N

N
N

HAL

open science

Longest Property-Preserved Common Factor

Lorraine a K Ayad, Giulia Bernardini, Roberto P Grossi, Costas S. Iliopoulos,

Nadia Pisanti, Solon P Pissis, Giovanna Rosone

» To cite this version:

Lorraine a K Ayad, Giulia Bernardini, Roberto P Grossi, Costas S. Iliopoulos, Nadia Pisanti, et al..

Longest Property-Preserved Common Factor. International Symposium on String Processing and

Information Retrieval, 2018, Lima, Peru. hal-01921603

HAL Id: hal-01921603
https://inria.hal.science/hal-01921603
Submitted on 13 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-01921603
https://hal.archives-ouvertes.fr

arXiv:1810.02099v1 [cs.DS] 4 Oct 2018

Longest Property-Preserved Common Factor

Lorraine A.K Ayad!, Giulia Bernardini?, Roberto Grossi®, Costas S. Iliopoulos*, Nadia
Pisanti®, Solon P. Pissis®, and Giovanna Rosone”

'Department of Informatics, King’s College London, London, UK,
lorraine.ayad@kcl.ac.uk
*Department of Informatics, Systems and Communication (DISCo), University of
Milan-Bicocca, Italy, giulia.bernardini@unimib.it
3Department of Computer Science, University of Pisa, Italy and ERABLE Team, INRIA,
France, grossi@di.unipi.it
4Department of Informatics, King’s College London, London, UK, c.iliopoulos@kcl.ac.uk
*Department of Computer Science, University of Pisa, Italy and ERABLE Team, INRIA,
France, pisanti@di.unipi.it
SDepartment of Informatics, King’s College London, London, UK, solon.pissis@kcl.ac.uk
"Department of Computer Science, University of Pisa, Italy, giovanna.rosone@unipi.it

Abstract

In this paper we introduce a new family of string processing problems. We are given two
or more strings and we are asked to compute a factor common to all strings that preserves a
specific property and has maximal length. Here we consider three fundamental string properties:
square-free factors, periodic factors, and palindromic factors under three different settings, one
per property. In the first setting, we are given a string x and we are asked to construct a data
structure over x answering the following type of on-line queries: given string y, find a longest
square-free factor common to x and y. In the second setting, we are given k strings and an integer
1 < k' <k and we are asked to find a longest periodic factor common to at least &’ strings. In
the third setting, we are given two strings and we are asked to find a longest palindromic factor
common to the two strings. We present linear-time solutions for all settings. We anticipate that
our paradigm can be extended to other string properties or settings.

1 Introduction

In the longest common factor problem, also known as longest common substring problem, we are
given two strings x and y, each of length at most n, and we are asked to find a maximal-length
string occurring in both x and y. This is a classical and well-studied problem in computer science
arising out of different practical scenarios. It can be solved in O(n) time and space [10, 18] (see
also [21, 26]). Recently, the same problem has been extensively studied under distance metrics; that
is, the sought factors (one from z and one from y) must be at distance at most k£ and have maximal
length [8, 28, 27, 2, 25, 24] (and references therein).

In this paper we initiate a new related line of research. We are given two or more strings and
our goal is to compute a factor common to all strings that preserves a specific property and has
maximal length. An analogous line of research was introduced in [11]. It focuses on computing a
subsequence (rather than a factor) common to all strings that preserves a specific property and has

maximal length. Specifically, in [11, 3, 19], the authors considered computing a longest common
palindromic subsequence and in [20] computing a longest common square subsequence.

We consider three fundamental string properties: square-free factors, periodic, and palindromic
factors [23] under three different settings, one per property. In the first setting, we are given a string
x and we are asked to construct a data structure over z answering the following type of on-line
queries: given string y, find a longest square-free factor common to x and y. In the second setting,
we are given k strings and an integer 1 < k' < k and we are asked to find a longest periodic factor
common to at least k¥’ strings. In the third setting, we are given two strings and we are asked to
find a longest palindromic factor common to the two strings. We present linear-time solutions for
all settings. We anticipate that our paradigm can be extended to other string properties or settings.

1.1 Definitions and Notation

An alphabet ¥ is a non-empty finite ordered set of letters of size o = |X|. In this work we consider
that o = O(1) or that ¥ is a linearly-sortable integer alphabet. A string z on an alphabet ¥ is a
sequence of elements of 3. The set of all strings on an alphabet ¥, including the empty string € of
length 0, is denoted by ¥*. For any string z, we denote by z[i..j] the substring (sometimes called
factor) of x that starts at position ¢ and ends at position j. In particular, z[0..5] is the prefiz of
that ends at position j, and z[i..|x| — 1] is the suffiz of = that starts at position ¢, where |x| denotes
the length of x. A string uu, v € X*, is called a square. A square-free string is a string that does
not contain a square as a factor.

A period of x[0..|x| —1] is a positive integer p such that z[i] = x[i + p] holds for all 0 < i < |z| —p.
The smallest period of x is denoted by per(z). String u is called periodic if and only if per(u) < |u|/2.
A run of string z is an interval [i, j] such that for the smallest period p = per(z[i..j]) it holds
that 2p < 5 — i+ 1 and the periodicity cannot be extended to the left or right, é.e., ¢ = 0 or
i —1] #z[i+p—1],and, j = |z| — 1 or z[j —p+ 1] # z[j + 1].

We denote the reversal of x by string 2%, i.e. 2 = z[|x| — 1]z[|z| — 2]...2[0]. A string p is
said to be a palindrome if and only if p = p®. If factor z[i..j], 0 < i < j < n — 1, of string x of
length n is a palindrome, then % is the center of x[i..j] in = and # is the radius of x[i..j]. In
other words, a palindrome is a string that reads the same forward and backward, i.e. a string p is a
palindrome if p = yay™ where y is a string, y* is the reversal of y and a is either a single letter or
the empty string. Moreover, z[i..j] is called a palindromic factor of x. It is said to be a mazimal
palindrome if there is no other palindrome in xz with center % and larger radius. Hence x has
exactly 2n — 1 maximal palindromes. A maximal palindrome p of x can be encoded as a pair (c,r),
where c is the center of p in x and r is the radius of p.

1.2 Algorithmic Toolbox

The maximum number of runs in a string of length n is less than n [4], and, moreover, all runs can
be computed in O(n) time [22, 4].

The suffiz tree ST(z) of a non-empty string = of length n is a compact trie representing all
suffixes of x. ST(z) can be constructed in O(n) time [14]. We can analogously define and construct
the generalised suffix tree GST(xg,x1,...,xx_1) for a set of k strings. We assume the reader is
familiar with these data structures.

The matching statistics capture all matches between two strings x and y [7]. More formally,
the matching statistics of a string y[0..|y| — 1] with respect to a string x is an array MS,[0..|y| — 1],
where MS,[i] is a pair (¢;,p;) such that (i) y[i..i + ¢; — 1] is the longest prefix of y[i..|y| — 1] that is

a factor of x; and (ii) z[p;..p; + ¢; — 1] = yli..i + ¢; — 1]. Matching statistics can be computed in
O(Jy|) time for o = O(1) by using ST(z) [18, 6, 16].

Given a rooted tree T with n leaves coloured from 0 to k — 1, 1 < k < n, the colour set size
problem is finding, for each internal node w of T', the number of different leaf colours in the subtree
rooted at uw. In [10], the authors present an O(n)-time solution to this problem.

In the weighted ancestor problem, introduced in [15], we consider a rooted tree T with an integer
weight function p defined on the nodes. We require that the weight of the root is zero and the
weight of any other node is strictly larger than the weight of its parent. A weighted ancestor query,
given a node v and an integer value ¢ < p(v), asks for the highest ancestor u of v such that p(u) > ¢,
i.e., such an ancestor u that p(u) > ¢ and p(u) is the smallest possible. When T is the suffix tree
of a string x of length n, we can locate the locus of any factor of z[i..j] using a weighted ancestor
query. We define the weight of a node of the suffix tree as the length of the string it represents.
Thus a weighted ancestor query can be used for the terminal node corresponding to z[i..n — 1] to
create (if necessary) and mark the node that corresponds to x[i..j]. Given a collection @ of weighted
ancestor queries on a weighted tree T on n nodes with integer weights up to n©1), all the queries in
@ can be answered off-line in O(n + |Q|) time [5].

2 Square-Free-Preserved Matching Statistics

In this section, we introduce the square-free-preserved matching statistics problem and provide a
linear-time solution. In the square-free-preserved matching statistics problem we are given a string
x of length n and we are asked to construct a data structure over x answering the following type of
on-line queries: given string y, find the longest square-free prefix of y[i..|y| — 1] that is a factor of z,
for all 0 < < |y| — 1. (For related work see [12].) We represent the answer using an integer array
SQMS,[0..]y| — 1] of lengths, but we can trivially modify our algorithm to report the actual factors.
It should be clear that a maximum element in SQMS gives the length of some longest square-free
factor common to z and y.
Construction. Our data structure over string = consists of the following;:

e An integer array L,[0..n — 1], where L,[i] stores the length of the longest square-free factor
starting at position ¢ of string x.

e The suffix tree ST(z) of string x.
The idea for constructing array L, efficiently is based on the following crucial observation.

Observation 1. If z[i.n — 1] contains a square then Ly[i] + 1, for all 0 < i < n, is the length
of the shortest prefix of z[i..n — 1] (factor f) containing a square. In fact, the square is a suffiz

of f, otherwise f would not have been the shortest. If z[i.n — 1] does not contain a square then
L.li] =n—1.

We thus shift our focus to computing the shortest such prefixes. We start by considering the
runs of z. Specifically, we consider squares in x observing that a run [/,] with period p contains
r — ¢ — 2p + 2 squares of length 2p with the leftmost one starting at position £. Let r'=¢+2p—1
denote the ending position of the leftmost such square of the run. In order to find, for all i’s, the
shortest prefix of z[i..n — 1] containing a square s, and thus compute L,[i], we have two cases:

1. sis part of a run [/, 7] in x that starts after i. In particular, s = z[(..r'] such that ' <r, £ > i,
and 7’ is minimal. In this case the shortest factor has length £ + 2p — i; we store this value in
an integer array C[0..n — 1]. If no run starts after position ¢ we set C[i] = co. To compute C,

after computing in O(n) time all the runs of x with their p and ' [22, 4], we sort them by r’.
A right-to-left scan after this sorting associates to i the closest ' with £ > i.

2. sis part of a run [¢,7] in x and ¢ € [¢,r]|. This implies that if i <r—2p+1 then a square starts
at i and we store the length of the shortest such square in an integer array S[0..n — 1]. If
no square starts at position i we set S[i] = co. Array S can be constructed in O(n) time by
applying the algorithm of [13].

Since we do not know which of the two cases holds, we compute both C and S. By Observation 1,
if Cli] = S[i] = oo (z[i..n — 1] does not contain a square) we set L,[i| = n — i; otherwise (z[i..n — 1]
contains a square) we set Ly[i] = min{C[i], S[i]} — 1.

Finally, we build the suffix tree ST(z) of string = in O(n) time [14]. This completes our
construction.

Querying. We rely on the following fact for answering the queries efficiently.

Fact 1. Fvery factor of a square-free string is square-free.

Let string y be an on-line query. Using ST(x), we compute the matching statistics MS,, of y with
respect to x. For each j € [0,|y| — 1], MS,[j] = (4;,1%) indicates that x[i..i + {; — 1] = y[j..j + €; — 1].
This computation can be done in O(|y|) time [18, 6]. By applying Fact 1, we can answer any query
y in O(Jy|) time for o = O(1) by setting SQMS,[j] = min{¢;, L[]}, for all 0 < j < |y| — 1.

We arrive at the following result.

Theorem 1. Given a string x of length n over an alphabet of size 0 = O(1), we can construct a
data structure of size O(n) in time O(n), answering SQMS, on-line queries in O(|y|) time.

Proof. The time complexity of our algorithm follows from the above discussion.

We next show the correctness of our algorithm. Let us first show the correctness of computing
array L,. The square contained in the shortest prefix of z[i..n — 1] (containing a square) starts by
definition either at ¢ or after 7. If it starts at ¢ this is correctly computed by the algorithm of [13]
which assigns the length of the shortest such square in S[i]. If it starts after ¢ it must be the leftmost
square of another run by the runs definition. C[i] stores the length of the shortest prefix containing
such a square. Then by Observation 1, L.[i] is computed correctly.

It suffices to show that, if w is the longest square-free substring common to x and y occurring at
position i, in « and at position i, in y, then (i) MS,[iy] = (¢,i,) with £ > |w| and z[iy..ip + £ —1] =
Yliy..iy + £ —1]; (ii) w is a prefix of x[iy..iy + La[iz] — 1]; and (iii) SQMS,[iy] = |w|. Case (i)
directly follows from the correctness of the matching statistics algorithm. For Case (ii), since w
occurs at i, and w is square-free, L,[i,] > |w|. For Case (iii), since w is square-free we have to
show that |w| = min{¥¢;, L;[i]}. We know from (i) that ¢ > |w| and from (ii) that Lg[i;] > |w|. If
min{¢;, L, [i]} = ¢, then w cannot be extended because the possibly longer than |w| square-free string
occurring at i, does not occur in y, and in this case |w| = ¢. Otherwise, if min{¢;, L,[i]} = Ly [is]
then w cannot be extended because it is no longer square-free, and in this case |w| = Lg[i,]. Hence
we conclude that SQMS,[i,| = |w|. The statement follows. O

The following example provides a complete overview of the workings of our algorithm.

Example 1. Let x = aababaababb and y = babababbaaab. The length of a longest common
square-free factor is 3, and the factors are bab and aba.

1 0 1 2 3 4) 6 7 8 9 10
x[i] a a b a b a a b a b b
Cli] 5 6 5 4 3 5 5 4 3 0o oo
Sli] 2 4 4 6 00 2 4 00 00 2 00
L,[i] 1 3 3 3 2 1 3 3 2 1 1
J 0 1 2 3 4) 6 7 8 9 10 11
yl7] b a b a b a b b a a a b
MS,[i] (42) (51) (42) (56) (47) (38 (29 B4) (20) (30) (21) (1,2)
SQMS,[j] 3 3 3 3 3 2 1 2 1 1 2 1

3 Longest Periodic-Preserved Common Factor

In this section, we introduce the longest periodic-preserved common factor problem and provide a
linear-time solution. In the longest periodic-preserved common factor problem, we are given k > 2
strings g, 1,..., 7,1 of total length N and an integer 1 < k’ < k, and we are asked to find a
longest periodic factor common to at least k' strings. In what follows we present two different
algorithms to solve this problem. We represent the answer LPCFy, by the length of a longest factor,
but we can trivially modify our algorithms to report an actual factor. Our first algorithm, denoted
by LPCF, works as follows.

1. Compute the runs of string x;, for all 0 < j < k.
2. Construct the generalised suffix tree GST(xg, x1,...,2x_1) of X, 1,...,Tk_1.

3. For each string z; and for each run [¢,r] with period p, of z;, augment GST with the explicit
node spelling x;[¢..r], decorate it with py, and mark it as a candidate node. This can be done
as follows: for each run [¢,r] of x;, for all 0<j <k, find the leaf corresponding to x;[¢..|x;|—1]
and answer the weighted ancestor query in GST with weight r—£41. Moreover, mark as
candidates all explicit nodes spelling a prefix of length d of any run [¢,r] with 2p, < d.

4. Mark as good the nodes of the tree having at least k' different colours on the leaves of the
subtree rooted there. Let aGST be this augmented tree.

5. Return as LPCF; the string depth of a candidate node in aGST which is also a good node,
and that has maximal string depth (if any, otherwise return 0).

Theorem 2. Given k strings of total length N on alphabet ¥ = {1, ... ,No(l)}, and an integer
1 < k' <k, algorithm LPCF returns LPCFy in time O(N).

Proof. Let us assume wlog that ¥’ = k, and let w with period p be the longest periodic factor
common to all strings. By the construction of aGST (Steps 1-4), the path spelling w leads to a good
node n,, as w occurs in all the strings. We make the following observation.

Observation 2. Each periodic factor with period p of string x is a factor of z[i..j|, where [i,]] is a
run with period p.

By Observation 2, in all strings, w is included in a run having the same period. Observe that
for at least one of the strings, there is a run ending with w, otherwise we could extend w obtaining
a longer periodic common factor (similarly, for at least one of the strings, there is a run starting
with w). Therefore n,, is both a good and a candidate node. By definition, n,, is at string depth at

@ sood node () node
[] candidate node

- good & candidate nodae $y
b
6
a
7
b Sx
b
= 6
$x
4 3

Figure 1: aGST for x = ababbabba, y =ababaab, and k=Fk"=2.

least 2p and, by construction, LPCFy, is the string depth of a deepest such node; thus |w| will be
returned by Step 5.

As for the time complexity, Step 1 [22, 4] and Step 2 [14] can be done in O(N) time. Since the
total number of runs is less than N [4], Step 3 can be done in O(N) time using off-line weighted
ancestor queries [5] to mark the runs as candidate nodes; and then a post-order traversal to mark
their ancestor explicit nodes as candidates, if their string-depth is at least 2p, for any run [, r] with
period py. The size of the aGST is still in O(N). Step 4 can be done in O(N) time [10]. Step 5 can
be done in O(N) by a post-order traversal of aGST. O

The following example provides a complete overview of the workings of our algorithm.

Example 2. Consider 2 =ababbabba, y —ababaab, and k=k"=2. The runs of x are: ro = [0, 3],
per(abab) = 2, r; = [1, 8], per(babbabba) = 3, ro = [3,4], per(bb) = 1, and r3 = [6, 7], per(bb) = 1;
those of y are r4 = [0, 4], per(ababa) = 2 and 75 = [4, 5], per(aa) = 1. Fig 1 shows aGST for z, v,
and k=k'=2. Algorithm LPCF outputs 4 = |ababl|, with per(abab) = 2, as the node spelling abab
is the deepest good one that is also a candidate.

We next present a second algorithm to solve this problem with the same time complexity but
without the use of off-line weighted ancestor queries. The algorithm works as follows.

1. Compute the runs of string x;, for all 0 < j < k.
2. Construct the generalised suffix tree GST(xg, x1,...,2x_1) of xg,x1,...,T_1.

3. Mark as good the nodes of GST having at least k' different colours on the leaves of the subtree
rooted there.

4. Compute and store, for every leaf node, the nearest ancestor that is good.

5. For each string x; and for each run [¢,r] with period p, of z;, check the nearest good ancestor
for the leaf corresponding to z;[¢..|z;| — 1]. Let d be the string-depth of the nearest good
ancestor. Then:

(a) If r — £+ 1 < d, the entire run is also good.
(b) If r — £+ 1 > d, check if 2py < d, and if so the string for the good ancestor is periodic.

B a$By L=) 8, a bs$,,
5 4 5 4
a b3, as$,. 1=}
3 3
a$:1: b a b$?/
2 2
aa$,, bs,, a$f,,. bb3,,
(@] 1 1 (@]

Figure 2: GST for x = ababaa, y = bababb, and k=k"=2. Good nodes are marked red.

6. Return as LPCFys the maximal string depth found in Step 5 (if any, otherwise return 0).

Let us analyse this algorithm. Let us assume wlog that k' = k, and let w with period p be the
longest periodic factor common to all strings. By the construction of GST (Steps 1-3), the path
spelling w leads to a good node n,, as w occurs in all the strings.

By Observation 2, in all strings, w is included in a run having the same period. Observe
that for at least one of the strings, there is a run starting with w, otherwise we could extend w
obtaining a longer periodic common factor. So the algorithm should check, for each run, if there
is a periodic-preserved common prefix of the run and take the longest such prefix. LPCFy is the
string depth of a deepest good node spelling a periodic factor; thus |w| will be returned by Step 6.

As for the time complexity, Step 1 [22, 4] and Step 2 [14] can be done in O(N) time. Step 3 can
be done in O(N) time [10] and Step 4 can be done in O(N) time by using a tree traversal. Since
the total number of runs is less than N [4], Step 5 can be done in O(N) time. We thus arrive at
Theorem 2 with a different algorithm.

The following example provides a complete overview of the workings of our algorithm.

Example 3. Consider z =ababaa, y =bababb, and k¥ = k' =2. The runs of = are: ro = [0,4],
per(ababa) = 2, 1 = [4, 5], per(aa) = 1; those of y are 1o = [0, 4], per(babab) = 2 and r3 = [4, 5],
per(bb) = 1. Fig 2 shows GST for z, y, and k=k'=2. Consider the run 7o = [0,4]. The nearest
good node of leaf spelling x[0..|z| — 1] is the node spelling abab. We have that r —¢+1=5 > d =4,
and 2p = 4 < d = 4. The algorithm outputs 4 = |abab| as abab is a longest periodic-preserved
common factor. Another longest periodic-preserved common factor is baba.

4 Longest Palindromic-Preserved Common Factor

In this section, we introduce the longest palindromic-preserved common factor problem and provide
a linear-time solution. In the longest palindromic-preserved common factor problem, we are given
two strings = and y, and we are asked to find a longest palindromic factor common to the two
strings. (For related work in a dynamic setting see [17, 1].) We represent the answer LPALCF by
the length of a longest factor, but we can trivially modify our algorithm to report an actual factor.
Our algorithm is denoted by LPALCF. In the description below, for clarity, we consider odd-length
palindromes only. (Even-length palindromes can be handled in an analogous manner.)

1. Compute the maximal odd-length palindromes of z and the maximal odd-length palindromes
of y.

2. Collect the factors z[i..i'] of x (resp. the factors y[j..5'] of y) such that i (j) is the center of an
odd-length maximal palindrome of x (y) and ¢’ (j') is the ending position of the odd-length
maximal palindrome centered at i (j).

3. Create a lexicographically sorted list L of these strings from x and y.
4. Compute the longest common prefix of consecutive entries (strings) in L.

5. Let ¢ be the maximal length of longest common prefixes between any string from x and any
string from y. For odd lengths, return LPALCF= 2/ — 1.

Theorem 3. Given two strings and y on alphabet ¥ = {1,..., (|z| + |y|)°M}, algorithm LPALCF
returns LPALCF in time O(|z| + |y|).

Proof. The correctness of our algorithm follows directly from the following observation.

Observation 3. Any longest palindromic-preserved common factor is a factor of a mazimal
palindrome of x with the same center and a factor of a maximal palindrome of y with the same
center.

Step 1 can be done in O(|z| + |y|) time [18]. Step 2 can be done in O(|z| + |y|) time by going
through the set of maximal palindromes computed in Step 1. Step 3 and Step 4 can be done in
O(|z| + |y|) time by constructing the data structure of [9]. Step 5 can be done in O(|z| + |y|) time
by going through the list of computed longest common prefixes.

O

The following example provides a complete overview of the workings of our algorithm.

Example 4. Consider z =ababaa and y =bababb. In Step 1 we compute all maximal palindromes of
x and y. Considering odd-length palindromes gives the following factors (Step 2) from z: z[0..0] = a,
x[1..2] = ba, z[2..4] = aba, z[3..4] = ba, z[4..4] = a, and z[5..5] = a. The analogous factors from y
are: y[0..0] =D, y[1..2] = ab, y[2..4] = bab, y[3..4] = ab, y[4..4] = b, and y[5..5] = b. We sort these
strings lexicographically and compute the longest common prefix information (Steps 3-4). We find
that £ = 2: the maximal longest common prefixes are ba and ab, denoting that aba and bab are the
longest palindromic-preserved common factors of odd length. In fact, algorithm LPALCF outputs
2¢ — 1 = 3 as aba and bab are the longest palindromic-preserved common factors of any length.

5 Final Remarks

In this paper, we introduced a new family of string processing problems. The goal is to compute
factors common to a set of strings preserving a specific property and having maximal length. We
showed linear-time algorithms for square-free, periodic, and palindromic factors under three different
settings. We anticipate that our paradigm can be extended to other string properties or settings.

Acknowledgements

We would like to acknowledge an anonymous reviewer of a previous version of this paper who sug-
gested the second linear-time algorithm for computing the longest periodic-preserved common factor.
Solon P. Pissis and Giovanna Rosone are partially supported by the Royal Society project IE 161274
“Processing uncertain sequences: combinatorics and applications”. Giovanna Rosone and Nadia
Pisanti are partially supported by the project Italian MIUR-SIR CMACBioSeq (“Combinatorial
methods for analysis and compression of biological sequences”) grant n. RBSI146R5L.

References

[1] Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski. Longest
common factor made fully dynamic. CoRR, abs/1804.08731, 2018.

[2] Lorraine A. K. Ayad, Carl Barton, Panagiotis Charalampopoulos, Costas S. Iliopoulos, and
Solon P. Pissis. Longest common prefixes with k-errors and applications. In SPIRE, volume
11147 of LNCS, pages 27—41. Springer, 2018.

[3] Sang Won Bae and Inbok Lee. On finding a longest common palindromic subsequence.
Theoretical Computer Science, 710:29-34, 2018. Advances in Algorithms & Combinatorics on
Strings (Honoring 60th birthday for Prof. Costas S. Iliopoulos).

[4] Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and Kazuya
Tsuruta. The “runs” theorem. SIAM Journal on Computing, 46(5):1501-1514, 2017.

[5] Carl Barton, Tomasz Kociumaka, Chang Liu, Solon P. Pissis, and Jakub Radoszewski. Indexing
weighted sequences: Neat and efficient. CoRR, abs/1704.07625, 2017.

[6] Djamal Belazzougui and Fabio Cunial. Indexed matching statistics and shortest unique
substrings. In Edleno Silva de Moura and Maxime Crochemore, editors, 21st International
Symposium on String Processing and Information Retrieval (SPIRE), volume 8799 of LNCS,
pages 179-190, 2014.

[7] W.I. Chang and E. L. Lawler. Sublinear approximate string matching and biological applications.
Algorithmica, 12(4):327-344, 1994.

[8] Panagiotis Charalampopoulos, Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka,
Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Linear-time algorithm
for long LCF with k mismatches. In CPM, volume 105 of LIPIcs, pages 23:1-23:16. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[9] Panagiotis Charalampopoulos, Costas S. Iliopoulos, Chang Liu, and Solon P. Pissis. Property
suffix array with applications. In Michael A. Bender, Martin Farach-Colton, and Miguel A.

[22]

[23]

Mosteiro, editors, LATIN 2018: Theoretical Informatics - 13th Latin American Symposium,
Buenos Aires, Argentina, April 16-19, 2018, Proceedings, volume 10807 of Lecture Notes in
Computer Science, pages 290-302. Springer, 2018.

Lucas Chi and Kwong Hui. Color set size problem with applications to string matching. In
Combinatorial Pattern Matching, pages 230-243. Springer Berlin Heidelberg, 1992.

Shihabur Rahman Chowdhury, Md. Mahbubul Hasan, Sumaiya Igbal, and M. Sohel Rahman.
Computing a longest common palindromic subsequence. Fundam. Inf., 129(4):329-340, 2014.

Marius Dumitran, Florin Manea, and Dirk Nowotka. On prefix/suffix-square free words.
In Costas S. Iliopoulos, Simon J. Puglisi, and Emine Yilmaz, editors, 22nd International
Symposium, on String Processing and Information Retrieval (SPIRE), volume 9309 of LNCS,
pages 54-66, 2015.

Jean-Pierre Duval, Roman Kolpakov, Gregory Kucherov, Thierry Lecroq, and Arnaud Lefebvre.
Linear-time computation of local periods. Theoretical Computer Science, 326(1):229-240, 2004.

Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Annual Symposium
on Foundations of Computer Science (FOCS), pages 137143, 1997.

Martin Farach and S. Muthukrishnan. Perfect hashing for strings: Formalization and algorithms.
In 7th Symposium on Combinatorial Pattern Matching (CPM), pages 130-140. 1996.

Maria Federico and Nadia Pisanti. Suffix tree characterization of maximal motifs in biological
sequences. Theor. Comput. Sci., 410(43):4391-4401, 20009.

Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Longest substring palindrome after edit. In Gonzalo Navarro, David Sankoff, and Binhai
Zhu, editors, Annual Symposium on Combinatorial Pattern Matching (CPM 2018), volume
105 of Leibniz International Proceedings in Informatics (LIPlcs), pages 12:1-12:14, Dagstuhl,
Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997.

Shunsuke Inenaga and Heikki Hyyr6. A hardness result and new algorithm for the longest
common palindromic subsequence problem. Information Processing Letters, 129:11-15, 2018.

Takafumi Inoue, Shunsuke Inenaga, Heikki Hyyro, Hideo Bannai, and Masayuki Takeda.
Computing longest common square subsequences. In 29th Symposium on Combinatorial
Pattern Matching (CPM), volume 105 of LIPIcs, pages 15:1-15:13, 2018.

Tomasz Kociumaka, Tatiana A. Starikovskaya, and Hjalte Wedel Vildhgj. Sublinear space
algorithms for the longest common substring problem. In Algorithms - ESA 2014 - 22th Annual
FEuropean Symposium, Wroclaw, Poland, September 8-10, 201/4. Proceedings, pages 605617,
2014.

Roman Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in linear time.
In 40th Symposium on Foundations of Comp Science, pages 596-604, 1999.

M. Lothaire. Applied Combinatorics on Words. Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, 2005.

10

[24]

Pierre Peterlongo, Nadia Pisanti, Frédéric Boyer, Alair Pereira do Lago, and Marie-France Sagot.
Lossless filter for multiple repetitions with hamming distance. J. Discr. Alg., 6(3):497-509,
2008.

Pierre Peterlongo, Nadia Pisanti, Frédéric Boyer, and Marie-France Sagot. Lossless filter for
finding long multiple approximate repetitions using a new data structure, the bi-factor array. In
12th International Symposium String Processing and Information Retrieval, 12th International
Conference (SPIRE), pages 179-190, 2005.

Tatiana A. Starikovskaya and Hjalte Wedel Vildhgj. Time-space trade-offs for the longest
common substring problem. In 24th Symposium on Combinatorial Pattern Matching (CPM),
pages 223-234, 2013.

Sharma V. Thankachan, Chaitanya Aluru, Sriram P. Chockalingam, and Srinivas Aluru.
Algorithmic framework for approximate matching under bounded edits with applications to
sequence analysis. In RECOMB, volume 10812 of LNCS, pages 211-224, 2018.

Sharma V. Thankachan, Alberto Apostolico, and Srinivas Aluru. A provably efficient algorithm
for the k-mismatch average common substring problem. Journal of Computational Biology,
23(6):472-482, 2016.

11

	1 Introduction
	1.1 Definitions and Notation
	1.2 Algorithmic Toolbox

	2 Square-Free-Preserved Matching Statistics
	3 Longest Periodic-Preserved Common Factor
	4 Longest Palindromic-Preserved Common Factor
	5 Final Remarks

