L. J. Aslett, P. M. Esperança, and C. C. Holmes, Encrypted statistical machine learning: new privacy preserving methods, 2015.

B. Bollobás, Random Graphs, 2001.

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. Mcmahan et al., Practical Secure Aggregation for Privacy-Preserving Machine Learning, CCS, 2017.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Randomized Gossip Algorithms, IEEE/ACM Transactions on Networking, vol.14, issue.SI, pp.2508-2530, 2006.

J. Camenisch, R. Chaabouni, and A. Shelat, Efficient protocols for set membership and range proofs, Proceedings of the 14th International Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT), pp.234-252, 2008.

H. Chan, A. Perrig, and D. X. Song, Random Key Predistribution Schemes for Sensor Networks, S&P, 2003.

I. Colin, A. Bellet, J. Salmon, C. , and S. , Extending Gossip Algorithms to Distributed Estimation of U-statistics, NIPS, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01214665

J. C. Duchi, M. I. Jordan, W. , and M. J. , Privacy Aware Learning. In NIPS, 2012.

C. Dwork, Differential Privacy, ICALP, 2006.

C. Dwork, Differential Privacy: A Survey of Results, 2008.

T. Evgeniou and M. Pontil, Regularized multi-task learning, SIGKDD, 2004.

T. I. Fenner and A. M. Frieze, On the connectivity of random m-orientable graphs and digraphs. Combinatorica, vol.2, pp.347-359, 1982.

O. Goldreich, Secure multi-party computation, 1998.

T. Graepel, K. E. Lauter, and M. Naehrig, ML Confidential: Machine Learning on Encrypted Data, ICISC, 2012.

F. Hanzely, J. Kone?ný, N. Loizou, P. Richtárik, G. et al., Privacy Preserving Randomized Gossip Algorithms, 2017.

X. He, A. Machanavajjhala, and B. Ding, Blowfish privacy: tuning privacy-utility trade-offs using policies, SIGMOD, 2014.

Z. Huang, S. Mitra, D. , and G. , Differentially private iterative synchronous consensus, ACM workshop on Privacy in the Electronic Society, 2012.

P. Kairouz, S. Oh, and P. Viswanath, Extremal Mechanisms for Local Differential Privacy, Journal of Machine Learning Research, vol.17, pp.1-51, 2016.

S. P. Kasiviswanathan and A. Smith, On the 'Semantics' of Differential Privacy: A Bayesian Formulation, Journal of Privacy and Confidentiality, vol.6, issue.1, pp.1-16, 2014.

D. Kempe, A. Dobra, G. , and J. , Gossip-Based Computation of Aggregate Information, FOCS, 2003.

D. Kifer and B. Lin, An Axiomatic View of Statistical Privacy and Utility, Journal of Privacy and Confidentiality, vol.4, issue.1, pp.5-46, 2012.

D. Kifer and A. Machanavajjhala, No free lunch in data privacy, SIGKDD, 2011.

D. Kifer and A. Machanavajjhala, Pufferfish: A framework for mathematical privacy definitions, ACM Transactions on Database Systems, vol.39, issue.1, p.36, 2014.

N. Li, W. H. Qardaji, D. Su, Y. Wu, Y. et al., Membership privacy: a unifying framework for privacy definitions, CCS, 2013.

Y. Lindell and B. Pinkas, Secure Multiparty Computation for Privacy-Preserving Data Mining, Journal of Privacy and Confidentiality, vol.1, issue.1, pp.59-98, 2009.

N. E. Manitara and C. N. Hadjicostis, Privacy-preserving asymptotic average consensus, 2013.
DOI : 10.23919/ecc.2013.6669251

Y. Mo and R. M. Murray, Privacy preserving average consensus, CDC, 2014.
DOI : 10.1109/cdc.2014.7039717

S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.

P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, EUROCRYPT, 1999.

S. Segarra, W. Huang, R. , and A. , Diffusion and Superposition Distances for Signals Supported on Networks, IEEE Transactions on Signal and Information Processing over Networks, vol.1, issue.1, pp.20-32, 2015.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains, IEEE Signal Processing Magazine, vol.30, issue.3, pp.83-98, 2013.

J. N. Tsitsiklis, Problems in decentralized decision making and computation, 1984.

O. Ya?an and A. M. Makowski, On the Connectivity of Sensor Networks Under Random Pairwise Key Predistribution, IEEE Transactions on Information Theory, vol.59, issue.9, pp.5754-5762, 2013.

A. C. Yao, Protocols for secure computations, FOCS, 1982.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, Learning with Local and Global Consistency, NIPS, 2003.

X. Zhu and Z. Ghahramani, Learning from labeled and unlabeled data with label propagation, 2002.