S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang et al., Gapped blast and psi-blast: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-3402, 1997.

S. Aridhi, A. Montresor, and Y. Velegrakis, Bladyg: A graph processing framework for large dynamic graphs, Big Data Research, vol.9, pp.9-17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01577882

K. C. Chou, Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology, Current Proteomics, vol.6, issue.4, pp.262-274, 2009.
DOI : 10.2174/157016409789973707

H. N. Chua, W. K. Sung, and L. Wong, Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions, Bioinformatics, vol.22, issue.13, pp.1623-1630, 2006.
DOI : 10.1007/11691730_1

URL : https://link.springer.com/content/pdf/10.1007%2F11691730_1.pdf

T. U. Consortium, Uniprot: a hub for protein information, Nucleic Acids Research, vol.43, pp.204-212, 2015.

A. Cornish-bowden, Current iubmb recommendations on enzyme nomenclature and kinetics, Perspectives in Science, vol.1, issue.1-6, pp.74-87, 2014.
DOI : 10.1016/j.pisc.2014.02.006

URL : https://hal.archives-ouvertes.fr/hal-01494614

J. Dean and S. Ghemawat, Mapreduce: simplified data processing on large clusters, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.

P. D. Dobson and A. J. Doig, Predicting enzyme class from protein structure without alignments, Journal of molecular biology, vol.345, issue.1, pp.187-199, 2005.
DOI : 10.1016/j.jmb.2004.10.024

URL : http://cbio.ensmp.fr/~jvert/svn/bibli/local/Dobson2005Predicting.pdf

R. D. Finn, J. Clements, and S. R. Eddy, Hmmer web server: interactive sequence similarity searching, Nucleic Acids Research, vol.39, issue.2, pp.29-37, 2011.
DOI : 10.1093/nar/gkr367

URL : https://academic.oup.com/nar/article-pdf/39/suppl_2/W29/7628106/gkr367.pdf

A. Gattiker, K. Michoud, C. Rivoire, A. H. Auchincloss, E. Coudert et al., Automated annotation of microbial proteomes in SWISS-PROT, Computational Biology and Chemistry, vol.27, issue.1, pp.49-58, 2003.

H. Hishigaki, K. Nakai, T. Ono, A. Tanigami, and T. Takagi, Assessment of prediction accuracy of protein function from protein-protein interaction data, Yeast, vol.18, issue.6, pp.523-531, 2001.

W. L. Huang, H. M. Chen, S. F. Hwang, and S. Y. Ho, Accurate prediction of enzyme subfamily class using an adaptive fuzzy k-nearest neighbor method, Biosystems, vol.90, issue.2, pp.405-413, 2007.

M. Des-jardins, P. D. Karp, M. Krummenacker, T. J. Lee, and C. A. Ouzounis, Prediction of enzyme classification from protein sequence without the use of sequence similarity, Proc Int Conf Intell Syst Mol Biol, vol.5, pp.92-99, 1997.

P. Jones, D. Binns, H. Y. Chang, M. Fraser, W. Li et al., Interproscan 5: genome-scale protein function classification, Bioinformatics, vol.30, issue.9, pp.1236-1240, 2014.
DOI : 10.1093/bioinformatics/btu031

URL : https://academic.oup.com/bioinformatics/article-pdf/30/9/1236/653449/btu031.pdf

E. Kretschmann, W. Fleischmann, and R. Apweiler, Automatic rule generation for protein annotation with the c4.5 data mining algorithm applied on swiss-prot, Bioinformatics, vol.17, pp.920-926, 2001.

N. Kumar and J. Skolnick, Eficaz2. 5: application of a high-precision enzyme function predictor to 396 proteomes, Bioinformatics, vol.28, issue.20, pp.2687-2688, 2012.

S. K. Kummerfeld and S. A. Teichmann, Protein domain organisation: adding order, BMC Bioinformatics, vol.10, issue.1, p.39, 2009.
DOI : 10.1186/1471-2105-10-39

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-10-39

Y. Li, S. Wang, R. Umarov, B. Xie, M. Fan et al., Deepre: sequence-based enzyme ec number prediction by deep learning, Bioinformatics, vol.34, issue.5, pp.760-769, 2018.

Y. H. Li, J. Y. Xu, L. Tao, X. F. Li, S. Li et al., Svm-prot 2016: a web-server for machine learning prediction of protein functional families from sequence irrespective of similarity, PloS one, vol.11, issue.8, 2016.

L. Lu, Z. Qian, Y. D. Cai, and Y. Li, Ecs: an automatic enzyme classifier based on functional domain composition, Computational biology and chemistry, vol.31, issue.3, pp.226-232, 2007.

E. Nabieva, K. Jim, A. Agarwal, B. Chazelle, and M. Singh, Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps, Bioinformatics, vol.21, issue.1, pp.302-310, 2005.

N. N. Nagao-chioko and M. Kenji, Prediction of detailed enzyme functions and identification of specificity determining residues by random forests, PloS one, vol.9, issue.1, 2014.

E. Nasibov and C. Kandemir-cavas, Efficiency analysis of knn and minimum distance-based classifiers in enzyme family prediction, Computational biology and chemistry, vol.33, issue.6, pp.461-464, 2009.

S. Quester and D. Schomburg, Enzymedetector: an integrated enzyme function prediction tool and database, BMC bioinformatics, vol.12, issue.1, p.376, 2011.
DOI : 10.1186/1471-2105-12-376

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-12-376

E. Quevillon, V. Silventoinen, S. Pillai, N. Harte, N. Mulder et al., Interproscan: protein domains identifier, Nucleic acids research, vol.33, issue.2, pp.116-120, 2005.
DOI : 10.1093/nar/gki442

URL : https://academic.oup.com/nar/article-pdf/33/suppl_2/W116/7623230/gki442.pdf

S. A. Rahman, S. M. Cuesta, N. Furnham, G. L. Holliday, and J. M. Thornton, Ec-blast: a tool to automatically search and compare enzyme reactions, Nature methods, vol.11, issue.2, p.171, 2014.

B. Schwikowski, P. Uetz, and S. Fields, A network of protein-protein interactions in yeast, Nature biotechnology, vol.18, issue.12, p.1257, 2000.

H. B. Shen and K. C. Chou, Ezypred: a top-down approach for predicting enzyme functional classes and subclasses, Biochemical and biophysical research communications, vol.364, issue.1, pp.53-59, 2007.

V. Volpato, A. Adelfio, and G. Pollastri, Accurate prediction of protein enzymatic class by n-to-1 neural networks, BMC bioinformatics, vol.14, issue.1, p.11, 2013.

J. Yang, R. Yan, A. Roy, D. Xu, J. Poisson et al., The i-tasser suite: protein structure and function prediction, Nature methods, vol.12, issue.1, p.7, 2015.

C. Yu, N. Zavaljevski, V. Desai, and J. Reifman, Genome-wide enzyme annotation with precision control: Catalytic families (catfam) databases, Proteins: Structure, Function, and Bioinformatics, vol.74, issue.2, pp.449-460, 2009.
DOI : 10.1002/prot.22167

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust et al., Apache spark: a unified engine for big data processing, Communications of the ACM, vol.59, issue.11, pp.56-65, 2016.

C. Zhang, P. L. Freddolino, and Y. Zhang, Cofactor: improved protein function prediction by combining structure, sequence and protein-protein interaction information, Nucleic Acids Research, vol.45, issue.1, pp.291-299, 2017.
DOI : 10.1093/nar/gkx366

URL : https://academic.oup.com/nar/article-pdf/45/W1/W291/23741003/gkx366.pdf

B. Zhao, S. Hu, X. Li, F. Zhang, Q. Tian et al., An efficient method for protein function annotation based on multilayer protein networks, Human genomics, vol.10, issue.1, p.33, 2016.
DOI : 10.1186/s40246-016-0087-x

URL : https://humgenomics.biomedcentral.com/track/pdf/10.1186/s40246-016-0087-x