M. R. Farhat, B. J. Shapiro, K. J. Kieser, R. Sultana, K. R. Jacobson et al., Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis, Nature genetics, vol.45, issue.10, pp.1183-1189, 2013.

S. K. Sheppard, X. Didelot, G. Meric, A. Torralbo, K. A. Jolley et al.,

, Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter, Proceedings of the national academy of sciences, vol.110, pp.11923-11927, 2013.

M. T. Alam, R. A. Petit, E. K. Crispell, T. A. Thornton, K. N. Conneely et al., Dissecting vancomycin-intermediate resistance in Staphylococcus aureus using genome-wide association, Genome biology and evolution, vol.6, issue.5, pp.1174-1185, 2014.

C. Chewapreecha, P. Marttinen, N. J. Croucher, S. J. Salter, S. R. Harris et al., Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes, PLoS genetics, vol.10, issue.8, p.1004547, 2014.

S. G. Earle, C. H. Wu, J. Charlesworth, N. Stoesser, N. C. Gordon et al., Identifying lineage effects when controlling for population structure improves power in bacterial association studies, Nature microbiology, p.16041, 2016.

J. A. Lees, M. Vehkala, N. Välimäki, S. R. Harris, C. Chewapreecha et al., Sequence element enrichment analysis to determine the genetic basis of bacterial phenotypes, Nature communications, vol.7, p.12797, 2016.

M. Jaillard, A. Van-belkum, K. C. Cady, D. Creely, D. Shortridge et al., Correlation between phenotypic antibiotic susceptibility and the resistome in Pseudomonas aeruginosa, International journal of antimicrobial agents, 2017.

A. J. Page, C. A. Cummins, M. Hunt, V. K. Wong, S. Reuter et al., Roary: rapid large-scale prokaryote pan genome analysis, Bioinformatics, vol.31, issue.22, pp.3691-3693, 2015.

H. Zhang, D. Li, L. Zhao, J. Fleming, N. Lin et al., Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance, Nature genetics, vol.45, issue.10, pp.1255-1260, 2013.

J. M. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, and L. J. Piddock, Molecular mechanisms of antibiotic resistance, Nature reviews microbiology, vol.13, issue.1, pp.42-51, 2015.

D. H. Haft, M. Dicuccio, A. Badretdin, V. Brover, V. Chetvernin et al., RefSeq: an update on prokaryotic genome annotation and curation, Nucleic acids research, vol.46, issue.D1, pp.851-860, 2017.

L. Bras, Y. , C. O. Monjeaud, C. Lacroix, V. Rivalsérivals´rivalsé et al., Colib'read on galaxy: a tools suite dedicated to biological information extraction from raw NGS reads, GigaScience, vol.5, issue.1, p.1, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01280238

A. Rahman, I. Hallgrímsdóttir, M. Eisen, and L. Pachter, Association mapping from sequencing reads using k-mers, eLife, vol.7, p.32920, 2018.

T. D. Read and R. C. Massey, Characterizing the genetic basis of bacterial phenotypes using genome-wide association studies: a new direction for bacteriology, Genome medicine, vol.6, issue.11, p.109, 2014.

R. A. Power, J. Parkhill, and T. De-oliveira, Microbial genome-wide association studies: lessons from human GWAS, Nature reviews genetics, vol.18, issue.1, pp.41-50, 2017.
DOI : 10.1038/nrg.2016.132

N. De-bruijn, Proceedings of the koninklijke nederlandse akademie van wetenschappen Series A, vol.49, p.758, 1946.

P. A. Pevzner, H. Tang, and M. S. Waterman, An Eulerian path approach to DNA fragment assembly, Proceedings of the national academy of sciences, vol.98, pp.9748-9753, 2001.
DOI : 10.1073/pnas.171285098

URL : http://www.pnas.org/content/98/17/9748.full.pdf

W. Zhang, J. Chen, Y. Yang, Y. Tang, J. Shang et al., A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies, PloS one, vol.6, issue.3, p.17915, 2011.
DOI : 10.1371/journal.pone.0017915

URL : https://doi.org/10.1371/journal.pone.0017915

Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. Mcvean, De novo assembly and genotyping of variants using colored de Bruijn graphs, Nature Genetics, vol.44, issue.2, pp.226-232, 2012.
DOI : 10.1038/ng.1028

URL : http://europepmc.org/articles/pmc3272472?pdf=render

D. C. Hooper and G. A. Jacoby, Mechanisms of drug resistance: quinolone resistance, Annals of the New York academy of sciences, vol.1354, issue.1, pp.12-31, 2015.
DOI : 10.1111/nyas.12830

URL : http://europepmc.org/articles/pmc4626314?pdf=render

F. D. Lowy, Antimicrobial resistance: the example of Staphylococcus aureus, Journal of clinical investigation, vol.111, issue.9, p.1265, 2003.
DOI : 10.1172/jci200318535

URL : http://www.jci.org/articles/view/18535/files/pdf

J. Piton, S. Petrella, M. Delarue, G. André-leroux, V. Jarlier et al., Structural insights into the quinolone resistance mechanism of Mycobacterium tuberculosis DNA gyrase, PLoS one, vol.5, issue.8, p.12245, 2010.
DOI : 10.1371/journal.pone.0012245

URL : https://hal.archives-ouvertes.fr/pasteur-01126607

P. Lambert, Mechanisms of antibiotic resistance in Pseudomonas aeruginosa, Journal of the royal society of medicine, vol.95, p.22, 2002.

, UniProt: the universal protein knowledgebase, vol.45, pp.158-169, 2017.

T. Lambert, M. Ploy, and P. Courvalin, A spontaneous point mutation in the aac(6')-Ib' gene results in altered substrate specificity of aminoglycoside 6'-N-acetyltransferase of a Pseudomonas fluorescens strain, FEMS microbiology letters, vol.115, pp.297-304, 1994.

H. Lee, S. Cho, H. Bang, J. Lee, G. Bai et al., Exclusive mutations related to isoniazid and ethionamide resistance among Mycobacterium tuberculosis isolates from Korea. The international journal of tuberculosis and lung disease, vol.4, pp.441-447, 2000.

M. R. Farhat, R. Sultana, O. Iartchouk, S. Bozeman, J. Galagan et al., Genetic determinants of drug resistance in Mycobacterium tuberculosis and their diagnostic value. American journal of respiratory and critical care medicine, vol.194, pp.621-630, 2016.

J. P. Flandrois, G. Lina, and O. Dumitrescu, MUBII-TB-DB: a database of mutations associated with antibiotic resistance in Mycobacterium tuberculosis, BMC bioinformatics, vol.15, issue.1, p.107, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00982132

I. Consortium, Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements, Antimicrobial agents and chemotherapy, vol.53, issue.12, pp.4961-4967, 2009.

N. Gordon, J. Price, K. Cole, R. Everitt, M. Morgan et al., Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing, Journal of clinical microbiology, vol.52, issue.4, pp.1182-1191, 2014.

H. Westh, D. Hougaard, J. Vuust, and V. Rosdahl, Prevalence of erm gene classes in erythromycin-resistant Staphylococcus aureus strains isolated between 1959 and 1988, Antimicrobial agents and chemotherapy, vol.39, issue.2, pp.369-373, 1995.

D. A. Benson, M. Cavanaugh, K. Clark, I. Karsch-mizrachi, D. J. Lipman et al., Nucleic acids research, vol.41, issue.D1, pp.36-42, 2012.

D. Bi, Y. Xie, C. Tai, X. Jiang, J. Zhang et al., A site-specific integrative plasmid found in Pseudomonas aeruginosa clinical isolate HS87 along with a plasmid carrying an aminoglycoside-resistant gene, PloS one, vol.11, issue.2, p.148367, 2016.

J. C. Palomino and A. Martin, Drug resistance mechanisms in Mycobacterium tuberculosis, Antibiotics, vol.3, issue.3, pp.317-340, 2014.

J. J. Davis, S. Boisvert, T. Brettin, R. W. Kenyon, C. Mao et al., Antimicrobial resistance prediction in PATRIC and RAST, Scientific reports, vol.6, p.27930, 2016.

J. Lees, M. Galardini, S. D. Bentley, J. N. Weiser, and J. Corander, pyseer: a comprehensive tool for microbial pangenome-wide association studies, Bioinformatics, p.539, 2018.

H. Traore, K. Fissette, I. Bastian, M. Devleeschouwer, and F. Portaels, Detection of rifampicin resistance in Mycobacterium tuberculosis isolates from diverse countries by a commercial line probe assay as an initial indicator of multidrug resistance. The international journal of tuberculosis and lung disease, vol.4, pp.481-484, 2000.

D. Illakkiam, M. Shankar, P. Ponraj, J. Rajendhran, and P. Gunasekaran, Genome sequencing of a mung bean plant growth promoting strain of P. aeruginosa with biocontrol ability, International journal of genomics, 2014.

A. Fadel, F. Sebban-kreuzer, C. Ba, M. Pélissier, G. D. Bornet et al., Structural and functional insights into the periplasmic detector domain of the GacS histidine kinase controlling biofilm formation in Pseudomonas aeruginosa, Scientific reports, vol.7, issue.1, p.11262, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01770068

T. Marschall, M. Marz, T. Abeel, L. Dijkstra, B. E. Dutilh et al., Computational pan-genomics: status, promises and challenges, Briefings in bioinformatics, p.89, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01390478

B. Paten, A. M. Novak, J. M. Eizenga, and E. Garrison, Genome graphs and the evolution of genome inference, Genome research, vol.27, issue.5, pp.665-676, 2017.

J. A. Baaijens, E. Aabidine, A. Z. Rivals, E. Schönhuth, and A. , De novo assembly of viral quasispecies using overlap graphs, Genome research, vol.27, issue.5, pp.835-848, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01693168

M. Jaillard, Fine mapping of antibiotic resistance determinants, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02044150

W. M. Dunne, M. Jaillard, O. Rochas, V. Belkum, and A. , Microbial genomics and antimicrobial susceptibility testing. Expert review of molecular diagnostics, vol.17, pp.257-269, 2017.

V. N. Kos, M. Déraspe, R. E. Mclaughlin, J. D. Whiteaker, P. H. Roy et al., The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility, Antimicrobial agents and chemotherapy, p.3954, 2014.

P. Bradley, N. C. Gordon, T. M. Walker, L. Dunn, S. Heys et al., Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis, Nature communications, vol.6, p.10063, 2015.

D. Moradigaravand, M. Palm, A. Farewell, V. Mustonen, J. Warringer et al., Precise prediction of antibiotic resistance in Escherichia coli from full genome sequences, bioRxiv, p.338194, 2018.

J. Butler, I. Maccallum, M. Kleber, I. A. Shlyakhter, M. K. Belmonte et al., ALLPATHS: de novo assembly of whole-genome shotgun microreads, Genome research, vol.18, issue.5, pp.810-820, 2008.

D. Zerbino and E. Birney, Velvet: algorithms for de novo Short Read Assembly Using De Bruijn Graphs, Genome research, 2008.

R. Chikhi, A. Limasset, and P. Medvedev, Compacting de Bruijn graphs from sequencing data quickly and in low memory, Bioinformatics, vol.32, issue.12, pp.201-208, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01395704

E. Drezen, G. Rizk, R. Chikhi, C. Deltel, C. Lemaitre et al., GATB: genome assembly & analysis tool box, Bioinformatics, vol.30, issue.20, pp.2959-2961, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01088571

A. Limasset, G. Rizk, R. Chikhi, and P. Peterlongo, Fast and scalable minimal perfect hashing for massive key sets, p.170203154, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01566246

D. J. Balding, A tutorial on statistical methods for population association studies, Nature reviews genetics, vol.7, issue.10, pp.781-791, 2006.

X. Zhou and M. Stephens, Efficient multivariate linear mixed-model algorithms for genome-wide association studies, Nature methods, vol.11, issue.4, p.407, 2014.

C. Widmer, C. Lippert, O. Weissbrod, N. Fusi, C. Kadie et al., Further improvements to linear mixed models for genome-wide association studies, Scientific reports, vol.4, 2014.

D. Falush and R. Bowden, Genome-wide association mapping in bacteria?, Trends in microbiology, vol.14, issue.8, pp.353-355, 2006.

C. Collins and X. Didelot, A phylogenetic method to perform genome-wide association studies in microbes that accounts for population structure and recombination, PLOS Computational Biology, vol.14, issue.2, pp.1-21, 2018.

X. Zhou and M. Stephens, Genome-wide efficient mixed-model analysis for association studies, Nature genetics, vol.44, issue.7, pp.821-824, 2012.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the royal statistical society Series B (Methodological), pp.289-300, 1995.

C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos et al., BLAST+: architecture and applications, BMC bioinformatics, vol.10, issue.1, p.421, 2009.

E. Zankari, H. Hasman, S. Cosentino, M. Vestergaard, S. Rasmussen et al., Identification of acquired antimicrobial resistance genes, Journal of antimicrobial chemotherapy, vol.67, issue.11, pp.2640-2644, 2012.

S. M. Lakin, C. Dean, N. R. Noyes, A. Dettenwanger, A. S. Ross et al., MEGARes: an antimicrobial resistance database for high throughput sequencing, vol.45, pp.574-580, 2017.

S. K. Gupta, B. R. Padmanabhan, S. M. Diene, R. Lopez-rojas, M. Kempf et al., ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes, Antimicrobial agents and chemotherapy, vol.58, issue.1, pp.212-220, 2014.

M. Franz, C. T. Lopes, G. Huck, Y. Dong, O. Sumer et al., js: a graph theory library for visualisation and analysis, Bioinformatics, vol.32, issue.2, pp.309-311, 2015.

A. Van-belkum, L. B. Soriaga, M. C. Lafave, S. Akella, J. B. Veyrieras et al., Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa, mBio, vol.6, issue.6, pp.1796-1811, 2015.

, Organization WH. Global tuberculosis report, 2017.

S. M. Gygli, S. Borrell, A. Trauner, and S. Gagneux, Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives, FEMS microbiology reviews, vol.41, issue.3, pp.354-373, 2017.

A. R. Wattam, J. J. Davis, R. Assaf, S. Boisvert, T. Brettin et al., Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center, Nucleic acids research, vol.45, issue.D1, pp.535-542, 2016.

A. Mlynarczyk, G. Mlynarczyk, and J. Jeljaszewicz, The genome of Staphylococcus aureus: a review, Zentralblatt für Bakteriologie, vol.287, issue.4, pp.277-314, 1998.

Y. Y. Liu, Y. Wang, T. R. Walsh, L. X. Yi, R. Zhang et al., Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet infectious diseases, vol.16, pp.161-168, 2016.

V. L. Kung, E. A. Ozer, and A. R. Hauser, The accessory genome of Pseudomonas aeruginosa. Microbiology and molecular biology reviews, vol.74, pp.621-641, 2010.

J. P. Pirnay, F. Bilocq, B. Pot, P. Cornelis, M. Zizi et al., Pseudomonas aeruginosa population structure revisited, PLoS one, vol.4, issue.11, p.7740, 2009.

F. Coll, R. Mcnerney, M. D. Preston, J. A. Guerra-assunção, A. Warry et al., Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences, Genome medicine, vol.7, issue.1, p.51, 2015.

B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman et al., Mash: fast genome and metagenome distance estimation using MinHash, Genome biology, vol.17, issue.1, p.132, 2016.

G. Marçais and C. Kingsford, A fast, lock-free approach for efficient parallel counting of occurrences of k-mers, Bioinformatics, vol.27, issue.6, pp.764-770, 2011.

S. D. Jackman, B. P. Vandervalk, H. Mohamadi, J. Chu, S. Yeo et al., ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter, Genome research, vol.27, issue.5, pp.768-777, 2017.