Population-based priors in cardiac model personalisation for consistent parameter estimation in heterogeneous databases

Abstract : Personalised cardiac models are a virtual representation of the patient heart, with parameter values for which the simulation fits the available clinical measurements. Models usually have a large number of parameters while the available data for a given patient is typically limited to a small set of measurements, thus the parameters cannot be estimated uniquely. This is a practical obstacle for clinical applications, where accurate parameter values can be important. Here we explore an original approach based on an algorithm called Iteratively Updated Priors (IUP), in which we perform successive personalisations of a full database through Maximum A Posteriori (MAP) estimation, where the prior probability at an iteration is set from the distribution of personalised parameters in the database at the previous iteration. At the convergence of the algorithm, estimated parameters of the population lie on a linear subspace of reduced (and possibly sufficient) dimension in which for each case of the database, there is a (possibly unique) parameter value for which the simulation fits the measurements. We first show how this property can help the modeler select a relevant parameter subspace for personalisation. In addition, since the resulting priors in this subspace represent the population statistics in this subspace, they can be used to perform consistent parameter estimation for cases where measurements are possibly different or missing in the database, which we illustrate with the personalisation of a heterogeneous database of 811 cases.
Type de document :
Article dans une revue
International Journal for Numerical Methods in Biomedical Engineering, John Wiley and Sons, 2018, 〈10.1002/cnm.3158〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01922719
Contributeur : Maxime Sermesant <>
Soumis le : mercredi 14 novembre 2018 - 16:44:00
Dernière modification le : lundi 19 novembre 2018 - 15:39:26

Fichier

Special_Issue___Longitudinal_w...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Roch Molléro, Xavier Pennec, Hervé Delingette, Nicholas Ayache, Maxime Sermesant. Population-based priors in cardiac model personalisation for consistent parameter estimation in heterogeneous databases. International Journal for Numerical Methods in Biomedical Engineering, John Wiley and Sons, 2018, 〈10.1002/cnm.3158〉. 〈hal-01922719〉

Partager

Métriques

Consultations de la notice

45

Téléchargements de fichiers

28