets d’illumination stylisés

Résumé : Dans ce rapport, nous décrivons un outil de création de modéles d’illumination
adapté a la stylisation de scénes 3D. Contrairement aux modéles d’illumination photoréalistes, qui
suivent des contraintes physiques, les modéles d’illumination stylisés répondent & des contraintes
artistiques, souvent inspirées de la représentation de la lumiére en illustration. Pour cela, la
conception de ces modéles stylisés est souvent complexe et cotiteuse en temps. De plus, ils doivent
produire un résultat cohérent sous une multitude d’angles de vue et d’éclairages. Nous proposons
une méthode qui facilite la création d’effets d’illumination stylisés, en décomposant le processus
en trois parties indépendantes: contréle du comportement global de l’illumination, ajout de
détails procéduraux, et colorisation. Différents comportements d’illumination sont accessibles a
travers des paramétrisations, qui ont une interprétation visuelle, et qui peuvent étre combinées
pour obtenir des apparences plus complexes. La méthode proposée est interactive, et permet
I’exploration efficace de modeéles d’illumination stylisés. La méthode est implémentée avec la
technique de deferred shading, ce qui la rend facilement utilisable dans des pipelines de rendu
existants.

Mots-clés : rendu non-photoréaliste, modéle d’illumination, rendu temps-réel

A workflow for designing stylized shading effects 3

Contents
1 Introduction| 3
2 Light and shade in 2D illustration| 5
B8__Related workl 6
3.1 Editing lighting environments| L oL 6
8.2 Stylized shading models| o 7
[4_Overview] 12
[6Shading behaviors| 12
5.1 Base parametrizations| 13
P2 Valuemaps| 15
9.3 Composition|. e e e 16
6 Perturbation terms| 16
6.1 Line Integral Convolution| 18
|7 Colorization and compositing] 18
I8 _User interfacel 18
O Results] 19
[10 Discussion 21
110.1 Parametrizations| e 21
[10.2 User study].« o o o e 22
110.3 Integration into existing modeling software] 22
|110.4 Inference from hand-painted input|o 23

1 Introduction

When depicting objects, illustrators use light and shade in ways that deviate significantly from
realism and physical rules of light propagation. Instead, it is often used to emphasize a part
of the scene that the artist deems more important, or to convey a particular mood or emotion.
One of the goals of stylized shading techniques is to translate artistic rules for the depiction of
light and shade into formalized models that can be applied automatically in the context of the
rendering of animated 3D scenes on a computer. This is a difficult problem because, in general,
stylized lighting effects do not reflect a physical truth and as such are not easily simulated. This
difficulty is exacerbated by the fact that for some of these effects, the only 2D reference available
is static: there is no consensus on how a stylized light-and-shade depiction should look like under
movement of the object or of the viewpoint. They must be rendered and animated by taking
into account the intention of the artist, and they are not easily unified under a single rendering
framework.

In 3D computer graphics, light and shade is a part of appearance design, which is the process
of adjusting materials, surface details, and lighting to achieve a desired look for an object in
a scene. As with 2D illustration, it is possible to tweak shading and lighting in 3D scenes to
achieve emphasis of a particular object, abstraction or to convey mood. However, shading design

RR n°® 9225

4 Bléron € Vergne € Hurtut € Thollot

is a complex process involving multiple interconnected aspects: the appearance of an object in
a 3D scene is the result of the interaction between the material, the object geometry, lighting
environment, and camera viewpoint. And contrary to 2D illustration, the artist may not have
control over the viewpoint of the camera or even the lighting (e.g. in interactive art applications,
such as video games). Because of that, designing a shading that accurately reproduces a desired
appearance and that stays visually coherent under varying viewpoints and lighting conditions
is a challenge requiring both artistic and technical skills. In many industries, such as computer
animation and video games, this task is often entrusted to dedicated artists.

Using physically-based models for shading alleviates some of that complexity: as their formu-
lation and parameters are derived from physical phenomena, they ensure a coherent and plausible
appearance for any geometry, under any viewpoint and lighting environment. They also have the
advantage of working almost directly with captured data (e.g. captured lighting environments,
or scanned materials), which greatly reduces the time spent in designing materials. However,
they are by design unsuitable for reproducing any kind of non-physical lighting effect commonly
used in illustration.

In contrast, stylized shading models are not physically correct or plausible. Their goals are
related to depiction rather than accurate light simulation. For instance, stylized shading models
are used in visualization to communicate information about the shape and material of an object
in a more efficient way than realistic shading models. An example of this is Gooch shading
|Goo+98|, which modifies in a non-physical way the illumination term to reveal surfaces in
shadow. Some models have been designed to reproduce particular artistic styles in 2D illustration:
for example, the well-known and well-studied toon shading technique was designed to mimic styles
found in comic books. However, in general, shading rules in illustration are hard to characterize,
because contrary to physically based models, they are not directly linked to geometric and
physical properties of the scene. Because of that, many stylized shading techniques are limited
to specific styles, and usually simple dynamic behaviors.

In this report, we present a method, targeted at technical artists, for designing and exploring
complex stylized shading effects by combining simple building blocks, in the form of simple
shading behaviors. The proposed building blocks have intuitive visual interpretations: our intent
is to make them easy to combine in order to create complex shading behaviors by progressive
refinement. Going further, our intent is also to provide a practical framework for decomposing
complex shading effects found in illustration, and more generally, to facilitate the exploration of
the design space of stylized shading in 3D scenes.

Our main contribution is to decouple the design of individual shading effects in three inde-
pendent aspects: (1) Choosing and tuning the global shading behavior (diffuse, specular, rim
lighting, etc.) of an effect; (2) Adding details and visual complexity; (3) Colorizing the effect.

The final stylized appearance is then obtained by layering several of those shading effects.
We provide interactive tools to edit each aspect, allowing the artist to precisely tune each part of
the final appearance with a direct visual feedback. Our method automatically keeps a consistent
result under varying viewpoints and light configurations. We show that our approach can be
used to add spatially and temporally coherent details, mimicking various shading effects in a
direct and flexible manner.

The structure of this report is as follows: first, in Section [2] we detail some characteristics of
shading depiction in 2D illustration that motivated our approach. In Section 3] we review existing
techniques for stylized lighting and shading techniques for 3D scenes. We present our technique
in Sections [to [§] and show results in Section)] We discuss possible future improvements and
research areas in Section

Inria

A workflow for designing stylized shading effects 5

2 Light and shade in 2D illustration

One of the motivations for proposing such a system is the growing demand for the production
of 3D content in a style inspired from traditional 2D illustrative shading styles. However, the
concept of light and shade in 2D illustration is very broad: a depicted surface can be said to
“catch the light” in many different ways, usually non-physical, and sometimes not consistent
between different objects. An artist can play on the depiction of shading to various ends: as
clues for the material of an object, to enhance specific features of a shape, to attract the focus
of the spectator to some location on the image, or to set the mood of a scene. For instance,
Hogarth proposed five different categories of light and shade in 2D illustrations with
traditional media (pencil, pen-and-ink, charcoal, etc.). Each of them have different purposes: for
instance, the so-called sculptural light is used to ensure that all details of the form of an object
are revealed, regardless of whether there is an actual light shining on them.

Additionally, there are even more different rules and techniques when color is added. Custom
color gradients can be used in place of photographically accurate illumination gradients for
emphasis, abstraction, or as shortcuts for complex lighting effects (Figure or convey the
appearance of particular materials (Figure .

SRTURKTION
v INTHE
MIpDLE

Vst

. \:‘ //””
V‘X BLENDED o \ﬁﬂ
/'¢

qi\
BO—ING v
SKINDNE

o%%.w

Figure 1: Illumination gradients in illustration are often modified in non-physical ways. In this
example, taken from a digital painting tutorial, illumination gradients on human skin are made
more appealing by artifically increasing the saturation at the transition between lit and shadowed
(left). A similar technique is used to emulate the visual appearance of subsurface scattering of
strong lights inside the skin (right). Source: Basic to Advanced Color Theory and Illustration
Techniques for Photoshop http://www.floobynooby.com/ICG/artvalues.html

This great variety in the depiction of light and shade in both traditional and digital illustra-
tion raises the traditional question in stylized rendering: how to reproduce these appearances
automatically on 3D scenes? As with other sub-domains of stylized rendering, stylized shading
is no exception: the artistic rules for light and shade depiction are the rules of artists, and differ
from traditional computer graphics or physical models in significant ways. They vary in subtle
ways from artist to artist, which makes it even more difficult to propose a generalized model for
stylized shading.

Adding interactivity and dynamic behavior also makes the design process more difficult,
as the behavior of lighting effects must now be coherent with motion in addition to shape. For
instance, some effects like metallic highlights are expected to slide on the object when moving the
viewpoint, contrary to diffuse lighting which stays fixed to a surface until the light themselves are
moved. Thus, illustration tricks like the one shown in Figure[2]to convey metallic appearances will
not work in dynamic 3D scenes. In a way, this means that, under animation, some “important”

RR n°® 9225

http://www.floobynooby.com/ICG/artvalues.html

6 Bléron & Vergne & Hurtut € Thollot

IIE ncl; " ALJ.
./-. AT 2 oun%uf O EATREMES
To wmuTé | SHoRT cLIME

Figure 2: In the lambertian shading model, the perceived brightness of a lit surface (intensity
profile) falls off linearly according to the geometry term (the cosine of the angle between the
surface normal and the light direction), resulting in a smooth illumination gradient that conveys
diffuse appearance (left). In illustration, simple modifications to this profile can convey dramat-
ically different clues about the material: making the gradient “jump” when facing the light gives
the impression of a specular highlight (middle), while introducing a small jump in the middle
of the gradient gives off a metallic look (right). However, translating this technique to 3D is
non-trivial because the appearance has to be coherent under dynamic viewpoints and lighting
conditions. Source: see above.

realistic behaviors of light and shade must be kept so that the intended appearance is not broken.

While this makes stylized shading in dynamic 3D scenes more challenging, it also greatly ex-
pands the design space for artists. This observation led us to the system presented in this report,
which strives to allow artists to easily explore this design space with basic shading primitives.
Those primitives are not necessarily physically-based, but instead are meant to have an intuitive
interpretation in terms of how they affect the final appearance.

3 Related work

In computer graphics, stylized depiction of light and shade in a scene can be achieved through
several ways: by manipulating the lights themselves, or by changing the way light interacts with
a surface, through specialized shading models. First, we review the techniques that manipulate
the lighting environment (position, intensity, color of lights) to achieve a stylized look. Note that,
with those techniques, the simulation of light can still follow physical rules. Then, we review
existing literature on shading models that achieve non-photorealistic appearances.

3.1 Editing lighting environments

One form of lighting manipulation is inverse lighting techniques: given some artistic constraints
on the final image (e.g. the position and color of an highlight, the size of a shadow cast by
an object, etc.), the goal is to infer the parameters of the lights in the scene: their number,

Inria

A workflow for designing stylized shading effects 7

position, color, and type. Notable work in this category include work by Pellacini et al. [Pel+07].
However, inverse lighting is usually expressed as a complex non-linear optimization problem: it
thus suffers from the common issue that the optimization result may not match the intent of the
artist. Several techniques propose a more direct control over the appearance by allowing the user
to make non-physical edits to an existing physical result, allowing the user to move and deform
reflections [Rit+09|, shadows, highlights, refractions [Rit-+10j [Sch+13|, or even the propagation
of light rays [KPD10|. However, deforming existing physical effects are impractical for stylized
appearances that differ significantly from realistic results.

In contrast, the approach of Okabe et al. [Oka—+07| allows users to design image-based lighting
environments from scratch by directly painting the desired appearance on a 3D model. Their tool
supports arbitrary BRDF models. Still, these techniques cannot be extended to take into account
other scene or object attributes typically used for stylization, such as surface curvature, and as
such have limited flexibility for representing arbitrary stylized shadings. Lighting environments
and materials can also be acquired from real objects. Providing tools that allows artists to
intuitively edit captured environments after acquisition is an important area of work |[Pell0;
Zub-+15].

All these methods are mainly used to provide artistic direction for physically-based simulation
while maintaining a plausible realistic appearance: fundamentally altering the behavior and
appearance of light and shade is not their primary goal. Furthermore, a wide range of shading
effects found in 2D illustration cannot be reproduced solely by tweaking the lighting environment:
stylization often depends on other attributes of the scene, such as surface curvature. For such
effects, specialized shading models must be used.

Lit-spheres Lit-Spheres (also called matcaps) provide another direct and flexible way to spec-
ify the appearance of an object. In the system originally described by Sloan et al. [Slo+01], the
appearance is represented by an image of a sphere. The target object is then shaded by envi-
ronment mapping using this image. This image can be captured, reconstructed from a drawing
or a photograph, or painted using digital painting tools. It can accommodate multiple shading
styles, from realistic to toon-like, without the unintuitive control imposed by a BRDF. They give
immediate plausible results with little to no manual adjustment required, and are now widely
used for shading in 3D modeling software E”ﬂ However, they are limited to static lighting as the
final appearance depends only on the camera viewpoint. Note that lit-spheres can capture not
only shading but also textural details of the appearance. However, those details are subject to
stretching and compression artifacts on shapes with a lot of curvature variations. Todo, Anjyo,
and Yokoyama |[TAY13| extended this technique by defining the lit-sphere in a light-dependent
space, allowing dynamic lighting environments, and further refined it by adding brush stroke
effects and highlight shape control that are not subject to deformations (Figure [3). However,
the range of dynamic behaviors (i.e. how the shading reacts to position and viewpoint changes)
that can be modeled with this technique is still limited.

3.2 Stylized shading models

Simple shading models derived from physical principles of light propagation are usually not suited
to reproduce light and shade found in illustrations, as they do not convey information about a
shape in the most effective way possible. To illustrate this, let’s consider lambertian shading,
used in computer graphics as a physical model of purely diffuse surfaces. In this model, a color

IPixologic ZBrush Features http://pixologic.com/zbrush/features/Materials/
2Shading - Blender Manual https://docs.blender.org/manual/nb/dev/editors/3dview/properties/
shading.html

RR n° 9225

http://pixologic.com/zbrush/features/Materials/
https://docs.blender.org/manual/nb/dev/editors/3dview/properties/shading.html
https://docs.blender.org/manual/nb/dev/editors/3dview/properties/shading.html

8 Bléron € Vergne & Hurtut € Thollot

Figure 3: Examples of lit-sphere shading with the method of Todo, Anjyo, and Yokoyama

TAY13|. Images taken from the paper.

term c is multiplied by the incoming light I;, and modulated by the geometric term (max(0,n.1))
that accounts for the angle at which the light is striking the surface:

Dambertian = ¢ X Iin x max(0,n.1) (1)

In this model, surfaces facing away from the light appear black and flat: details about the shape
are lost. The half-lambert shading model is a simple non-physical alteration of the lambertian
model to reveal those shadowed surfaces:

1

1
Ihalf-lambert =cX Iin(§ + 5111) (2)

Note that the geometric term has been replaced by the unclamped geometric term n.l; and
rescaled so that it lies in [0;1]. This simple modification appears in many stylized shading
models |[Goo+98; [RBDO6;, MFEQ7|, as a way to convey the shape of an object more clearly,
regardless of lighting conditions.

In illustration, changes in illumination of a surface are also depicted by hue shifts in addition
to variations in luminance: notably, the shadows tend to be depicted with a cool color instead of
black. From this observation, Gooch et al. proposed a shading model that reproduces
these hue shifts by using a cool-to-warm color map, obtained by combining a blue-to-yellow
gradient with the lambertian shading gradient (black to object color). The half-lambert modi-
fication is used to interpolate into this color map, so that the form is revealed even on surfaces
facing away from the light.

Similar hue shifts are present in watercolors: illumination in watercolor is painted with layers
of pigments with varying dilution. More pigments are deposited on dark regions, while brightly
lit regions actually correspond to an absence of pigments. The varying pigment density produces
changes in the color temperature in addition to changes in value . Although simulation
models for the diffusion of watercolor pigments exist , most real-time watercolor styliza-
tion techniques use simplified shading, filtering, and color modification models to approximate
diffusion effects and color variations due to pigment density [LMO01; BWKO05; Bou+06; MSR16].

These shading models work best when it is possible to adjust the lighting accordingly. How-
ever, in some contexts, it is not possible to control precisely the lighting. This is notably the case
in video games, where designers have only limited control over the position of the lights relative
to characters, as the latter can be moved around the scene. Yet, for gameplay purposes, char-
acters should be clearly identifiable at all times, in widely varying lighting conditions. Mitchell,

Inria

A workflow for designing stylized shading effects 9

Figure 4: Comparison between standard Phong shading and Gooch shading. With Phong shad-
ing, surfaces facing away from the light appear flat, and surface detail is lost. Gooch shading
reveals all surface details, even when they do not face the light. Image source: |Goo+9§|.

Francke, and Eng described the shading techniques used to effectively convey the shape
and silhouettes of stylized characters in the video game Team Fortress 2. The shading model
they described is composed of many components: an ambient term, diffuse and specular terms,
and a rim-lighting term to reveal silhouettes. This shows that shading techniques can rapidly
grow complex in highly dynamic environments: in our work, we seek a way to rapidly explore
combinations of shading terms to design such complex models.

To properly depict surface details at various scales, many non-physical shading techniques
have been proposed: Rusinkiewicz, Burns, and DeCarlo used a custom shading model
based on the half-lambertian to enhance the perception of both the overall shape and details.
This shading model is modulated by a user-controlled exaggeration parameter. By evaluating
the shading at multiple scales, from fully detailed to heavily smoothed geometry, the user can
separately control the degree of emphasis of the overall shape and of the surface details. Another
common way to enhance the shape details is to modulate the basic shading term with surface
curvature to better reveal ridges and creases [Ver+09} [Ver+10; [Ver+11|. Vergne et al.
proposed a generalization of curvature-based shading: through the apparent relief descriptor,
they are able to extract specific features of a shape, such as ridges, valleys and flat regions with
more flexibility and more intuitive control than previous methods. The extracted information
can then be used as an additional input to stylized shading models, to increase the range of
achievable appearances. Note that some of these techniques make use of screen-space filtering to
enhance shading.

Toon shading The intent of toon shading techniques is to mimic light-and-shade depiction in
cartoons and cel animation. They use few colors (typically under five colors) to depict illumina-
tion gradients. Visually, this results in characteristic color bands. The position and size of the
bands can be adjusted by artists through a color ramp.

Many extensions to the basic toon shading model have been proposed: for instance, X-toon

RR n° 9225

10 Bléron & Vergne & Hurtut € Thollot

extends the traditional toon shading by allowing users to vary tone detail according to
a view-dependent scene attribute (e.g. the scene depth), effectively replacing the traditional 1D
toon color ramp with a 2D texture (Figure . Another extension of toon shading was proposed
by Todo, Anjyo, and Igarashi : their approach can reproduce various expressive lighting
effects used in hand-drawn cartoon animation, such as the straight lighting effects used for the
depiction of flat reflective surfaces.

Figure 5: X-Toon shading |[BTMO06| example at different abstraction levels and associated 2D
toon texture map. The abstraction level can be linked to view-dependent scene attributes, such
as scene depth. Images taken from the paper.

Highlights Specular highlights convey important material clues about a surface. When depict-
ing them, illustrators also take great liberties with physics. Recognizing this, several techniques
have been proposed to provide artistic control over the shape and behavior of highlights on a
surface. Anjyo, Wemler, and Baxter propose a method to alter the shape of a car-
toon highlight in various ways: translation, deformation, rotation, squaring and splitting (see
Figure E[) These properties can be animated over time with a keyframing system. BRDFshop
allows one to create physically correct BRDFs from hand-painted highlights instead of
indirectly manipulating numerical values. Finally, in the system of Pacanowski et al. ,
the shape and color gradient of the highlight can be directly sketched in a 2D plane oriented
perpendicularly to the reflected direction.

00000 ¢

Figure 6: Tweakable light and shade: dragging the highlight on a surface, squaring, scaling, and
splitting. Image source: |[AWBO06]

However, all these techniques are specialized for specular highlights. While they provide good

artistic control and can lead to highly stylized results, they tend to have a very localized impact
on the final image. In this work, we seek a more generic approach for artistic control of shading:

Inria

A workflow for designing stylized shading effects 11

our intuition is that there is value in a system that would use the same kind of primitives for
various shading effects, and that would allow artists to combine those primitives in novel ways,
instead of considering specific effects in isolation.

This is similar to shade trees , and more recent graphical shader editors E|E| that
represent the shading equations as a tree of operation nodes. However, while these approaches
are very flexible, they are also very low-level, to the point that they approach the same degree of
flexibility as shader code. Thus, they can be seen as a way of structuring and visualizing shader
code, but do not reduce its inherent complexity and do not immediately facilitate exploration of
different appearances.

In the context of 2D vector illustration, a closer approach is Vector Shade Trees |Lop+13|.
This system can be used to construct complex appearances by arranging a set of basic shade
nodes in a compositing tree. These nodes are specialized vector primitives that are derived from
illustration guidelines for material depiction. With their system, an artist can quickly imitate
the appearance of transparent, translucent or reflective objects by combining a few of these
primitives. This is close to what we want to achieve in the context of 3D scenes: one of our
goals is to allow artists to use some of these guidelines in the context of 3D animated scenes with
dynamic lighting environments.

®.

Highlight Refl. Node

Base palette: N Skypalette:]
Ground palette: None

(a) Vector Shade Tree (b) Vector line drawing (c) Our material depiction

Figure 7: Material design in 2D illustration with Vector Shade Trees. The user arranges multiple
basic shading primitives in a compositing tree (left). The material can then be applied to vector
line drawings (middle, right). Image source: |Lop-+13]

Our approach is most closely related to the work of Vanderhaeghe et al. with Dy-
namic stylized shading primitives. Their system can reproduce various stylized shadings with
a layered combination of primitives. Primitives are composed of a base shading parametriza-
tion that can vary continuously between diffuse and specular behaviors, and parameters can be
tweaked to control the anisotropy of the shading effect, and the shape of the intensity profile.
The approach we propose is similar, but with lower-level primitives: Instead of having a single
adjustable parametrization, we allow users to freely mix-and-match simpler parametrizations
representing different shading behaviors (e.g. diffuse, specular, etc.) and scene properties (e.g.
curvature) to create novel behaviors.

In the recent work on barycentric shaders by Akleman, Liu, and House , shading
is art-directed via user-provided control images, which are then mixed according to weight im-
ages derived from usual shading parametrizations (diffuse, specular, rim-lighting, depth) and
remapping functions.

This is similar to the system we propose, although our system does not incorporate local
control via textures, and we adopted a lower-level approach in which we chose to directly expose

3Unreal Engine: Essential Material Concepts https://docs.unrealengine.com/en-US/Engine/Rendering/
Materials/IntroductionToMaterials
*Unity: Shader Graph https://unity3d.com/shader-graph

RR n° 9225

https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/IntroductionToMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/IntroductionToMaterials
https://unity3d.com/shader-graph

12 Bléron € Vergne € Hurtut € Thollot

the functions that define the illumination profile as discrete 1D texture maps, editable on-the-fly
by the user with various tools. Additionally, we expose basic operations on parametrizations to
combine them and create new shading behaviors, and locally perturb them to convey hints about
the small-scale geometry of the surface.

4 Overview

Shading design is a tedious process, especially with highly dynamic 3D scenes. We’ve seen that
a lot of different models exist, yet they share some common terms in their formulation. For
example, diffuse effects are always based upon the geometric term n - 1. Similarly, the surface
curvature is often used in shading models for emphasizing details. These models only differ by
how they map those basic shading terms to actual colors on the screen.

Designers know how to combine these terms into full models to achieve artistic goals: reveal
shapes in more detail, convey mood in a scene effectively, etc. But this is often done through a
tedious process of fine-tuning coefficients of shading terms and writing shader code. In this chap-
ter, we propose a tool to facilitate exploration of, and experimentation with, shading models. In
our tool, the user designs a shading by layering one or more shading effects each representing one
independent component of the resulting shading. We structure the design process of individual
shading effects in clear, distinct steps:

e Choosing and tuning the behavior of a shading term. This is done through combinations
of base parametrizations and value maps: they control how the shading effect will move
and spread on the object when changing viewpoints or lights. Base parametrizations are
modeled after the basic terms common to many shading models.

e Controlling the color gradient. The illumination gradient of a shading effect is controlled
through a 1D color map, directly editable by the user.

e Adding small-scale details to shading effects using perturbations that locally modify parametriza-

tions. To keep the appearance spatially and temporally coherent, details are generated
using 3D procedural noises.

An overview of the different steps of our workflow is provided in Figure [8] A typical session
with our tool starts with the user loading the object onto which they wish to design the shading,
and setting the lighting configuration (number and position of lights). From then on, users can
refine the appearance of the object on the screen by adding one or more shading effects in a
layered fashion. The design process is fully dynamic: at any point the user is able to move the
camera or the lights and the displayed appearance will update accordingly.

From a technical standpoint, the system is implemented on the GPU as a series of screen-
space operations on standard G-buffers: surface normals and tangents, depth, etc. It thus falls
in the category of deferred shading techniques.

5 Shading behaviors

Shading behaviors describe the location and extent of a shading effect and its dynamic behavior
when moving the object, the light, or the viewpoint. Users of our system design behaviors by
first choosing and optionally combining base parametrizations. Then, a value map is applied on
base parametrizations, to adjust the intensity profile of the resulting effect.

Formally, since we are in a deferred shading configuration, a shading behavior can be seen as
a screen-space value: shade(z,y), with (z,y) being the screen-space position. In more detail, we

Inria

A workflow for designing stylized shading effects 13

Value Map o
Parametrization Edition Colorization

Base Parametrization

Diffuse
Effect

Diffuse

Specular
Effect

Specular

[l

Diffuse

Silhouette

Silhouette
Effect

Figure 8: Tlustration of our workflow showing an example with three appearance effects. A user
can modify and combine base parametrizations to design the shading behavior (blue nodes) of an
appearance effect, using value maps and combination operations. A color map (green nodes) is
then applied on the designed behavior to colorize the effect. Output effects are then composited
to obtain the final appearance. Perturbations (orange nodes) can be attached to every operation
in order to add procedural details to an effect. The orientation of the perturbation can be
controlled by the gradient of a shading behavior (as shown here), or by an external vector field,
such as a tangent map.

define a shading behavior as the application of a value map f : [0,1] — [0, 1] on a parametrization
p(z,y) € [0,1]. For clarity we omit (x,y) in the rest of the chapter. Thus:

shade = f (p)

The parametrization p is a screen-space term derived from G-buffers (normals, depth, etc.) and
global scene parameters (light positions, viewpoint) and that describes a base shading behavior.
We provide several base parametrizations that represent common shading behaviors. They can
be used as-is or combined to produce more complex behaviors.

5.1 Base parametrizations

In computer graphics, shading models are composed of a sum of shading terms that model
different behaviors. For instance, the Phong shading model [Pho75] has both a diffuse term
and a specular term, for diffuse light and specular highlights. Individually, most shading terms
depend on scalar values derived from the local geometry of the surface, the viewpoint, and the
position of the lights. For example, terms that account for diffuse lighting have a dependency
on the geometric term n -1 (the cosine of the angle between the light and the surface normal);
specular highlights depend on n - h or r - v depending on the model; Fresnel reflection effects
are usually approximated with a term that depends on n - v. In this work, we call these values

RR n° 9225

14 Bléron € Vergne € Hurtut € Thollot

Surface normal
L; Light direction: unit vector to light ¢
ri Reflected light direction
v View direction: unit vector to eye position
he — litv Halfway vector between
P LA the light direction ¢ and view direction

Figure 9: Local geometry used in the definition of base parametrizations.

parametrizations. They determine the global behavior of a shading term on a surface: how it
will move and spread in response to light and view changes.

As in the technique of Akleman, Liu, and House [ALH16|, we propose to use several base
parametrizations to encode basic shading behaviors. These are derived from observation of the
terms that appear frequently in shading models. In addition to terms derived from the local
surface geometry used in physical models, we also add screen-space terms such as the screen-
space surface curvature, which can be used to enhance shape features.

Diffuse behavior: Diffuse shading effects depend only on the geometric term n-1. Notably, they
are not view-dependent and do not slide on the object when moving the viewpoint. In our
workflow, diffuse behaviors are parameterized by an angular remapping of the geometric
term:

Pdiffuse = 1 — acos (n . ll) /7T

This limits the distortion of illumination profiles on surfaces. A similar remapping is
employed in the system of Vanderhaeghe et al. [Van-+11|. Similarly to the half-lambert
model, the geometric term is not clamped between 0 and 1 and can be used to reveal
geometry that is not facing the light. Note that there is a base diffuse parametrization for
each light in the scene.

Specular behavior: Similarly, specular behaviors are parameterized by:

Pspecular = 1 — acos (Il : hl) /71'

where h; = AEY

= v They are used to add specular highlights to objects.

Silhouette: shading behaviors that affect the object silhouettes are parameterized by:
Dsilhouette = 1 — 2 X acos (1’1 ’ V) /77
This term ranges from 0 at grazing view angles, to 1 on normals oriented towards the

camera. In shading models, dependencies on the n-v term typically appear in rim-lighting

Inria

A workflow for designing stylized shading effects 15

Diffuse Specular Silhouettes Curvature Thickness

Figure 10: Visualization of base parametrizations on a given object, for a given light position
and viewpoint. Parametrizations are in the [0, 1] value range, from black to white. Users are
able to see the how a parametrization evolves by dynamically moving lights and the camera.

terms, to position lighting effects on silhouettes, or to mimic the contribution of a Fresnel
term.

Curvature: Curvature shading effects are parameterized by the screen-space view-dependent
mean curvature x [Ver+11|, remapped in the [0, 1] range:

Pcurvature = 0.5 x (]- + tanh (S X K?))

where s is a user-controllable parameter to adjust the covered value range. It can be used
in combination with other parametrizations to position shading effects on sharp object
features.

Thickness: the thickness parametrization is defined by the distance between the projected front
and back object faces.

Pthickness = |Zfront - Zback|

This requires a slight modification to the classic rendering pipeline to keep track of both
the frontmost and the backmost depths. We found that it can provide a good visual
approximation of translucency effects for simple geometries that do not have large hollow
parts.

A visualization of those parametrizations on a test object for a given light position and
viewpoint is provided in Figure [I0]

5.2 Value maps

The shading behavior described by a parametrization can be refined with the value map f, stored
in a 1D texture. By default the value map is initialized to the identity function and does not
modify the behavior of the parametrization p, so the user sees one of the images of Figure [I0]
It can be modified it to, for instance, increase the value range of a parametrization, modify
the falloff at shading terminators in a manner similar to Mitchell, Francke, and Eng ,
introduce toon-like hard value transitions, or change the spread and falloff of specular highlights

(see Figure [11).

RR n° 9225

16 Bléron € Vergne € Hurtut € Thollot

Identity Sharp Glossy Stylized

Figure 11: Use of value maps on a specular base parametrization to produce highlights of varying
glossiness, and a stylized effect.

5.3 Composition

A user can choose one of the base parametrizations unmodified, or can design more complex be-
haviors by combining them together using traditional compositing operators: multiply, which can
be used for masking part of parametrizations, akin to a logical and operation; and screen, which
has the opposite effect of multiply and can be used to merge the behavior of two parametrizations
together (logical or). In formal terms, given two parametrizations p, and py:

Pscreen = 1- (1 _pa) : (1 _pb)
Pmultiply = Pa * Pb

This compositing approach to combining parametrizations provides the most flexibility and
is also more intuitive to users already familiar with compositing software. In tandem with value
maps, the composition operators can be used to restrain the location and spread of a shading
effect. For instance, assume that the user wants a shading effect that behaves like specular
highlights, but that is only present on sharp edges. This can be achieved with a base specular
parametrization, multiplied by the curvature parametrization with a value map to filter desired
areas of high curvature.

6 Perturbation terms

Parametrizations can be modified with procedural noise before applying a color map, in a man-
ner similar to domain warping. In our system, this is implemented as perturbations: optional
operations that modulate the parametrization p of a shading behavior with a locally varying
perturbation term d based on solid procedural noise.

Warping locally modifies the behavior of a parametrization: it allows details that are revealed
by the shading effect. In constrast, compositing the details over the final result would produce
details everywhere regardless of shading and would not affect the underlying behavior of the
shading. Furthermore, procedural noise allows users to quickly experiment with adding visual
details on an object, without needing to modify the geometry or to manually paint textures.

In the following paragraphs, p’ is the perturbed parametrization, p is the original parametriza-
tion p’ is the combination of the original parameter p with a spatially varying perturbation term
d € [0, 1], given by the evaluation of a procedural noise, using one of the operations below:

Inria

A workflow for designing stylized shading effects 17

Y’" T :..
)

A
LN N 21
pe s ST YA

SN TR Wil

Behavior Noise Offsetting (scate = 1/10) Offsetting (scate = 1)

Figure 12: Offsetting examples. (Top) A toon shading transition offset with a gradient noise.
(Bottom) A specular behavior offset with a cellular noise produces highlights with complex
shapes. A high scale parameter increases the size of the jitter effect.

Offsetting p’ is given by offsetting the original parameter with the perturbation term and
clamping the result in [0, 1], following the formula

p’ = clamp (p + scale x (d — 0.5))

where scale is a user-defined scaling factor. A typical use for this operator is to jitter
the boundaries of hard shading features introduced in a value map (such as terminators
or hard specular highlights). The strength of this effect is controlled by the scaling factor
scale, as shown in Figure[I2] For parametrizations that depend on the surface normal, the
offsetting operation can reproduce effects that are perceptually similar to bump mapping.

Texturing p’ is given by:
p=p-d
The perturbation term will affect the object globally instead of being localized at shading

terminators. Thus, in contrast with offsetting, this operation can be said to add textural
details. A usage example of this operator is given in Figure).

Multiple perturbation steps can be chained together allowing complex dynamic stylized ap-
pearances. The perturbation term d comes from the evaluation of a 3D (solid) procedural noise
in model space. This avoids the shower-door artifacts commonly found with 2D procedural noise.
Another advantage of procedural noises compared to bitmap images is that they do not need
any surface parametrization and can be evaluated in real-time on animated, deformable objects.
In our deferred implementation, the solid noise is evaluated in screen-space, using the G-buffer
containing the 3D model-space position. This results in a 2D image containing perturbation

RR n°® 9225

18 Bléron € Vergne € Hurtut € Thollot

values at all positions on the screen. In our implementation, we provide two choices of noise
models to generate this perturbation term:

Gradient noise: A grayscale solid gradient noise (Perlin noise) [Per85|. The user can control
its frequency, amplitude (centered on 0.5) and number of octaves. For example, low amplitude
gradient noise used with offsetting can produce a bumpy appearance on objects with hard shading
or sharp highlights, as show in Figure

Cellular noise: This is the model described by Worley [Wor96|. It generates structured details
resembling scales with a user-defined frequency and regularity. Figure [I2] shows cellular noise
perturbing a specular parametrization to alter the shape of a specular highlight and give the
impression of surface irregularities.

6.1 Line Integral Convolution

Additionally, to increase the range of achievable appearances with procedural solid noise, a user
can optionally apply a Line Integral Convolution(LIC) |[CL93| filter on the generated solid noise.
LIC filters are mostly used for the visualization of vector fields, but have also been used for
stylization purposes [LMO1]|. The technique we propose in our pipeline is similar to the latter:
the apply the LIC filter in the 2D image containing the generated solid noise. Two options are
proposed to the user for the vector field used to guide the LIC filter:

1. The LIC is guided by the screen-space gradient of the parametrization being perturbed.
This gradient can optionally be rotated 90 degrees. This allows brush- and sketch-like
effects that are oriented according to shading features.

2. The LIC is guided by a vector field defined on the surface of the object, projected in
screen-space (for instance, the projected surface tangents or normals).

We show in Section [that this step allows the user to approximate a range of anisotropic
shading effects and appearances, such as a brushed metal look, view- and light-dependent cross-
hatching effects, or painterly strokes oriented according to the illumination falloff.

7 Colorization and compositing

Finally, the colorized result of one appearance effect is obtained by applying a 1D color map on
the shading behavior: a 1D color map is a function f : [0,1] — [0,1]* stored in a 1D RGBA
texture. An artist can edit this color map to change the shading tones, alpha channel and falloff
of shading features. Note that there is only one color mapping operation per shading effect.

The result of individual shading effects are then blended together according to a stack of com-
positing operations to obtain the final appearance, as shown in Figure || In addition to regular
alpha blending, several standard compositing operations are available at this stage, including the
multiply, screen and overlay blend modes.

8 User interface
During the design process, the user has to edit 1D value maps and color maps. We chose to

expose them directly instead of having a model with parameters for artistic flexibility. However,
editing these maps can also be tedious: to alleviate this, we provide editing tools to facilitate

Inria

A workflow for designing stylized shading effects 19

Figure 13: Blwrring a specular highlight with the click-and-drag interface on the object. (Left)
With the highlight color map currently selected, the user draws a stroke on the object to define
the range of parameters to blur on the color map. (Right) Result of the blur operation.

frequent operations done on color and value maps, which should be familiar to users of digital
painting software:

Flat The flat tool paints a constant color or value over the selected parameter range. This is
useful to create toon-like color bands.

Gradient The gradient tool paints a linear gradient. It can be used to paint smooth tonal
variations.

Blur The blur tool applies a 1D gaussian blur over the selected parameter range. A typical
use case is to increase perceived glossiness of an object by blurring the falloff of a specular
highlight.

These tools operate on a parameter range of the map. The range can be selected by clicking
and dragging 1D view of the map, or directly on the object by drawing a stroke: in the latter case,
the parameter range is determined by looking up the values of the associated parametrization at
the endpoints of the stroke. An example of user interaction is shown in Figure [I3]

9 Results

Our workflow is implemented in C++ and OpenGL. All operations are done on the GPU. While
there is considerable room for improvement on the performance of our implementation (most
of our image passes could be fused in one single shader pass), our system still keeps interactive
frame rates (> 20 FPS), even for complex styles. Note that our system only requires normal and
depth maps for calculating the base parametrizations, and position maps for coherent 3D noise.
Thus, it can be easily integrated into any pipeline that produces these three outputs.

A user starts by loading a mesh from a file, and by adding a first appearance effect. The
initial view shows the default shading behavior. From then on, the user can edit the value map
or color map by clicking and dragging on the mesh or directly on the associated 1D textures,
add a perturbation operation, or add new appearance effects. All modifications are reflected

RR n°® 9225

20 Bléron € Vergne & Hurtut € Thollot

(a) (b) () (d)

Figure 14: Simple toon shading (a). Our system easily allows details to be added with different
offsetting noises (b,c) and offsetting scales (c,d).

in real-time on the mesh. The designed appearance stays independent of the model used for
editing: this allows the user to change the mesh during a design session and resume editing
operations on this new mesh seamlessly. Our interface also provides controls for adjusting global
parameters, such as the position of the lights (azimuth and elevation), or the scaling parameter
for the surface curvature. These controls are shared by all appearance effects. The user can
also move the camera at any time by clicking and dragging on the object. A example of editing
session is provided in an accompanying video

Directional lights can be added in a scene as needed, each light having its own associated
Diffuse and Specular parametrizations. This way, a user can bind shading features to one par-
ticular light. Their directions can be controlled individually, or rotated all at once as a single
lighting environment. By progressively adding different effects that depend on different lights,
users can emulate complex lighting environments, as shown in Figure [15]e).

Figure [14] shows how our framework can accommodate simple toon shading effects with one
appearance effect parameterized by a Diffuse behavior (a). In (b-d) we add a perturbation
operation with the offsetting mode, using unmodified gradient noise (b), and cellular noise (c,d).
In (¢,d) we vary the scale parameter s of the offsetting to increase or decrease the amount of
added detail.

In Figure we show various styles achievable with our system. Simple toon shading (a)
is implemented with only one appearance effect. The shading tones were painted directly on
the object using the flat tool. In (b), the same color map was smoothed and parameterized
by a Silhouette behavior instead of Diffuse. A glossy specular highlight was added as a second
appearance effect. Figure[15]c) illustrates the use of the thickness base parametrization to give a
convincing impression of a translucent material. In (d), we combined a simple diffuse effect with
a silhouette lighting effect appearing only in unlit regions. In (e), we illustrate the ability of our
system to bind appearance effects to different lights: two glossy specular effects were added and
parameterized by two different lights. In (f), we offset a specular highlight with a high-frequency
cellular noise to reproduce a glinting effect. The use of procedural noise allows a coherent result
when moving the light. In (g), we illustrate the effect of the texturing perturbation mode. Two
perpendicularly oriented noises are combined with a diffuse behavior using a texturing operation.
The result is oriented along the image-space gradient of the diffuse term and follows its variations.
Finally, in (h) we re-used the metallic appearance shown in (b) and applied an offsetting operation
with an oriented noise in order to reproduce a brushed metal appearance. Some of those styles

Shttps://vimeo.com/289635367

Inria

https://vimeo.com/289635367

A workflow for designing stylized shading effects 21

can be seen under dynamic viewpoints and lights in the accompanying gallery video E

In Figure [16] we illustrate the behavior of a complex combination of appearance effects under
varying lighting conditions. The appearance shown is composed of a base diffuse effect (orange),
and an edge lighting effect (cyan) that appears only on object silhouettes and regions of high
curvature. The behavior of this effect was designed by merging the Silhouette and Curvature be-
haviors using the Screen mode, and by multiplying the result with a remapped Diffuse behavior,
so that the effect appears only in the unlit part of the object. By providing simple compositing
operations to combine and remap shading behaviors, our system allows fast prototyping of such
complex shading behaviors without the need for extensive technical knowledge.

Figure [I7] shows the decomposition of an appearance effect based on surface curvature: we
combined, using the multiply blending mode, value-mapped Specular (b) and Curvature (a)
behaviors to obtain highlights localized on sharp object edges that behave specularly (c¢). The
final result is shown in (d). We then transferred this style to other objects, as shown in the
bottom row. The size of the edge highlight effect can be modified either by tweaking the value
map used to select the desired curvature range or by adjusting the global scaling parameter for
curvature.

10 Discussion

We proposed a workflow and a set of editing tools to design shading models that produce stylized
appearances that stay coherent under light and viewpoint changes. Our main contribution is
the separation of individual effects in three aspects: shading behavior of the effect, addition of
procedural details, and colorization. This decomposition offers a more precise and predictable
result than offline appearance transfer techniques, while being more flexible and easier to use for
non-technical artists than specialized shading models. Our workflow allows stylization results
to be calculated in real-time and is thus usable in interactive contexts such as visualization, 3D
modeling, or video games. We have provided several base parametrizations that encode common
shading behaviors and proposed ways to control their size and placement on an object. For
non-technical artists, we feel that this approach is more direct for designing complex behaviors
than hand-written shaders.

10.1 Parametrizations

We feel that the proposed system could benefit from more base parametrizations: notably, a cur-
rent limitation is the inability to reproduce convincing refraction effects for translucent objects.
More work is needed in this direction to provide intuitive base parametrizations for these effects.
The same is true for global illumination effects such as color bleeding between objects in a scene,
or subsurface scattering, for which we should provide specialized parametrizations.

Currently, the parametrizations are only defined on pixels covered by the rasterized object.
This means that all shading and appearance effects are cut at object silhouettes. A possible
improvement to our system would be to extend parametrizations in a region surrounding the
object in order to create appearance effects that alter the object silhouette, such as a glow effect.

Concerning procedural details, the combination of 3D gradient noise and line integral convo-
lution ended up being sufficient for a wide range of appearances. Our system can also be used
with cellular noise to produce medium-scale details, but could be extended with other kinds
of structured noises. The use of 3D noise produces details that are fully coherent with scene
motion. However, there are cases where a more 2D aspect is desired: in this case, our stylization

Shttps://vimeo.com/289635608

RR n° 9225

https://vimeo.com/289635608

22 Bléron € Vergne € Hurtut € Thollot

approach could be extended with coherent 2D noise primitives |[Bén+10]. Another limitation
of our system in this aspect is that small-scale procedural details on shading features are not
preserved when transferring the appearance to a mesh with high-frequency geometric detail. In
these scenarios, we would want shading effects to ignore the high-frequency detail. This could
be done either by rendering parametrizations with a smoothed out mesh, or by prefiltering the
existing parametrizations to remove high-frequency variations. For this, inspiration could be
taken from the exaggerated shading technique [RBDO06|, which operates at multiple detail scales.

More generally, this also raises the question of the ability of our system to reproduce shading
styles found in 2D illustration. The proposed parametrizations are based on standard shading
terms (e.g. the lambertian term, or the specular term), but illustrative styles may not closely
follow these models. For instance, in the so-called sculptural lighting style described by Hogarth,
each continuous part of a shape is shaded “as if the light falls on the center” (of the shape)
|Hog91|, independently of whether the shape is actually facing a light, or the camera: this allows
revealing each continuous part of a shape with maximum clarity (Figure . Currently, there is
no way to capture the “center” of a shape with our parametrizations: this belongs to a class of
shading effects that are best defined in screen-space.

An interesting area of research would be to propose new view-depdendent shading terms
beyond lambertian and specular, that include screen-space values (for instance, the screen-space
distance to contours), which would possibly allow a formalization of such illustrative shading
styles.

10.2 User study

As a future work, we would like to conduct a user study on artists, and measure the time saved
compared to writing shader code by hand. A possible evaluation protocol would be to have
artists reproduce a given shading style in a limited time using both approaches (directly writing
shaders, and using our tool) and compare the time spent for each approach. It would also
be interesting to compare our layered approach to shading design with the node-based shader
editors implemented in many game engines and 3D modeling software. This would allow us to
compare the efficiency of a representation in successive layers versus a more free-form node graph
representation. With a similar protocol, we would also like to evaluate the ability of our system
to reproduce shading styles found in 2D illustration.

It would also be interesting to perform a user study on non-technical users, outside the
audience that we originally targeted. We believe, after having used the system for a while, that
such a tool has potential uses for non-technical users, as an easily accessible appearance design
tool. Such a study would provide clues as to what kind of interface and vocabulary would be
necessary for less technically-skilled users. We expect that some work will have to be done on
the shading primitives exposed to the users, and also the vocabulary employed: in this work,
we focused on artists who have knowledge of shading terms employed in computer graphics (e.g.
diffuse and specular components, rim-lighting terms, etc.), whereas non-technical users may not
be familiar with this vocabulary.

10.3 Integration into existing modeling software

One way of having more users trying our tool is to integrate it into existing 3D creation toolsets.
Commercial plugins for stylized shading design exist E]EHEHE but usually target specific looks

"PSOFT Pencil+ https://www.psoft.co.jp/en/product/pencil/3dsmax/
8ToonKit http://cogumelosoftworks.com/index.php/toonkit/
9Maneki(®) http://maneki.sh/
10cebas finalToon™ 4.0 https://www.cebas.com/index . php?pid=productinfo&prd_id=192

Inria

https://www.psoft.co.jp/en/product/pencil/3dsmax/
http://cogumelosoftworks.com/index.php/toonkit/
http://maneki.sh/
https://www.cebas.com/index.php?pid=productinfo&prd_id=192

A workflow for designing stylized shading effects 23

(toon shading, in particular). Our system could be easily implemented into existing rendering
pipelines as a deferred shading pass. Also, while our system is currently implemented with one
screen-space pass per layer for historical reasons, it could be easily merged into a single pass for
effects that do not depend on screen-space filtering: thus, as a future extension, it should be
feasible to export the layers as one fragment shader that would be usable in game engines, for
instance.

10.4 Inference from hand-painted input

Another axis of research that we would like to explore is the possibility of automatically inferring
a shading model from hand-painted inputs, in complement of the manual edition of layers. With
stroke annotations painted by the user, the system would deduce on-the-fly the combination of
input parametrizations that best fits the shading intent of the user.

In the general case, given a finished painting, this is difficult to do. An online approach is
more suited to this case, as the user could progressively refine the result of the inference by
painting additional strokes. Additional hints may be provided by the user besides strokes, e.g.
in the form of constraints for the inference algorithm.

This would be similar to the style transfer method proposed by Figer et al. [Fis+16|, although
in their system, the relation between the real illumination of the scene and the painted depiction is
captured globally on the whole image, and then synthesized with image analogies. In our case, the
inference result would be an explicit shading model (i.e. a function of the local surface properties,
viewpoint, and lights) and usable in real-time contexts. Such an approach would be especially
powerful when combined with a fallback to the manual editing of layers, and possibly, with local
control of the shading (e.g. through normal maps, or through perturbations): for instance, we
could propose a painting interface that would let the user paint local tone variations on the
surface of an object and automatically translate them into coherent local adjustments of the
geometry or the normal map. This way, with additional local control, we could potentially cover
both ends of the interaction spectrum, from low-level control to higher-level, global behaviors.
This would be a significant step towards a comprehensive framework for stylized depiction of
light and shade in 3D scenes.

References

[ALH16] Ergun Akleman, S Liu, and Donald House. “Barycentric Shaders: Art Directed Shad-
ing Using Control Images”. In: Proceedings of Ezxpressive 2016. 2016.

[AWBO06|] Ken-ichi Anjyo, Shuhei Wemler, and William Baxter. “Tweakable Light and Shade
for Cartoon Animation”. In: Proceedings of the 4th International Symposium on Non-
photorealistic Animation and Rendering. New York, NY, USA: ACM, 2006, pp. 133~
139.

[Bén+10] Pierre Bénard, Ares Lagae, Peter Vangorp, Sylvain Lefebvre, George Drettakis, and
Joélle Thollot. “A Dynamic Noise Primitive for Coherent Stylization”. In: Computer
Graphics Forum (Proceedings of the Eurographics Symposium on Rendering 2010)
29.4 (June 2010), pp. 1497-1506.

[Bou+06] Adrien Bousseau, Matthew Kaplan, Joélle Thollot, and Frangois X Sillion. “Inter-
active watercolor rendering with temporal coherence and abstraction”. In: Interna-

tional Symposium on Non-Photorealistic Animation and Rendering (NPAR). Annecy,
France: ACM, 2006.

RR n° 9225

24 Bléron € Vergne € Hurtut € Thollot

[BTMO06] Pascal Barla, Joélle Thollot, and Lee Markosian. “X-Toon: An extended toon shader”.
In: International Symposium on Non-Photorealistic Animation and Rendering (NPAR’06).
Ed. by Douglas DeCarlo and Lee Markosian. Annecy, France: ACM, June 2006.

[BWKO05] J Burgess, G Wyvill, and S A King. “A system for real-time watercolour rendering”.
In: International 2005 Computer Graphics. June 2005, pp. 234-240.

[CL93| Brian Cabral and Leith Casey Leedom. “Imaging Vector Fields Using Line Integral
Convolution”. In: Proceedings of the 20th Annual Conference on Computer Graphics
and Interactive Techniques. New York, NY, USA: ACM, 1993, pp. 263-270.

[Coo84] Robert L. Cook. “Shade Trees”. In: Proceedings of the 11th Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH ’84. New York, NY,
USA: ACM, 1984, pp. 223-231.

[CPKO6] Mark Colbert, Sumanta Pattanaik, and Jaroslav Krivanek. “BRDF-Shop: Creating
physically correct bidirectional reflectance distribution functions”. In: IEEE Com-
puter Graphics and Applications 26.1 (2006), pp. 30-36.

[Cur+97] Cassidy J. Curtis, Sean E. Anderson, Joshua E. Seims, Kurt W. Fleischer, and David
H. Salesin. “Computer-generated watercolor”. In: Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques - SIGGRAPH 97 (1997).

[Fisg4+16] Jakub FiSer, Ond\vrej Jamriska, Michal Lukaé¢, Eli Shechtman, Paul Asente, Jingwan
Lu, and Daniel Sykora. “StyLit: Illumination-Guided Example-Based Stylization of
3D Renderings”. In: ACM Transactions on Graphics 35.4 (2016).

[Goo+98] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. “A Non-photorealistic
Lighting Model for Automatic Technical Illustration”. In: Proceedings of the 25th

Annual Conference on Computer Graphics and Interactive Techniques. New York,
NY, USA: ACM, 1998, pp. 447-452.

[Hog91] Burne Hogarth. Dynamic Light and Shade. Watson-Guptill, 1991.

[KPD10] William B Kerr, Fabio Pellacini, and Jonathan D Denning. “BendyLights: Artistic
Control of Direct llumination by Curving Light Rays”. In: Computer Graphics Forum
(2010).

[LMO1] E B Lum and Kwan-Liu Ma. “Non-photorealistic rendering using watercolor inspired

textures and illumination”. In: Proceedings Ninth Pacific Conference on Computer
Graphics and Applications. Pacific Graphics 2001. 2001, pp. 322-330.

[Lop+13] Jorge Lopez-Moreno, Stefan Popov, Adrien Bousseau, Maneesh Agrawala, and George
Drettakis. “Depicting Stylized Materials with Vector Shade Trees”. In: ACM Trans-
actions on Graphics (SIGGRAPH Conference Proceedings) 32.4 (2013).

[MFE07] Jason Mitchell, Moby Francke, and Dhabih Eng. “Illustrative rendering in team
fortress 27. In: Proceedings of the 5th international symposium on Non-photorealistic
animation and rendering. ACM, 2007, pp. 71-76.

[MSR16] Santiago E Montesdeoca, Hock-Soon Seah, and Hans-Martin Rall. “Art-directed Wa-
tercolor Rendered Animation”. In: Non-Photorealistic Animation and Rendering. Ed.
by Pierre Bénard and Holger Winneméller. The Eurographics Association, 2016.

[Oka+07] Makoto Okabe, Yasuyuki Matsushita, Li Shen, and Takeo Igarashi. “Illumination
brush: Interactive design of all-frequency lighting”. In: Computer Graphics and Ap-
plications, 2007. PG’07. 15th Pacific Conference on. IEEE, 2007, pp. 171-180.

Inria

A workflow for designing stylized shading effects 25

[Pac+08]

[Pel4-07]
[Pel10]

[Per85]

[Pho75]

[RBDOG]

[Rit-+09]

[Rit+10]

[Sch+13]

[Slo+01]

[TAI09]
[TAY13]

[Van+11]

[Ver—+08]

[Ver—+09]

RR n°® 9225

Romain Pacanowski, Xavier Granier, Christophe Schlick, and Pierre Poulin. “Sketch
and paint-based interface for highlight modeling”. In: Eurographics Workshop on
Sketch-Based Interfaces and Modeling. 2008, pp. 7-23.

Fabio Pellacini, Frank Battaglia, Keith Morley, and Adam Finkelstein. “Lighting with
Paint”. In: ACM Transactions on Graphics 26.2 (June 2007), Article 9.

Fabio Pellacini. “envyLight: An Interface for Editing Natural [llumination”. In: ACM
Trans. Graph. 29.4 (July 2010), 34:1-34:8.

Ken Perlin. “An Image Synthesizer”. In: Proceedings of the 12th Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH ’85. New York, NY,
USA: ACM, 1985, pp. 287-296.

Bui Tuong Phong. “Illumination for Computer Generated Pictures”. In: Commun.
ACM 18.6 (June 1975), pp. 311-317.

Szymon Rusinkiewicz, Michael Burns, and Doug DeCarlo. “Exaggerated Shading
for Depicting Shape and Detail”. In: ACM Transactions on Graphics, Proceedings
of ACM SIGGRAPH 2006 (Boston, MA, July 30-August 3, 2006) 25.3 (2006),
pp. 1199-1205.

Tobias Ritschel, Makoto Okabe, Thorsten Thorméhlen, and Hans-Peter Seidel. “In-
teractive Reflection Editing”. In: ACM Trans. Graph. (Proc. SIGGRAPH Asia 2009)
28.5 (2009).

Tobias Ritschel, Thorsten Thorméhlen, Carsten Dachsbacher, Jan Kautz, and Hans-
Peter Seidel. “Interactive On-surface Signal Deformation”. In: ACM Trans. Graph.
29.4 (July 2010), 36:1-36:8.

Thorsten-Walther Schmidt, Jan Novak, Johannes Meng, Anton S Kaplanyan, Tim
Reiner, Derek Nowrouzezahrai, and Carsten Dachsbacher. “Path-Space Manipulation

of Physically-Based Light Transport”. In: ACM Transactions on Graphics (Proceed-
ings of ACM SIGGRAPH 2013) 32.4 (Aug. 2013).

Peter-Pike J Sloan, William Martin, Amy Gooch, and Bruce Gooch. “The Lit Sphere:
A Model for Capturing NPR Shading from Art”. In: Proceedings of Graphics Interface
2001. Toronto, Ont., Canada, Canada: Canadian Information Processing Society,
2001, pp. 143-150.

Hideki Todo, Ken Anjyo, and Takeo Igarashi. “Stylized lighting for cartoon shader”.
In: Computer Animation and Virtual Worlds 20.2-3 (2009), pp. 143-152.

Hideki Todo, Ken Anjyo, and Shun’Ichi Yokoyama. “Lit-Sphere Extension for Artistic
Rendering”. In: Vis. Comput. 29.6-8 (June 2013), pp. 473-480.

David Vanderhaeghe, Romain Vergne, Pascal Barla, and William Baxter. “Dynamic
Stylized Shading Primitives”. In: NPAR ’11:Proceedings of the 8th International Sym-
posium on Non-Photorealistic Animation and Rendering. Vancouver, Canada, Aug.
2011, pp. 99-104.

Romain Vergne, Pascal Barla, Xavier Granier, and Christophe Schlick. “Apparent
Relief: A Shape Descriptor for Stylized Shading”. In: Proceedings of the Sixth Inter-
national Symposium on Non-Photorealistic Animation and Rendering (NPAR 2008,
June 9-11, 2008, Annecy, France) (2008).

Romain Vergne, Romain Pacanowski, Pascal Barla, Xavier Granier, and Christophe
Schlick. “Light Warping for Enhanced Surface Depiction”. In: ACM Transaction on
Graphics (Proceedings of SIGGRAPH 2009) 28.3 (2009).

26

Bléron € Vergne € Hurtut € Thollot

[Ver+10]

[Ver+11]

[Wor96]

[Zub+15]

Romain Vergne, Romain Pacanowski, Pascal Barla, Xavier Granier, and Christophe
Schlick. “Radiance Scaling for Versatile Surface Enhancement”. In: 13D ’10: Proc.
symposium on Interactive 3D graphics and games. Boston, United States: ACM,
Feb. 2010.

Romain Vergne, Romain Pacanowski, Pascal Barla, Xavier Granier, and Christophe
Schlick. “Improving Shape Depiction under Arbitrary Rendering”. In: IEEE Trans-
actions on Visualization and Computer Graphics 17.8 (June 2011), pp. 1071-1081.

Steven Worley. “A Cellular Texture Basis Function”. In: Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques. New York,
NY, USA: ACM, 1996, pp. 291-294.

Carlos J Zubiaga, Adolfo Munoz, Laurent Belcour, Carles Bosch, and Pascal Barla.
“MatCap Decomposition for Dynamic Appearance Manipulation”. In: Furographics
Symposium on Rendering 2015. Darmstadt, Germany, June 2015.

Inria

A workflow for designing stylized shading effects 27

B

Specular Thickness

Colormap (NN)| Colormap (NG

Diffuse Silhouettes Specular

Colormap (TN | | Colormap (TN | | Colormap (N)

(b)
» .
N .
‘\—-\\ o

(a)

()

Diffuse
S Color map _ (RN
Diffuse
Coormap (T)
Specular #1 colormap ()
Diffuse Colormap (NG
Value map [Specular
Silhouette Specular #2 Offset: cellular noise @
| Colormap (NS | Colormap (IR coormp (NN

@ () (f)

Diffuse
Texture: grad. noise + LIC M/\ | |Specular

Colormap (I)| | Offset: grad. noise + LIC ‘//\/\ —
Colormap (NN)

Diffuse
Texture: grad. noise + LIC MA | | Silhouettes

Colormap (N)| |Colormap NG

RR n° 9225

(8) (h)

Figure 15: Various styles obtained with our system, and corresponding layer decompositions.
See Section [J] for details.

28 Bléron € Vergne € Hurtut € Thollot

Diffuse

Colormap (NN)

Diffuse
Valuemap (D
Silhouette

| Colormap (D

Diffuse

Value map (NN)

| Color map

&
/

Figure 16: Our system allows complex spatially and temporally coherent behaviors with varying
light directions. Here, curved regions and silhouettes are enhanced with a bluish color when the
diffuse component gets darker.

Inria

A workflow for designing stylized shading effects 29

(a) Curvature (b) Specular (¢) Multiplied (d) Result

Figure 17: Combining parameterizations: user-defined curvature (a) and specular (b) behaviors
are multiplied together (c) in order to ensure the highlights to appear on highly curved regions
only (d). The corresponding style is then directly transferred to other input objects, as shown
in the bottom row.

Figure 18: Sculptural shading example by Burne Hogarth. This shading style reveals all parts
of the shape, producing highlights centered on each continuous component of the shape. Image
source: |[Hog91|

RR n° 9225

V4

: in[arma!ics,mutheman’cs

RESEARCH CENTRE
GRENOBLE - RHONE-ALPES

Inovallée
655 avenue de I'Europe Montbonnot
38334 Saint Ismier Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Light and shade in 2D illustration
	Related work
	Editing lighting environments
	Stylized shading models

	Overview
	Shading behaviors
	Base parametrizations
	Value maps
	Composition

	Perturbation terms
	Line Integral Convolution

	Colorization and compositing
	User interface
	Results
	Discussion
	Parametrizations
	User study
	Integration into existing modeling software
	Inference from hand-painted input

