
HAL Id: hal-01923575
https://inria.hal.science/hal-01923575

Submitted on 15 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Test Improvement with DSpot: a Study with
Ten Mature Open-Source Projects

Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit Baudry, Martin Monperrus

To cite this version:
Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit Baudry, Martin Monperrus. Automatic Test Im-
provement with DSpot: a Study with Ten Mature Open-Source Projects. Empirical Software Engi-
neering, 2019, pp.1-35. �10.1007/s10664-019-09692-y�. �hal-01923575�

https://inria.hal.science/hal-01923575
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Automatic Test Improvement with DSpot:
a Study with Ten Mature Open-Source Projects

Benjamin Danglot · Oscar Luis
Vera-Pérez · Benoit Baudry · Martin
Monperrus

March 2018

Abstract In the literature, there is a rather clear segregation between man-
ually written tests by developers and automatically generated ones. In this
paper, we explore a third solution: to automatically improve existing test cases
written by developers. We present the concept, design and implementation of
a system called DSpot, that takes developer-written test cases as input (JUnit
tests in Java) and synthesizes improved versions of them as output. Those test
improvements are given back to developers as patches or pull requests, that
can be directly integrated in the main branch of the test code base. We have
evaluated DSpot in a deep, systematic manner over 40 real-world unit test
classes from 10 notable and open-source software projects. We have amplified
all test methods from those 40 unit test classes. In 26/40 cases, DSpot is able to

B. Danglot
Inria Lille - Nord Europe
Parc scientifique de la Haute Borne
40, avenue Halley - Bt A - Park Plaza
59650 Villeneuve d’Ascq - France
E-mail: danglot@inria.fr

O. Vera-Pérez
Inria Rennes - Bretagne Atlantique
Campus de Beaulieu, 263 Avenue Gnral Leclerc
35042 Rennes - France
E-mail: oscar.vera-perez@inria.fr

B. Baudry
KTH Royal Institute of Technology in Stockholm
Brinellvgen 8
114 28 Stockholm - Sweden
E-mail: baudry@kth.se

M. Monperrus
KTH Royal Institute of Technology in Stockholm
Brinellvgen 8
114 28 Stockholm - Sweden
E-mail: martin.monperrus@csc.kth.se



2 Benjamin Danglot et al.

automatically improve the test under study, by triggering new behaviors and
adding new valuable assertions. Next, for ten projects under consideration, we
have proposed a test improvement automatically synthesized by DSpot to the
lead developers. In total, 13/19 proposed test improvements were accepted by
the developers and merged into the main code base. This shows that DSpot
is capable of automatically improving unit-tests in real-world, large scale Java
software.

1 Introduction

Over the last decade, strong unit testing has become an essential component
of any serious software project, whether in industry or academia. The ag-
ile development movement has contributed to this cultural change with the
global dissemination of test-driven development techniques [6]. More recently,
the DevOps movement has further strengthened the testing practice with an
emphasis on continuous and automated testing [24].

In this paper we study how such modern test suites can benefit from the
major results of automatic test generation research. We explore whether one
can automatically improve tests written by humans, an activity that can be
called “automatic test improvement”. There are few works in this area: the
closest related techniques are those that consider manually written tests as
the starting point for an automatic test generation process [18,11,29,31,8,
30]. To this extent, automatic test improvement can be seen as forming a
sub-field of test generation. Automatic test improvement aims at synthesizing
modifications of existing test cases, where those modifications are meant to be
presented to developers. As such, the modifications must be deemed relevant
by the developers themselves (the corollary being that they should not only
maximize some criterion).

For our original study of automatic test improvement, we have developed
DSpot, a tool for automatic test improvement in Java. DSpot adapts and com-
bines two notable test generation techniques: evolutionary test construction
[25] and regression oracle generation [27]. The essential adaptation consists in
starting the generation process from the full-fledged abstract syntax trees of
manually written test cases. The combination of both techniques is essential
so that changes in the setup together are captured by changes in the assertion
part of tests.

Our study considers 10 mature Java open source projects. It focuses on
three points that have little, or never, been assessed. First, we propose 19 test
improvements generated by DSpot to the developers of the considered open
source projects. We present them the improvement in the form of pull requests,
and we ask them whether they would like to merge the test improvements in
the main repository. In this part of the study, we extensively discuss their
feedback, to help the research community understand the nature of good test
improvements. This reveals the key role of case studies, as presented by Fly-
vberg [10], to assess the relevance of our technique for developers. Second, we



Title Suppressed Due to Excessive Length 3

perform a quantitative assessment of the improvements of 40 real-world test
classes from our set of 10 open-source projects. In particular, we consider the
difficult case of improving strong test classes. Third, we explore the relative
contribution of evolutionary test construction and of assertion generation in
the improvement process.

Our key results are as follows: first, seven GitHub pull requests consisting
of automatic test improvements have been definitively accepted by the devel-
opers; second, an interesting empirical fact is that DSpot has been able to
improve a test class with a 99% initial mutation score (i.e. a really strong
test); and finally, our experiment shows that valuable test improvements can
be obtained within minutes.

To sum up, our contributions are:

– DSpot, a system that performs automatic test improvement of Java unit
tests;

– the design and execution of an experiment to assess the relevance of auto-
matically improved tests, based on feedback from the developers of mature
projects;

– a large scale quantitative study of the improvement of 40 real-world test
classes taken from 10 mature open-source Java projects.

– fully open-science code and data: both DSpot1 and our experimental data
are made publicly available for future research2

The remainder of this article is as follows. Section 2 presents the main
concepts of automatic test improvement and DSpot. Section 3 presents the
experimental protocol of our study. Section 4 analyses our empirical results.
Section 5 discusses the threats to validity. Section 6 discusses the related work.
and Section 7 concludes the article. Note that a previous version of this paper
can be found as Arxiv’s working paper [4].

2 Automatic Test Improvement

In this section, we present the concept of automated test improvement, and
its realization in the DSpot tool.

2.1 Goal

The goal of automatic test improvement is to synthesize modifications to ex-
isting test cases to increase test quality. These modifications are meant to be
given to developers and committed to the main test code repository. The qual-
ity assessment is driven by a specific test criterion such as branch coverage or
mutation score. In this paper, we focus on improving the mutation score of an
existing test suite but automatic test improvement is more general and it is
not bound to the mutation score.

1 https://github.com/STAMP-project/dspot/
2 https://github.com/STAMP-project/dspot-experiments/

https://github.com/STAMP-project/dspot/
https://github.com/STAMP-project/dspot-experiments/


4 Benjamin Danglot et al.

2.2 DSpot

DSpot is an automatic test improvement tool for Java unit tests. It is built
upon the algorithms of Tonella [25] and Xie [28].

2.2.1 DSpot inputs

The input of DSpot consists in a set of existing test cases, manually written
by the developers. As output, DSpot produces variants of the given test cases.
These variants are meant to be added to the test suite. By putting together
existing test cases and their variants, we aim at strictly improving the overall
test suite quality. By construction, the enhanced test suite is at least as good,
or better than the original one w.r.t. the considered criterion.

Concretely, DSpot synthesizes suggestions in the form of diffs that are
proposed to the developer: Figure 1 shows such a test improvement.

protostuff / protostuff

	Code 	Issues	 18 	Pull	requests	 1 	Projects	 0 	Wiki Insights	

assert	the	returned	value	of	writeList	#212
	Merged kshchepanovskyi	merged	1	commit	into	 	from	 	on	Feb	27

	 	

protostuff:master danglotb:ampl-TailDelimiterTest

	Conversation	 0 	Commits	 1 	Files	changed	 1

		protostuff-core/src/test/java/io/protostuff/TailDelimiterTest.java

144 144

145 145

146 146

147

147

148

148 149

149 150

150 151

View3	

@@	-144,7	+144,8	@@	public	void	testEmptyList()	throws	Exception

									ArrayList<Foo>	foos	=	new	ArrayList<Foo>();

	

									ByteArrayOutputStream	out	=	new	ByteArrayOutputStream();

-								writeListTo(out,	foos,	SerializableObjects.foo.cachedSchema());

+								final	int	bytesWritten	=	writeListTo(out,	foos,	SerializableObjects.foo.cachedSchema());

+								assertEquals(0,	bytesWritten);

									byte[]	data	=	out.toByteArray();

	

									ByteArrayInputStream	in	=	new	ByteArrayInputStream(data);

Contact	GitHub	 API	 Training	 Shop	 Blog	 About©	2017	GitHub,	Inc.	 Terms	 Privacy	 Security	 Status	 Help

Features Business Explore Marketplace Pricing This	repository Sign	in	or	Sign	up

Changes	from	all	commits	 1	file	 +2	−1	 Unified Split

69 599 130	Watch 	Star 	Fork

Fig. 1 Example of what DSpot produces: a diff to improve an existing test case.

DSpot is an automatic test improvement system because it only modifies
existing test cases. As such, all test improvements, by construction, are modi-
fications to existing test cases. DSpot’s novelty is twofold: 1) first, it combines
those algorithms in a way that scales to modern, large Java software 2) sec-
ond, it makes no assumption on the tests to be improved, and works with any
arbitrary JUnit test.

2.2.2 DSpot’s Workflow

The main workflow of DSpot is composed of 2 main phases: 1) the transforma-
tion of the test code to create new test inputs inspired by Tonella’s technique,
we call this “input space exploration”; this phase consists in changing new test
values and objects and adding new method calls, the underlying details will be
explained in details in subsubsection 2.4.1. 2) the addition of new assertions
per Xie’s technique [28], we call this phase “assertion improvement”. The be-
havior of the system under test is considered as the oracle of the assertion, see
subsubsection 2.4.2. In DSpot, the combination of both techniques, i.e. the
combination of input space exploration and assertion improvement is called
“test amplification”.

DSpot keeps the modifications that add the most value for the developers.
To do so, DSpot uses the mutation score as a proxy to the developers assessed
value of quality. In essence, developers value changes in test code if they enable



Title Suppressed Due to Excessive Length 5

1 testIterationOrder() {
2 // contract: the iteration order is the same as the insertion order
3

4 TreeList tl=new TreeList();
5 tl.add(1);
6 tl.add(2);
7

8 ListIterator it = tl.listIterator();
9

10 // assertions
11 assertEquals(1, it.next().intValue());
12 assertEquals(2, it.next().intValue());
13 }

Listing 1 An example of an object-oriented test case (inspired from Apache Commons
Collections)

them to catch new bugs, that is if the improved test better specifies a piece
of code. This is also reflected in the mutation score: if the mutation score
increases, it means that a code element, say a statement, is better specified
than before. In other words, DSpot uses the mutation score to steer the test
case improvement, following the original conclusions of DeMillo et al. who
observed that mutants provide hints to generate test data [9]. To sum up,
DSpot aims at producing better tests that have a higher potential to catch
bugs.

2.3 Definitions

We first define the core terminology of DSpot in the context of object-oriented
Java programs.

Test suite is a set of test classes.
Test class is a class that contains test methods. A test class is neither

deployed nor executed in production.
Test method or test case is a method that sets up the system under test

into a specific state and checks that the actual state at the end of the method
execution is the expected state.

Unit test is a test method that specifies a targeted behavior of a program.
Unit tests are usually independent of each other and execute a small portion
of the code, i.e. a single unit or a single component of the whole system.

2.3.1 Modern Test Cases

DSpot improves the test cases of modern Java programs, which are typically
composed of two parts: input setup and assertions. The input setup part is
responsible for driving the program into a specific state. For instance, one
creates objects and invokes methods on them to produce a specific state.



6 Benjamin Danglot et al.

The assertion part is responsible for assessing that the actual behavior
of the program corresponds to the expected behavior, the latter being called
the oracle. To do so, the assertion uses the state of the program, i.e. all the
observable values of the program, and compare it to expected values written
by developers. If the actual observed values of the program state and the oracle
are different (or if an exception is thrown), the test fails and the program is
considered as incorrect.

Listing 1 illustrates an archetypal example of such a test case: first, from
line 4 to line 6, the test input is created through a sequence of object creations
and method calls; then, at line 8, the tested behavior is actually triggered; the
last part of the test case at 11 and 12, the assertion, specifies and checks the
conformance of the observed behavior with the expected one. We note that
this notion of call sequence and complex objects is different from test inputs
consisting only of primitive values.

2.4 Algorithms

2.4.1 Input Space Exploration Algorithm

DSpot aims at exploring the input space so as to set the program in new, never
explored states. To do so, DSpot applies code transformations to the original
manually-written test methods.

I-Amplification: I-Amplification, for Input Amplification, is the process
of automatically creating new test input points from existing test input points.

DSpot uses three kinds of I-Amplification.

1) Amplification of literals: the new input point is obtained by changing
a literal used in the test (numeric, boolean, string). For numeric values, there
are five operators: +1, −1, ×2, ÷2, and replacement by an existing literal of
the same type, if such literal exists. For Strings, there are four operators: add
a random char, remove a random char, replace a random char and replace the
string by a fully random string of the same size. For booleans, there is only
one operator: negate the value;

2) Amplification of method calls: DSpot manipulates method calls as fol-
lows: DSpot duplicates an existing method call; removes a method call; or
adds a new invocation for an accessible method with an existing variable as
target.

3) Test objects: if a new object is needed as a parameter while amplifying
method calls, DSpot creates a new object of the required type using the de-
fault constructor if it exists. In the same way, when a new method call needs
primitive value parameters, DSpot generates a random value.

DSpot combines the different kinds of I-Amplification iteratively: at each
iteration all kinds of I-Amplification are applied, resulting in new tests. From
one iteration to another, DSpot reuses the previously amplified tests, and
further applies I-Amplification.



Title Suppressed Due to Excessive Length 7

1 testIterationOrder() {
2 TreeList tl=new TreeList();
3 tl.add(1);
4 tl.add(2);
5 tl.removeAll(); // method call added
6

7 // removed assertions
8 }

Listing 2 An example of an I-Amplification: the amplification added a method call to
removeAll() on tl.

For example, if we apply an I-Amplification on the example presented in
Listing 1, it may generate a new method call on tl. In Listing 2, the added
method call is “removeAll”. Since DSpot changes the state of the program,
existing assertions may fail. That is why it removes also all existing assertions.

2.4.2 Assertion Improvement Algorithm

To improve existing tests, DSpot adds new assertions as follows.
A-Amplification: A-Amplification, for Assertion Amplification, is the

process of automatically creating new assertions.
In DSpot, assertions are added on objects from the original test case, as

follows: 1) it instruments the test cases to collect the state of a program after
execution (but before the assertions), i.e. it creates observation points. The
state is defined by all values returned by getter methods. 2) it runs the in-
strumented test to collect the values, the result of this execution is a map
that gives, for each test case object, the values from all getters. 3) it generates
new assertions in place of the observation points, using the collected values as
oracle. The collected values are used as expected values in the new assertions.
In addition, when a new test input sets the program in a state that throws an
exception, DSpot produces a test asserting that the program throws a specific
exception.

For example, let consider A-Amplification on the test case of the example
above.

First, in Listing 3 DSpot instruments the test case to collect values, by
addding method calls to the objects involved in the test case.

Second, the test with the added observation points is executed, and sub-
sequently, DSpot generates new assertions based on the collected values. On
Listing 4, we can see that DSpot has generated two new assertions.

2.4.3 Test Improvement Algorithm

Algorithm 1 shows the main loop of DSpot. DSpot takes as input a pro-
gram P and its Test Suite TS. DSpot also uses an integer n that defines the
number of iterations. DSpot produces an Amplified Test Suite ATS, i.e. a



8 Benjamin Danglot et al.

1 testIterationOrder() {
2 TreeList tl=new TreeList();
3 tl.add(1);
4 tl.add(2);
5 tl.removeAll();
6

7 // logging current behavior
8 Observations.observe(tl.size());
9 Observations.observe(tl.isEmpty());

10 }

Listing 3 In A-Amplification, the second step is to instrument and run the test to collect
runtime values.

1 testIterationOrder() {
2 TreeList tl=new TreeList();
3 tl.add(1);
4 tl.add(2);
5 tl.removeAll();
6

7 // generated assertions
8 assertEquals(0, tl.size()); // generated assertions
9 assertTrue(tl.isEmpty()); // generated assertions

10 }

Listing 4 In A-Amplification, the last step is to generate the assertions based on the
collected values.

better version of the input Test Suite TS according to a specific test crite-
rion such as mutation score. For each test case t in the test suite TS (Line
1), DSpot first tries to add assertions without generating any new test input
(Line 3), method generateAssertions (t) is explained in subsubsection 2.4.2.
Note that adding missing assertions is the elementary way to improve existing
tests.

DSpot initializes a temporary list of tests TMP and applies n times the
following steps (Line 6): 1) it applies each amplifier amp on each tests of
TMP to build V (Line 8-9 see subsubsection 2.4.1 i.e. I-Amplification); 2) it
generates assertions on generated tests in V (Line 11 see subsubsection 2.4.2,
i.e. A-Amplification); 3) it keeps the tests that improve the mutation score
(Line 12). 4) it assigns V to TMP for the next iteration. This is done because
even if some amplified test methods in V have not been selected, it can contain
amplified test methods that will eventually be better in subsequent iterations.

2.4.4 Flaky tests elimination

The input space exploration (see subsubsection 2.4.1) may produce test inputs
that results in non-deterministic executions. This means that, between two
independent executions, the state of the program is not the same. Since DSpot
generates assertions where the expected value is a hard coded value from a



Title Suppressed Due to Excessive Length 9

Algorithm 1 Main amplification loop of DSpot.
Input: Program P
Input: Test Suite TS
Input: Amplifiers amps to generate new test data input
Input: n number of iterations of DSpot’s main loop
Output: An Amplified Test Suite ATS
1: ATS ← ∅
2: for t in TS do
3: U ← generateAssertions (t)
4: ATS ← {x ∈ U |x improves mutation score}
5: TMP ← ATS
6: for i = 0 to n do
7: V ← []
8: for amp in amps do
9: V ← V ∪ amp.apply (TMP )
10: end for
11: V ← generateAssertions (V )
12: ATS ← ATS ∪ {x ∈ V |x improves mutation score}
13: TMP ← V
14: end for
15: end for
16: return ATS

specific run (see subsubsection 2.4.2), the generated test case may become
flaky: it passes or fails depending on the execution and whether the expected
value is obtained or not.

To avoid such flaky tests generated by DSpot, we run n times each new test
case resulting from amplification (n = 3 in the default configuration). If a test
fails at least once, DSpot throws it away. We acknowledge that this procedure
does not guarantee the absence of flakiness. However, it gives incremental
confidence: if the user wants more confidence, she can tell DSpot to run the
amplified tests more times.

2.4.5 Selecting Focused Test Cases

DSpot sometimes produces many tests, from one initial test. Due to limited
time, the developer needs to focus on the most interesting ones. To select
the test methods that are the most likely to be merged in the code base,
we implement the following heuristic. First, the amplified test methods are
sorted according to the ratio of newly killed mutants and the total number of
test modifications. Then, in case of equality, the methods are further sorted
according to the maximum numbers of mutants killed in the same method.

The first criterion means that we value short modifications. The second
criterion means that the amplified test method is focused and tries to specify
one specific method inside the code.

If an amplified test method is merged in the code base, we consider that the
corresponding method as specified. In that case, we do not take into account
other amplified test methods that specify the same method.



10 Benjamin Danglot et al.

Finally, in this ordered list, the developer is recommended the amplified
tests that are focused, where focus is defined as where at least 50% of the
newly killed mutants are located in a single method. Our goal is to select
amplified tests which intent can be easily grasped by the developer: the new
test specifies the method.

2.5 Implementation

DSpot is implemented in Java. It consists of 8800+ logical lines of code (as
measured by cloc). For the sake of open-science, DSpot is made publicly avail-
able on Github3. DSpot uses Spoon[20] to analyze and transform the tests of
the software application under amplification.

In this paper, we aim at improving the mutation score of test classes. In
DSpot, we use Pitest4 because: 1) it targets Java programs, 2) it is mature
and well-regarded, 3) it has an active community.

An important feature of Pitest is that if the application code remains un-
changed, the generated mutants are always the same. This property is very
interesting for test amplification. Since DSpot only modifies test code, this fea-
ture allows us to compare the mutation score of the original test case against
the mutation score of the amplified version and even compare the absolute
number of mutants killed by both test case variants. We will exploit this fea-
ture in our evaluation.

By default, DSpot uses all the mutation operators available in Pitest:
conditionals boundary mutator; increments mutator; invert negatives muta-
tor; math mutator; negate conditionals mutator; return values mutator; void
method calls mutator.

3 Experimental Protocol

Automatic test improvement has been evaluated with respect to evolutionary
test inputs [25] and new assertions [28]. However: 1) the two topics have never
been studied in conjunction 2) they have never been studied on large modern
Java programs 3) most importantly, the quality of improved tests has never
been assessed by developers.

We set up a novel experimental protocol that addresses those three points.
First, the experiment is based on DSpot, which combines test input exploration
and assertion generation. Second, the experiment is made on 10 active GitHub
projects. Third, we have proposed improved tests to developers under the form
of pull-requests.

We answer the following research questions:

3 https://github.com/STAMP-project/dspot
4 We use the latest version released: 1.2.0.https://github.com/hcoles/pitest/

releases/tag/1.2.0

https://github.com/STAMP-project/dspot
https://github.com/hcoles/pitest/releases/tag/1.2.0
https://github.com/hcoles/pitest/releases/tag/1.2.0


Title Suppressed Due to Excessive Length 11

RQ1: Are the improved test cases produced by DSpot relevant for developers?
Are the developers ready to permanently accept the improved test cases into
the test repository?
RQ2: To what extent are improved test methods considered as focused?
RQ3: To what extent do the improved test classes increase the mutation score
of the original, manually-written, test classes?
RQ4: What is the relative contribution of I-Amplification and A-Amplification
to the effectiveness of automatic test improvement?

3.1 Dataset

We evaluate DSpot by amplifying test classes of large-scale, notable, open-
source projects. We include projects that fulfill the following criteria: 1) the
project must be written in Java; 2) the project must have a test suite based on
JUnit; 3) the project must be compiled and tested with Maven; 4) the project
must have an active community as defined by the presence of pull requests on
GitHub, see subsection 4.1.



12 Benjamin Danglot et al.
T
a
b
le

1
D
a
ta
se
t
o
f
1
0
a
ct
iv
e
G
it
h
u
b
p
ro

je
ct
s
co

n
si
d
er
ed

o
n
o
u
r
re
le
v
a
n
ce

st
u
d
y
(R

Q
1
)
a
n
d
q
u
a
n
ti
ta
ti
v
e
ex

p
er
im

en
ts

(R
Q
2
,
R
Q
3
).

p
ro

je
ct

d
es
cr
ip
ti
o
n

#
L
O
C

#
P
R

co
n
si
d
er
ed

te
st

cl
a
ss
es

ja
v
a
p
o
et

J
a
v
a
so
u
rc
e
fi
le

g
en

er
a
to
r

3
1
5
0

9
3

T
y
p
eN

a
m
eT

es
th

N
a
m
eA

ll
o
ca

to
rT

es
th

F
ie
ld
S
p
ec
T
es
tl

P
a
ra
m
et
er
S
p
ec
T
es
tl

m
y
b
a
ti
s-
3

O
b
je
ct
-r
el
a
ti
o
n
a
l
m
a
p
p
in
g
fr
a
m
ew

o
rk

2
0
6
8
3

2
8
8

M
et
a
C
la
ss
T
es
th

P
a
ra
m
et
er
E
x
p
re
ss
io
n
T
es
th

W
ro
n
g
N
a
m
es
p
a
ce
sT

es
tl

W
ro
n
g
M
a
p
p
er
T
es
tl

tr
a
cc
a
r

S
er
v
er

fo
r
G
P
S
tr
a
ck

in
g
d
ev

ic
es

3
2
6
4
8

3
7
3

G
eo

lo
ca

ti
o
n
P
ro
v
id
er
T
es
th

M
is
cF

o
rm

a
tt
er
T
es
th

O
b
d
D
ec
o
d
er
T
es
tl

A
t2
0
0
0
P
ro
to
co

lD
ec
o
d
er
T
es
tl

st
re
a
m
-l
ib

L
ib
ra
ry

fo
r
su

m
m
a
ri
zi
n
g
d
a
ta

in
st
re
a
m
s

4
7
6
7

2
1

T
es
tL

o
o
k
u
p
3
H
a
sh

h
T
es
tD

o
u
b
ly
L
in
k
ed

L
is
th

T
es
tI
C
a
rd

in
a
li
ty

l
T
es
tM

u
rm

u
rH

a
sh

l

m
u
st
a
ch

e.
ja
v
a

W
eb

a
p
p
li
ca

ti
o
n
te
m
p
la
ti
n
g
sy
st
em

3
1
6
6

1
1

A
rr
a
y
sI
n
d
ex

es
T
es
th

C
la
ss
p
a
th

R
es
o
lv
er
T
es
th

C
o
n
cu

rr
en

cy
T
es
tl

A
b
st
ra
ct
C
la
ss
T
es
tl

tw
il
io
-j
a
v
a

L
ib
ra
ry

fo
r
co

m
m
u
n
ic
a
ti
n
g
w
it
h
T
w
il
io

R
E
S
T

A
P
I

5
4
4
2
3

8
7

R
eq

u
es
tT

es
th

P
re
fi
x
ed

C
o
ll
a
p
si
b
le
M
a
p
T
es
th

A
ll
T
im

eT
es
tl

D
a
il
y
T
es
tl

js
o
u
p

H
T
M
L

p
a
rs
er

1
0
9
2
5

7
2

T
o
k
en

Q
u
eu

eT
es
th

C
h
a
ra
ct
er
R
ea

d
er
T
es
th

A
tt
ri
b
u
te
T
es
tl

A
tt
ri
b
u
te
sT

es
th

p
ro
to
st
u
ff

D
a
ta

se
ri
a
li
za

ti
o
n
li
b
ra
ry

4
7
0
0

3
5

T
a
il
D
el
im

it
er
T
es
th

L
in
k
B
u
ff
er
T
es
th

C
o
d
ed

D
a
ta
In
p
u
tT

es
tl

C
o
d
ed

In
p
u
tT

es
th

lo
g
b
a
ck

L
o
g
g
in
g
fr
a
m
ew

o
rk

1
5
4
9
0

1
0
4

F
il
eN

a
m
eP

a
tt
er
n
T
es
th

S
y
sl
o
g
A
p
p
en

d
er
B
a
se
T
es
th

F
il
eA

p
p
en

d
er
R
es
il
ie
n
ce

A
S
R
O
O
T

T
es
tl

B
a
si
cl

re
tr
o
fi
t

H
T
T
P

cl
ie
n
t
fo
r
A
n
d
ro
id
.

2
7
4
3

2
4
9

R
eq

u
es
tB

u
il
d
er
A
n
d
ro
id
T
es
th

C
a
ll
A
d
a
p
te
rT

es
th

E
x
ec
u
to
rC

a
ll
A
d
a
p
te
rF

a
ct
o
ry
T
es
th

C
a
ll
T
es
th



Title Suppressed Due to Excessive Length 13

We implement those criteria as a query on top of TravisTorrent [7]. We
randomly selected 10 projects from the result of the query which produces,
the dataset presented in Table 1. This table gives the project name, a short
description, the number of pull-requests on GitHub (#PR), and the considered
test classes. For instance, javapoet is a strongly-tested and active project,
which implements a Java file generator, it has had 93 pull-requests in 2016.

3.2 Test Case Selection Process for Test-suite Improvement

For each project, we select 4 test classes to be amplified. Those test classes
are chosen as follows.

First, we select unit-test classes only, because our approach focuses on unit
test amplification. We use the following heuristic to discriminate unit test cases
from others: we keep a test class if it executes less than an arbitrary threshold
of N statements, i.e. if it covers a small portion of the code. In our experiment,
we use N = 1500 based on our initial pilot experiments.

Among the unit-tests, we select 4 classes as follows. Since we want to an-
alyze the performance of DSpot when it is provided with both good and bad
tests, we select two groups of classes: one group with strong tests, one other
group with low quality tests. We use the mutation score to distinguish between
good and bad test classes. Accordingly, our selection process has five steps: 1)
we compute the original mutation score of each class with Pitest (see subsec-
tion 2.5; 2) we discard test classes that have 100% mutation score, because
they can already be considered as perfect tests (this is the case for eleven
classes, showing that the considered projects in our dataset are really well-
tested projects); 3) we sort the classes by mutation score ( see subsection 3.3),
in ascending order; 4) we split the set of test classes into two groups: high
mutation score ( > 50%) and low mutation score (< 50%); 5) we randomly
select 2 test classes in each group.

This selection results with 40 test classes: 24 in high mutation group score
and 16 in low mutation score group. The imbalance is due to the fact that
there are three projects really well tested for which there are none or a single
test class with a low mutation score (projects protostuff, jsoup, retrofit). Con-
sequently, those three projects are represented with 3 or 4 well-tested classes
(and 1 or 0 poorly-tested class). In Table 1, the last column contains the name
of the selected test classes. Each test class name is indexed by a “h” or a “l”
which means respectively that the class have a high mutation score or a low
mutation score.

3.3 Metrics

We use the following metrics during our experiment.
Number of Killed Mutants (#Killed.Mutants): is the absolute number

of mutants killed by a test class. We use it to compare the fault detection power
of an original test class and the one of its amplified version.



14 Benjamin Danglot et al.

Mutation Score: is the percentage of killed mutants over the number of
executed mutants. Mathematically, it is computed as follow:

#Killed.Mutants

#Exec.Mutants

.

Increase Killed: is the relative increase of the number of killed mutants
by an original test class T and the number of killed mutants by its amplified
version Ta. It is computed as follows:

#Killed.MutantsTa
−#Killed.MutantsT

#Killed.MutantsT

The goal of DSpot is to improve tests such that the number of killed mutants
increases.

3.4 Methodology

Our experimental protocol is designed to study to what extent the test im-
provements are valuable for the developer.

– RQ1 To answer to RQ1, we create pull-request on notable open-source
projects. We automatically improve 19 test classes of real world applica-
tions and propose one test improvement to the main developers of each
project under consideration. We propose the improvement as a pull re-
quest on GitHub. A PR is composed of a title, a short text that describes
the purpose of changes and a set of code change (aka a patch). The main
developers review, discuss and decide to merge or not each pull request.
We base the answer on the subjective and expert assessment from projects’
developers. If a developer merges an improvement synthesized by DSpot,
it validates the relevance of DSpot. The more developers accept and merge
test improvements produced by DSpot into their test suite, the more the
amplification is considered successful.

– RQ2 To answer RQ2, we compute the number of suggested improvements,
to verify that the developer is not overwhelmed with suggestions. We com-
pute the number of focused amplified test cases, per the technique described
in subsubsection 2.4.5, for each project in the benchmark. We present and
discuss the proportion of focused tests out of all proposed amplified tests.

– RQ3 To answer RQ3, we see whether the value that is taken as proxy
to the developer value – the mutation score – is appropriately improved.
For 40 real-world classes, we first run the mutation testing tool Pitest (see
subsection 2.5) on the test class. This gives the number of killed mutants
for this original class. Then, we amplify the test class under consideration
and we compute the new number of killed mutants after amplification.
Finally, we compare and analyze the results.



Title Suppressed Due to Excessive Length 15

– RQ4 To answer RQ4, we compute the number of A-Amplification and
I-Amplification amplifications. The former means that the suggested im-
provement is very short hence easy to be accepted by the developer while
the latter means that more time would be required to understand the im-
provement. First, we collect three series of metrics: 1) we compute number
of killed mutants for the original test class; 2) we improve the test class un-
der consideration using only A-Amplification and compute the new number
of killed mutants after amplification; 3) we improve the test class under con-
sideration using I-Amplification as well as A-Amplification (the standard
complete DSpot workflow) and compute the number of killed mutants after
amplification. Then, we compare the increase of mutation score obtained
by using A-Amplification only and I-Amplification + A-Amplification.5

Research questions 3 and 4 focus on the mutation score to assess the value
of amplified test methods. This experimental design choice is guided by our
approach to select “focused” test methods, which are likely to be selected by
the developers (described in subsubsection 2.4.5). Recall that the number of
killed mutants by the amplified test is the key focus indicator. Hence, the more
DSpot is able to improve the mutation score, the more likely we are to find
good candidates for the developers.

4 Experimental Results

We first discuss how automated test improvements done by DSpot are received
by developers of notable open-source projects (RQ1). Then, RQ2, RQ3 and
RQ4 are based on a large scale quantitative experiments over 40 real-world
test classes, whose main results are reported in Table 5. For the sake of open-
science, all experimental results are made publicly available online:
https://github.com/STAMP-project/dspot-experiments/.

4.1 Answer to RQ1

RQ1: Would developers be ready to permanently accept automati-
cally improved test cases into the test repository?

4.1.1 Process

In this research question, our goal is to propose a new test to the lead devel-
opers of the open-source projects under consideration. The improved test is
proposed through a “pull-request”, which is a way to reach developers with
patches on collaborative development platforms such as Github.

5 Note that the relative contribution of I-Amplification cannot be evaluated alone, because
as soon as we modify the inputs in a test case, it is also necessary to change and improve
the oracle (which is the role of A-Amplification).

https://github.com/STAMP-project/dspot-experiments/


16 Benjamin Danglot et al.

Table 2 Overall result of the opened pull request built from result of DSpot.

project # opened # merged # closed
# under
discussion

javapoet 4 4 0 0
mybatis-3 2 2 0 0
traccar 2 1 0 1
stream-lib 1 1 0 0
mustache 2 2 0 0
twilio 2 1 0 1
jsoup 2 0 1 1
prostostuff 2 2 0 0
logback 2 0 0 2
retrofit 0 0 0 0
total 19 13 1 5

In practice, short pull requests (i.e. with small test modifications) with
clear purpose, i.e. what for it has been opened, have much more chance of
being reviewed, discussed and eventually merged. So we aim at providing im-
proved tests which are easy to review. As shown in subsubsection 2.4.1, DSpot
generates several amplified test cases, and we cannot propose them all to the
developers. To select the new test case to be proposed as a pull request, we
look for an amplified test that kills mutants located in the same method. From
the developer’s viewpoint, it means that the intention of the test is clear: it
specifies the behavior provided by a given method or block.

The selection of amplified test methods is done as described in subsub-
section 2.4.5. For each selected method, we compute and minimize the diff
between the original method and the amplified one and then we submit the
diff as a pull request. A second point in the preparation of the pull request
relates to the length of the amplified test: once a test method has been se-
lected as a candidate pull request, we make the diff as concise as possible for
the review to be fast and easy.

4.1.2 Overview

In total, we have created 19 pull requests, as shown in Table 2. In this table,
the first column is the name of the project, the second is number of opened pull
requests, i.e. the number of amplified test methods proposed to developers.
The third column is the number of amplified test methods accepted by the
developers and permanently integrated in their test suite. The fourth column
is the number of amplified test methods rejected by the developers. The fifth
column is the number of pull requests that are still being discussed, i.e. nor
merged nor closed. (This number might change over time if pull-requests are
merged or closed.)

Overall 13 over 19 have been merged. Only 1 has been rejected by devel-
opers. There are 5 under discussion. In the following, we perform a manual
analysis of one pull-request per project. Table 4.1.2 contains the URLs of pull
requests proposed in this experimentation.



Title Suppressed Due to Excessive Length 17

Table 3 List of URLs to the pull-requests created in this experiment.

project pull request urls

javapoet

https://github.com/square/javapoet/pull/669
https://github.com/square/javapoet/pull/668
https://github.com/square/javapoet/pull/667
https://github.com/square/javapoet/pull/544

mybatis-3
https://github.com/mybatis/mybatis-3/pull/1331
https://github.com/mybatis/mybatis-3/pull/912

traccar
https://github.com/traccar/traccar/pull/2897
https://github.com/traccar/traccar/pull/4012

stream-lib https://github.com/addthis/stream-lib/pull/128

mustache
https://github.com/spullara/mustache.java/pull/210
https://github.com/spullara/mustache.java/pull/186

twilio
https://github.com/twilio/twilio-java/pull/437
https://github.com/twilio/twilio-java/pull/334

jsoup
https://github.com/jhy/jsoup/pull/1110
https://github.com/jhy/jsoup/pull/840

protostuff
https://github.com/protostuff/protostuff/pull/250
https://github.com/protostuff/protostuff/pull/212

logback
https://github.com/qos-ch/logback/pull/424
https://github.com/qos-ch/logback/pull/365

We now present one case study per project of our dataset.

4.1.3 javapoet

We have applied DSpot to amplify TypeNameTest. DSpot synthesizes a single
assertion that kills 3 more mutants, all of them at line 197 of the equals method.
A manual analysis reveals that this new assertion specifies a contract for the
method equals() of objects of type TypeName: the method must return
false when the input is null. This contract was not tested.

Consequently, we have proposed to the Javapoet developers the following
one liner pull request 6:

square / javapoet

	Code 	Issues	 38 	Pull	requests	 1 	Projects	 0 Insights	

Improve	test	on	TypeName	#544
	Merged swankjesse	merged	1	commit	into	 	from	 	on	Feb	1

	 	

square:master danglotb:ampl-TypeNameTest

	Conversation	 7 	Commits	 1 	Files	changed	 1

	Show	comments 	 		src/test/java/com/squareup/javapoet/TypeNameTest.java

25 25

26 26

27 27

28

28 29

29 30

30 31

178 179

179 180

180 181

182

181 183

182 184

View2	

@@	-25,6	+25,7	@@

	

	import	static	com.google.common.truth.Truth.assertThat;

	import	static	org.junit.Assert.assertEquals;

+import	static	org.junit.Assert.assertFalse;

	import	static	org.junit.Assert.assertNotEquals;

	

	public	class	TypeNameTest	{

@@	-178,5	+179,6	@@	private	void	assertEqualsHashCodeAndToString(TypeName	a,	TypeName	b)	{

					assertEquals(a.toString(),	b.toString());

					assertThat(a.equals(b)).isTrue();

					assertThat(a.hashCode()).isEqualTo(b.hashCode());

+				assertFalse(a.equals(null));

ronshapiro	on	Feb	1	

	assertThat(a).isNotNull();	

Contributor

tbroyer	on	Feb	1	

He,	no:	this	specifically	about	testing	the		.equals(null)		contract	�
Collaborator

sormuras	on	Feb	1	

See	https://github.com/square/javapoet/blob/master/src/main/java/com/squareup/javapoet/TypeName.java#L197

Contributor

ronshapiro	on	Feb	1	•	

Oh	fair.	What	about		assertThat(a).isNotEqualTo(null)	?

edited	 Contributor

sormuras	on	Feb	1	•	

Would	be	more	inline	with

assertThat(a.equals(b)).isTrue();

assertThat(a.hashCode()).isEqualTo(b.hashCode());

I	think		assertThat(a).isEqualTo(a);		is	missing,	too.	Testing	the	if	(this	==	o)	return	true;	contract.

edited	 Contributor

JakeWharton	on	Feb	1	

True,	but	that's	just	an	optimization.	If		a.equals(b)		works	then		b.equals(a)		must	also	work,	thus	we	then
know		a.equals(a)		will	work.

Owner

sormuras	on	Feb	1	

True.	True.	Stays	true.	

Contributor

			}

	}

Features Business Explore Marketplace Pricing This	repository Sign	in	or	Sign	up

Changes	from	all	commits	 1	file	 +2	−0	 Unified Split

234 3,626 501	Watch 	Star 	Fork

The title of the pull resuest is: “Improve test on TypeName” with the
following short text: “Hello, I open this pull request to specify the line 197 in
the equals() method of com.squareup.javapoet.TypeName. if (o == null) return
false;” This test improvement synthesized by DSpot has been merged by of
the lead developer of javapoet one hour after its proposal.

6 https://github.com/square/javapoet/pull/544

https://github.com/square/javapoet/pull/669
https://github.com/square/javapoet/pull/668
https://github.com/square/javapoet/pull/667
https://github.com/square/javapoet/pull/544
https://github.com/mybatis/mybatis-3/pull/1331
https://github.com/mybatis/mybatis-3/pull/912
https://github.com/traccar/traccar/pull/2897
https://github.com/traccar/traccar/pull/4012
https://github.com/addthis/stream-lib/pull/128
https://github.com/spullara/mustache.java/pull/210
https://github.com/spullara/mustache.java/pull/186
https://github.com/twilio/twilio-java/pull/437
https://github.com/twilio/twilio-java/pull/334
https://github.com/jhy/jsoup/pull/1110
https://github.com/jhy/jsoup/pull/840
https://github.com/protostuff/protostuff/pull/250
https://github.com/protostuff/protostuff/pull/212
https://github.com/qos-ch/logback/pull/424
https://github.com/qos-ch/logback/pull/365
https://github.com/square/javapoet/pull/544


18 Benjamin Danglot et al.

4.1.4 mybatis-3

In project mybatis-3, We have applied DSpot to amplify a test for MetaClass.
DSpot synthesizes a single assertion that kills 8 more mutants. All new mu-
tants killed are located between lines 174 and 179, i.e. the then branch
of an if-statement in method buildProperty(String property,
StringBuilder sb) of MetaClass. This method builds a String that rep-
resents the property given as input. The then branch is responsible to build
the String in case the property has a child, e.g. the input is “richType.richProperty”.
This behavior is not specified at all in the original test class.

We have proposed to the developers the following pull request entitled “Im-
prove test on MetaClass” with the following short text: “Hello, I open this pull
request to specify the lines 174-179 in the buildProperty(String, StringBuilder)
method of MetaClass.” 7:

mybatis /mybatis-3

	Code 	Issues	 75 	Pull	requests	 12 	Projects	 0 	Wiki Insights	

Improve	test	on	MetaClass	#912
	Merged harawata	merged	1	commit	into	 	from	 	on	Feb	8

	 	

mybatis:master danglotb:ampl-MetaObjectTest

	Conversation	 1 	Commits	 1 	Files	changed	 1

		src/test/java/org/apache/ibatis/reflection/MetaClassTest.java

65 65

66 66

67 67

68

69

68 70

69 71

70 72

View2	

@@	-65,6	+65,8	@@	public	void	shouldCheckGetterExistance()	{

					assertTrue(meta.hasGetter("richType.richMap"));

					assertTrue(meta.hasGetter("richType.richList[0]"));

	

+				assertEquals("richType.richProperty",	meta.findProperty("richType.richProperty",	false));

+

					assertFalse(meta.hasGetter("[0]"));

			}

	

Contact	GitHub	 API	 Training	 Shop	 Blog	 About©	2017	GitHub,	Inc.	 Terms	 Privacy	 Security	 Status	 Help

Features Business Explore Marketplace Pricing This	repository Sign	in	or	Sign	up

Changes	from	all	commits	 1	file	 +2	−0	 Unified Split

856 5,148 3,570	Watch 	Star 	Fork

The developer accepted the test improvement and merged the pull request
the same day without a single objection.

4.1.5 traccar

We have applied DSpot to amplify ObdDecoderTest. It identifies a single
assertion that kills 14 more mutants. All newly killed mutants are located
between lines 60 to 80, i.e. in the method decodesCodes() of ObdDecoder,
which is responsible to decode a String. In this case, the pull request consists
of a new test method because the new assertions do not fit with the intent
of existing tests. This new test method is proposed into ObdDecoderTest,
which is the class under amplification. The PR was entitled “Improve test
cases on ObdDecoder” with the following description: “Hello, I open this pull
request to specify the method decodeCodes of the ObdDecoder”. 8

7 https://github.com/mybatis/mybatis-3/pull/912/files
8 https://github.com/tananaev/traccar/pull/2897

https://github.com/mybatis/mybatis-3/pull/912/files
https://github.com/tananaev/traccar/pull/2897


Title Suppressed Due to Excessive Length 19

tananaev / traccar

	Code 	Issues	 1,165 	Pull	requests	 5 Insights	

Improve	test	cases	on	ObdDecoder	#2897
	Merged tananaev	merged	1	commit	into	 	from	 	on	Feb	10

	 	

tananaev:master danglotb:ampl-obddecodertest

	Conversation	 1 	Commits	 1 	Files	changed	 1

		test/org/traccar/helper/ObdDecoderTest.java

16 16

17 17

18 18

19

20

21

22

23

24

19 25

View6	

@@	-16,4	+16,10	@@	public	void	testDecode()	{

	

					}

	

+				@Test

+				public	void	testDecodeCodes()	throws	Exception	{

+								Assert.assertEquals("P0D14",	ObdDecoder.decodeCodes("0D14").getValue());

+								Assert.assertEquals("dtcs",	ObdDecoder.decodeCodes("0D14").getKey());

+				}

+

	}

Contact	GitHub	 API	 Training	 Shop	 Blog	 About©	2017	GitHub,	Inc.	 Terms	 Privacy	 Security	 Status	 Help

Features Business Explore Marketplace Pricing This	repository Sign	in	or	Sign	up

Changes	from	all	commits	 1	file	 +6	−0	 Unified Split

168 972 829	Watch 	Star 	Fork

The developer of traccar thanked us for the proposed changes and merged
it the same day.

4.1.6 stream-lib

We have applied DSpot to amplify TestMurmurHash. It identifies a new
test input that kills 15 more mutants. All newly killed mutants are located
in method hash64() of MurmurHash from lines 158 to 216. This method
computes a hash for a given array of byte. The PR was entitled “Test: Specify
hash64” with the following description: “The proposed change specifies what
the good hash code must be. With the current test, any change in ”hash” would
still make the test pass, incl. the changes that would result in an inefficient
hash.”. 9:

addthis / stream-lib

	Code 	Issues	 12 	Pull	requests	 11 	Projects	 0 Insights	

Test:	Specify	hash64	#127
	Closed danglotb	wants	to	merge	1	commit	into	 	from	

	 	

addthis:master danglotb:ampl-TestMurmurHash

	Conversation	 1 	Commits	 1 	Files	changed	 1

		src/test/java/com/clearspring/analytics/hash/TestMurmurHash.java

44 44

45 45

46 46

47

47

48 48

49 49

50 50

View2	

@@	-44,7	+44,7	@@	public	void	testHash64ByteArrayOverload()	{

									String	input	=	"hashthis";

									byte[]	inputBytes	=	input.getBytes();

	

-								long	hashOfString	=	MurmurHash.hash64(input);

+								long	hashOfString	=	-8896273065425798843L;

									assertEquals("MurmurHash.hash64(byte[])	did	not	match	MurmurHash.hash64(String)",

																						hashOfString,	MurmurHash.hash64(inputBytes));

	

Contact	GitHub	 API	 Training	 Shop	 Blog	 About©	2017	GitHub,	Inc.	 Terms	 Privacy	 Security	 Status	 Help

Features Business Explore Marketplace Pricing This	repository Sign	in	or	Sign	up

Changes	from	all	commits	 1	file	 +1	−1	 Unified Split

205 1,617 428	Watch 	Star 	Fork

Two days later, one developer mentioned the fact that the test is verifying
the overload of the method and is not specifying the method hash itself. He
closed the PR because it was not relevant to put changes there. He suggested
to open an new pull request with a new test method instead of changing the
existing test method. We proposed, 6 days later, a second pull request entitled
“add test for hash() and hash64() against hard coded values” with no descrip-
tion, since we estimated that the developer was aware of our intention.10:

9 https://github.com/addthis/stream-lib/pull/127/files
10 https://github.com/addthis/stream-lib/pull/128/files

https://github.com/addthis/stream-lib/pull/127/files
https://github.com/addthis/stream-lib/pull/128/files


20 Benjamin Danglot et al.

addthis / stream-lib

	Code 	Issues	 12 	Pull	requests	 11 	Projects	 0 Insights	

add	test	for	hash()	and	hash64()	against	hard	coded
values	#128

	Merged yuesong	merged	1	commit	into	 	from	 	on	Mar	14

	 	

addthis:master danglotb:ampl-hashTest

	Conversation	 1 	Commits	 1 	Files	changed	 1

		src/test/java/com/clearspring/analytics/hash/TestMurmurHash.java

52 52

53 53

54 54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

55 73

View18	

@@	-52,4	+52,22	@@	public	void	testHash64ByteArrayOverload()	{

									assertEquals("MurmurHash.hash64(Object)	given	a	byte[]	did	not	match	MurmurHash.hash64(String)",

																						hashOfString,	MurmurHash.hash64(bytesAsObject));

					}

+

+				//	test	the	returned	valued	of	hash	functions	against	the	reference	implementation:	https://github.com/aappleby/smhasher.git

+

+				@Test

+				public	void	testHash64()	throws	Exception	{

+								final	long	actualHash	=	MurmurHash.hash64("hashthis");

+								final	long	expectedHash	=	-8896273065425798843L;

+

+								assertEquals("MurmurHash.hash64(String)	returns	wrong	hash	value",	expectedHash,	actualHash);

+				}

+

+				@Test

+				public	void	testHash()	throws	Exception	{

+								final	long	actualHash	=	MurmurHash.hash("hashthis");

+								final	long	expectedHash	=	-1974946086L;

+

+								assertEquals("MurmurHash.hash(String)	returns	wrong	hash	value",	expectedHash,	actualHash);

+				}

	}	

Contact	GitHub	 API	 Training	 Shop	 Blog	 About©	2017	GitHub,	Inc.	 Terms	 Privacy	 Security	 Status	 Help

Features Business Explore Marketplace Pricing This	repository Sign	in	or	Sign	up

Changes	from	all	commits	 1	file	 +18	−0	 Unified Split

205 1,617 428	Watch 	Star 	Fork

The pull request has been merged by the same developer 20 days later.

4.1.7 mustache.java

We have applied DSpot to amplify AbstractClassTest. It identifies a try/-
catch/fail block that kills 2 more mutants. This is an interesting new case, com-
pared to the ones previously discussed, because it is about the specification of
exceptions, i.e. of behavior under erroneous inputs. All newly killed mutants
are located in method compile() on line 194. The test specifies that if a vari-
able is improperly closed, the program must throw a MustacheException.
In the Mustache template language, an improperly closed variable occurs when
an opening brace “{” does not have its matching closing brace such as in the
input of the proposed changes. We propose the pull request to the developers,
entitled “Add Test: improperly closed variable” with the following description:
“Hello, I proposed this change to improve the test on MustacheParser. When
a variable is improperly closed, a MustacheException is thrown.”.11

11 https://github.com/spullara/mustache.java/pull/186/files

https://github.com/spullara/mustache.java/pull/186/files


Title Suppressed Due to Excessive Length 21

spullara /mustache.java

	Code 	Issues	 12 	Pull	requests	 5 	Projects	 0 	Wiki Insights	

Add	Test:	improperly	closed	variable	#186
	Closed danglotb	wants	to	merge	1	commit	into	 	from	

	 	

spullara:master danglotb:ampl-abstractClassTest

	Conversation	 1 	Commits	 1 	Files	changed	 1

		compiler/src/test/java/com/github/mustachejava/AbstractClassTest.java	100644	→	100755

10 10

11 11

12 12

13

14

15

13 16

14 17

15 18

63 66

64 67

65 68

69

70

71

72

73

74

75

76

77

78

79

66 80

View14	

@@	-10,6	+10,9	@@

	import	java.util.HashMap;

	import	java.util.List;

	

+import	static	org.junit.Assert.assertEquals;

+import	static	org.junit.Assert.fail;

+

	public	class	AbstractClassTest	{

			static	abstract	class	AbstractFoo	{

							public	abstract	String	getValue();

@@	-63,4	+66,15	@@	public	void	testAbstractClassNoDots()	throws	IOException	{

							mustache.execute(writer,	scopes);

							writer.flush();

			}

+

+		@Test

+		public	void	testImproperlyClosedVariable()	throws	IOException	{

+						try	{

+								new	DefaultMustacheFactory().compile(new	StringReader("{{{#containers}}	{{/containers}}"),	"example");

+								fail("Should	have	throw	MustacheException");

+						}	catch	(MustacheException	actual)	{

+										assertEquals("Improperly	closed	variable	in	example:1	@[example:1]",	actual.getMessage());

+						}

+		}

+

	}

Contact	GitHub	 API	 Training	 Shop	 Blog	 About©	2017	GitHub,	Inc.	 Terms	 Privacy	 Security	 Status	 Help

Features Business Explore Marketplace Pricing This	repository Sign	in	or	Sign	up

Changes	from	all	commits	 1	file	 +14	−0	 Unified Split

73 1,129 193	Watch 	Star 	Fork

12 days later, a developer accepted the change, but noted that the test
should be in another class. He closed the pull request and added the changes
himself into the desired class.12.

4.1.8 twilio-java

We have applied DSpot to amplify RequestTest. It identifies two new as-
sertions that kill 4 more mutants. All mutants were created between lines 260
and 265 in the method equals() of Request. The change specifies that
an object Request is not equal to null nor an object of different type, i.e.
Object here. The pull request was entitled “add test equals() on request”,
accompanied with the short description “Hi, I propose this change to specify
the equals() method of com.twilio.http.Request, against object and null value”
13:

twilio / twilio-java

	Code 	Issues	 7 	Pull	requests	 5 Insights	

add	test	equals()	on	request	#334
	Merged efossier	merged	1	commit	into	 	from	 	on	Feb	28

	 	

twilio:master danglotb:ampl-requesttest

	Conversation	 2 	Commits	 1 	Files	changed	 1

		src/test/java/com/twilio/http/RequestTest.java

166 166

167 167

168 168

169

170

171

172

173

174

175

176

169 177

170 178

View8	

@@	-166,5	+166,13	@@	public	void	testRequiresAuthentication()	{

									assertTrue(request.requiresAuthentication());

					}

	

+				@Test

+				public	void	testEquals()	{

+								Request	request	=	new	Request(HttpMethod.DELETE,	"/uri");

+								request.setAuth("username",	"password");

+								assertFalse(request.equals(new	Object()));

+								assertFalse(request.equals(null));

+				}

+

	}

	

Contact	GitHub	 API	 Training	 Shop	 Blog	 About©	2017	GitHub,	Inc.	 Terms	 Privacy	 Security	 Status	 Help

Features Business Explore Marketplace Pricing This	repository Sign	in	or	Sign	up

Changes	from	all	commits	 1	file	 +8	−0	 Unified Split

80 260 229	Watch 	Star 	Fork

A developer merged the change 4 days later.

12 the diff is same:https://github.com/spullara/mustache.java/commit/
9efa19d595f893527ff218683e70db2ae4d8fb2d
13 https://github.com/twilio/twilio-java/pull/334/files

https://github.com/spullara/mustache.java/commit/9efa19d595f893527ff218683e70db2ae4d8fb2d
https://github.com/spullara/mustache.java/commit/9efa19d595f893527ff218683e70db2ae4d8fb2d
https://github.com/twilio/twilio-java/pull/334/files


22 Benjamin Danglot et al.

4.1.9 jsoup

We have applied DSpot to amplify AttributeTest. It identifies one asser-
tion that kills 13 more mutants. All mutants are in the method hashcode
of Attribute. The pull request was entitled “add test case for hashcode in at-
tribute” with the following short description “Hello, I propose this change to
specify the hashCode of the object org.jsoup.nodes.Attribute.”14:

jhy / jsoup

	Code 	Issues	 151 	Pull	requests	 36 	Projects	 0 Insights	

add	test	case	for	hashcode	in	attribute	#840
	Closed danglotb	wants	to	merge	1	commit	into	 	from	

	 	

jhy:master danglotb:testHashCode-attribute

	Conversation	 4 	Commits	 1 	Files	changed	 1

		src/test/java/org/jsoup/nodes/AttributeTest.java

17 17

18 18

19 19

20

21

22

23

24

25

26

20 27

View7	

@@	-17,4	+17,11	@@

									assertEquals(s	+	"=\"A"	+	s	+	"B\"",	attr.html());

									assertEquals(attr.html(),	attr.toString());

					}

+

+				@Test

+				public	void	testHashCode()	{

+								String	s	=	new	String(Character.toChars(135361));

+								Attribute	attr	=	new	Attribute(s,	(("A"	+	s)	+	"B"));

+								assertEquals(111849895,	attr.hashCode());

+				}

	}

Contact	GitHub	 API	 Training	 Shop	 Blog	 About©	2017	GitHub,	Inc.	 Terms	 Privacy	 Security	 Status	 Help

Features Business Explore Marketplace Pricing This	repository Sign	in	or	Sign	up

Changes	from	all	commits	 1	file	 +7	−0	 Unified Split

349 4,642 1,323	Watch 	Star 	Fork

One developer highlighted the point that the hashCode method is an im-
plementation detail, and it is not a relevant element of the API. Consequently,
he did not accept our test improvement.

At this point, we have made two pull requests targeting hashCode meth-
ods. One accepted and one rejected. hashCode methods could require a dif-
ferent testing approach to validate the number of potential collisions in a
collection of objects rather than checking or comparing the values of a few
objects created for one explicit test case. The different responses we obtained
reflect the fact that developer teams and policies ultimately decide how to
test the hash code protocol and the outcome could be different from different
projects.

4.1.10 protostuff

We have applied DSpot to amplify TailDelimiterTest. It identifies a sin-
gle assertion that kills 3 more mutants. All new mutants killed are in the
method writeTo of ProtostuffIOUtil on lines 285 and 286, which is re-
sponsible to write a buffer into a given scheme. We proposed a pull request
entitled “assert the returned value of writeList”, with the following short de-
scription “Hi, I propose the following changes to specify the line 285-286 of
io.protostuff.ProtostuffIOUtil.”15, shown earlier in Figure 1

14 https://github.com/jhy/jsoup/pull/840
15 https://github.com/protostuff/protostuff/pull/212/files

https://github.com/jhy/jsoup/pull/840
https://github.com/protostuff/protostuff/pull/212/files


Title Suppressed Due to Excessive Length 23

protostuff / protostuff

	Code 	Issues	 18 	Pull	requests	 1 	Projects	 0 	Wiki Insights	

assert	the	returned	value	of	writeList	#212
	Merged kshchepanovskyi	merged	1	commit	into	 	from	 	on	Feb	27

	 	

protostuff:master danglotb:ampl-TailDelimiterTest

	Conversation	 0 	Commits	 1 	Files	changed	 1

		protostuff-core/src/test/java/io/protostuff/TailDelimiterTest.java

144 144

145 145

146 146

147

147

148

148 149

149 150

150 151

View3	

@@	-144,7	+144,8	@@	public	void	testEmptyList()	throws	Exception

									ArrayList<Foo>	foos	=	new	ArrayList<Foo>();

	

									ByteArrayOutputStream	out	=	new	ByteArrayOutputStream();

-								writeListTo(out,	foos,	SerializableObjects.foo.cachedSchema());

+								final	int	bytesWritten	=	writeListTo(out,	foos,	SerializableObjects.foo.cachedSchema());

+								assertEquals(0,	bytesWritten);

									byte[]	data	=	out.toByteArray();

	

									ByteArrayInputStream	in	=	new	ByteArrayInputStream(data);

Contact	GitHub	 API	 Training	 Shop	 Blog	 About©	2017	GitHub,	Inc.	 Terms	 Privacy	 Security	 Status	 Help

Features Business Explore Marketplace Pricing This	repository Sign	in	or	Sign	up

Changes	from	all	commits	 1	file	 +2	−1	 Unified Split

69 599 130	Watch 	Star 	Fork

A developer accepted the proposed changes the same day.

4.1.11 logback

We have applied DSpot to amplify FileNamePattern. It identifies a sin-
gle assertion that kills 5 more mutant. Newly killed mutants were located
at lines 94, 96 and 97 of the equals method of the FileNamePattern
class. The proposed pull request was entitle “test: add test on equals of File-
NamePattern against null value” with the following short description: “Hello,
I propose this change to specify the equals() method ofFileNamePattern against
null value”.16:

qos-ch / logback

	Code 	Pull	requests	 97 	Projects	 0 Insights	

test:	add	test	on	equals	of	FileNamePattern	against	null	value	#365
	Open danglotb	wants	to	merge	1	commit	into	 	from	

	 	

qos-ch:master danglotb:ampl-filenamepatterntest

	Conversation	 2 	Commits	 1 	Files	changed	 1

	 		logback-core/src/test/java/ch/qos/logback/core/rolling/helper/FileNamePatternTest.java

16 16

17 17

18 18

19

19 20

20 21

21 22

189 190

190 191

191 192

193

194

195

196

197

198

199

192 200

View8	

@@	-16,6	+16,7	@@

	import	static	org.junit.Assert.assertEquals;

	import	static	org.junit.Assert.assertNotNull;

	import	static	org.junit.Assert.assertNull;

+import	static	org.junit.Assert.assertFalse;

	

	import	java.util.Calendar;

	import	java.util.TimeZone;

@@	-189,4	+190,11	@@	public	void	settingTimeZoneOptionHasAnEffect()	{

									FileNamePattern	fnp	=	new	FileNamePattern("%d{hh,	"	+	tz.getID()	+	"}",	context);

									assertEquals(tz,	fnp.getPrimaryDateTokenConverter().getTimeZone());

					}

+

+				@Test

+				public	void	testNotEqualsNull()	{

+								FileNamePattern	pp	=	new	FileNamePattern("t",	context);

+								assertFalse(pp.equals(null));

+				}

+

	}

Contact	GitHub	 API	 Training	 Shop	 Blog	 About©	2017	GitHub,	Inc.	 Terms	 Privacy	 Security	 Status	 Help

Features Business Explore Marketplace Pricing This	repository Sign	in	or	Sign	up

Changes	from	all	commits	 1	file	 +8	−0	 Unified Split

124 1,001 541	Watch 	Star 	Fork

Even if the test asserts the contract that the FileNamePattern is not
equals to null, and kills 5 more mutants, the lead developer does not get the
point to test this behavior. The pull request has not been accepted.

4.1.12 retrofit

We did not manage to create a pull request based on the amplification of the
test suite of retrofit. According to the result, the newly killed mutants are
spread over all the code, and thus the amplified methods did not identify a
missing contract specification. This could be explained by two facts: 1) the
original test suite of retrofit is strong: there is no test class with low mutation

16 https://github.com/qos-ch/logback/pull/365/files

https://github.com/qos-ch/logback/pull/365/files


24 Benjamin Danglot et al.

Table 4 Contributions of A-Amplification and I-Amplification on the amplified test method
used to create a pull request.

Project #A-Amplification #I-Amplification
javapoet 2 2
mybatis-3 3 3
traccar 10 7
stream-lib 2 2
mustache 4 3
twilio 3 4
jsoup 34 0
protostuff 1 1
logback 2 2

score and a lot of them are very high mutation score, i.e. 90% and more; 2)
the original test suite of retrofit uses complex test mechanism such as mock
and fluent assertions of the form the assertThat().isSomething(). For
the former point, it means that DSpot has been able to improve, even a bit,
the mutation score of a very strong test suite, but not in targeted way that
makes sense in a pull request. For the latter point, this puts in evidence the
technical challenge of amplifying fluent assertions and mocking mechanisms.

4.1.13 Contributions of A-Amplification and I-Amplification to the
Pull-requests

In Table 4, we summarize the contribution ofA-Amplification and I-Amplification,
where a contribution means an source code modification added during the main
amplification loop. In 8 cases over the 9 pull-requests, both A-Amplification
and I-Amplification were necessary. Only the pull request on jsoup was found
using only A-Amplification. This means that for all the other pull-requests,
the new inputs were required to be able: 1) to kill new mutants and 2) to
obtain amplified test methods that have values for the developers.

Note that this does not contradict with the fact that the pull-requests are
one-liners. Most one-liner pull-requests contain both a new assertion and a new
input. Consider the following Javapoet’s one liner assertFalse(x.equals(null))
(javapoet). In this example, although there is a single line starting with “as-
sert”, there is indeed a new input, the value “null”.

RQ1: Would developers be ready to permanently accept improved test cases
into the test repository?
Answer: We have proposed 19 test improvements to developers of notable
open-source projects. 13/19 have been considered valuable and have been



Title Suppressed Due to Excessive Length 25

merged into the main test suite. The developers’ feedback has confirmed
the relevance, and also the challenges of automated test improvement.

In the area of automatic test improvement, this experiment is the first to
put real developers in the loop, by asking them about the quality of automat-
ically improved test cases. To our knowledge, this is the first public report of
automatically improved tests accepted by unbiased developers and merged in
the master branch of open-source repositories.

4.2 Answer to RQ2

RQ2 To what extent are improved test methods considered as fo-
cused?

Table 5 presents the results for RQ2, RQ3 and RQ4.It is structured as
follows. The first column is a numeric identifier that eases reference from the
text. The second column is the name of test class to be amplified. The third
column is the number of test methods in the original test class. The fourth
column is the mutation score of the original test class. The fifth is the number
of test methods generated by DSpot. The sixth is the number of amplified
test methods that met the criteria explained in subsubsection 2.4.5. The sev-
enth, eight and ninth are respectively the number of killed mutants of the
original test class, the number of killed mutants of its amplified version and
the absolute increase obtained with amplification, which is represented with
a pictogram indicating the presence of improvement. The tenth and eleventh
columns concern the number of killed mutants when only A-amplification is
used. The twelfth is the time consumed by DSpot to amplify the considered
test class. The upper part of the table is dedicated to test classes that have a
high mutation score and the lower for the test classes that have low mutation
score.

For RQ2, the considered results are in the sixth column of Table 5. Our
selection technique produces candidates that are focused in 25/26 test classes
for which there are improved tests. For instance, considering test class Type-
NameTest (#8), there are 19 improved test methods, and among them, 8 are
focused per our definition and are worth considering to be integrated in the
codebase. On the contrary, for test class ConcurrencyTest (#29), the tech-
nique cannot find any improved test method that matches the focus criteria
presented in subsubsection 2.4.5. In this case, that improved test methods kill
additional mutants in 27 different locations. Consequently, the intent of the
new amplified tests can hardly be considered as clear.

Interestingly, for 4 test classes, even if there are more than one improved
test methods, the selection technique only returns one focus candidate (#23,
#24, #25, #40). In those cases, there are two possible different reasons: 1)
there are several focused improved tests, yet they all specify the same appli-
cation method (this is the case for #40 2) there is only one improved test
method that is focused (this is the case for #23, #24, and #25)



26 Benjamin Danglot et al.

Table 5 The effectiveness of test amplification with DSpot on 40 test classes: 24 well-tested
(upper part) and 16 average-tested (lower part) real test classes from notable open-source
Java projects.

ID C
la
ss

#
O
ri
g
.
te
st

m
et
h
o
d
s

M
u
ta
ti
o
n
S
co

re

#
N
ew

te
st

m
et
h
o
d
s

C
a
n
d
id
a
te
s

fo
r
p
u
ll
re
q
u
es
t

#
K
il
le
d
m
u
ta
n
ts

o
ri
g
.

#
K
il
le
d
m
u
ta
n
ts

a
m
p
l.

In
cr
ea

se
k
il
le
d

#
K
il
le
d
m
u
ta
n
ts

o
n
ly

A
-a
m
p
l

In
cr
ea

se
k
il
le
d
o
n
ly

A
-a
m
p
l

T
im

e
(m

in
u
te
s)

High mutation score

1 TypeNameTest 1250% 19 8599715 19%↗ 599 0.0%→ 11.11
2 NameAllocatorTest 1187% 0 0 79 79 0.0%→ 79 0.0%→ 4.76
3 MetaClassTest 758%108 10 455534 17%↗ 455 0.0%→ 235.71
4 ParameterExpressionTest 1491% 2 2162164 1%↗ 162 0.0%→ 25.93
5 ObdDecoderTest 180% 9 2 51 54 5%↗ 51 0.0%→ 2.20
6 MiscFormatterTest 172% 5 5 42 47 11%↗ 42 0.0%→ 1.21
7 TestLookup3Hash 295% 0 0464464 0.0%→ 464 0.0%→ 6.76
8 TestDoublyLinkedList 792% 1 11041050.97%↗ 104 0.0%→ 3.03
9 ArraysIndexesTest 153% 15 4576647 12%↗ 586 1%↗ 10.58
10ClasspathResolverTest 1067% 0 0 50 50 0.0%→ 50 0.0%→ 4.18
11RequestTest 1781% 4 3141156 10%↗ 141 0.0%→ 60.55
12PrefixedCollapsibleMapTest 496% 0 0 54 54 0.0%→ 54 0.0%→ 13.28
13TokenQueueTest 669% 18 6152165 8%↗ 152 0.0%→ 15.61
14CharacterReaderTest 1979% 71 9309336 8%↗ 309 0.0%→ 57.06
15TailDelimiterTest 1071% 1 13813840.79%↗ 381 0.0%→ 12.90
16LinkBufferTest 348% 12 7 66 90 36%↗ 66 0.0%→ 3.24
17FileNamePatternTest 1258% 27 9573686 19%↗ 573 0.0%→ 25.08
18SyslogAppenderBaseTest 195% 1 1143148 3%↗ 143 0.0%→ 7.88
19RequestBuilderAndroidTest 299% 0 0513513 0.0%→ 513 0.0%→ 0.04
20CallAdapterTest 494% 0 0 55 55 0.0%→ 55 0.0%→ 7.30

Low mutation score
21FieldSpecTest 231% 12 4223316 41%↗ 223 0.0%→ 4.44
22ParameterSpecTest 232% 11 5214293 36%↗ 214 0.0%→ 3.66
23WrongNamespacesTest 2 8% 6 1 78249 219%↗ 249219%↗ 29.70
24WrongMapperTest 1 8% 3 1 97325 235%↗ 325235%↗ 7.13
25ProgressProtocolDecoderTest 116% 2 1 18 27 50%↗ 23 27%↗ 1.30
26 IgnitionEventHandlerTest 122% 0 0 13 13 0.0%→ 13 0.0%→ 0.77
27TestICardinality 2 7% 0 0 19 19 0.0%→ 19 0.0%→ 2.13
28TestMurmurHash 217% 40 2 52275 428%↗ 174234%↗ 2.18
29ConcurrencyTest 228% 2 0210342 62%↗ 210 0.0%→ 315.56
30AbstractClassTest 234% 28 4383475 24%↗ 405 5%↗ 12.67
31AllTimeTest 342% 0 0163163 0.0%→ 163 0.0%→ 0.02
32DailyTest 342% 0 0163163 0.0%→ 163 0.0%→ 0.02
33AttributeTest 236% 33 11 178225 26%↗ 180 1%↗ 10.76
34AttributesTest 552% 9 6316322 1%↗ 316 0.0%→ 6.21
35CodedDataInputTest 1 1% 0 0 5 5 0.0%→ 5 0.0%→ 3.58
36CodedInputTest 127% 29 28 108166 53%↗ 108 0.0%→ 0.88
37FileAppenderResilience AS ROOT Test 1 4% 0 0 4 4 0.0%→ 4 0.0%→ 0.65
38Basic 110% 0 0 6 6 0.0%→ 6 0.0%→ 0.89
39ExecutorCallAdapterFactoryTest 762% 0 0119119 0.0%→ 119 0.0%→ 0.09
40CallTest 3569% 3 16426440.32%↗ 642 0.0%→ 52.84

To conclude, according to this benchmark, DSpot proposes at least one
and focused improved test in all but one cases. From the developer viewpoint,
DSpot is not overwhelming it proposes a small set of suggested test changes,
which are ordered, so that even with a small time budget to improve the tests,
the developer is pointed to the most interesting case.



Title Suppressed Due to Excessive Length 27

RQ2: To what extent are improved test methods considered as focused?
Answer: In 25/26 cases, the improvement is successful at producing at
least one focused test method, which is important to save valuable devel-
oper time in analyzing the suggested test improvements.

4.3 Answer to RQ3

RQ3: To what extent do improved test classed kill more mutants
than developer-written test classes?

In 26 out of 40 cases, DSpot is able to amplify existing test cases and im-
proves the mutation score (MS) of the original test class. For example, let us
consider the first row, corresponding to TypeNameTest. This test class origi-
nally includes 12 test methods that kill 599 mutants. The improved, amplified
version of this test class kills 715 mutants, i.e. 116 new mutants are killed.
This corresponds to an increase of 19% in the number of killed mutants.

We first discuss the amplification of the test classes that can be considered
as being already good tests since they originally have a high mutation score:
those good test classes are the 24 tests in Table 5. There is a positive increase
of killed mutants for 17 cases. This means that even when human developers
write good test cases, DSpot is able to improve the quality of these test cases
by increasing the number of mutants killed. In addition, in 15 cases, when
the amplified tests kill more mutants, this goes along with an increase of the
number of expressions covered with respect to the original test class.

For those 24 well-test classes, the increase in killed mutants varies from
0,3%, up to 53%. A remarkable aspect of these results is that DSpot is able to
improve test classes that are initially extremely strong, with an original muta-
tion score of 92% (ID:8) or even 99% (ID:20 and ID:21). The improvements in
these cases clearly come from the double capacity of DSpot at exploring more
behaviors than the original test classes and at synthesizing new assertions.

Still looking to the upper part of Table 5 (the well-tested classes), we now
focus on the relative increase in killed mutants (column “Increase killed”). The
two extreme cases are CallTest (ID:24) with a small increase of 0.3% and
CodeInputTest (ID:18) with an increase of 53%. CallTest (ID:24) initially
includes 35 test methods that kill 69% of 920 covered mutants. Here, DSpot
runs for 53 minutes and succeeds in generating only 3 new test cases that kill 2
more mutants than the original test class, and the increase in mutation score is
only minimal. The reason is that input amplification does not trigger any new
behavior and assertion amplification fails to observe new parts of the program
state. Meanwhile, DSpot succeeds in increasing the number of mutants killed
by CodeInputTest (ID:18) by 53%. Considering that the original test class



28 Benjamin Danglot et al.

is very strong, with an initial mutation score of 60%, this is a very good
achievement for test amplification. In this case, the I-Amplification applied
easily finds new behaviors based on the original test code. It is also important
to notice that the amplification and the improvement of the test class goes
very fast here (only 52 seconds).

One can notice 4 cases (IDs:3, 13, 15, 24) where the number of new test
cases is greater than the number of newly killed mutants. This happens because
DSpot amplifies test cases with different operators in parallel. While we keep
only test cases that kill new mutants, it happens that the same mutant is
newly killed by two different amplified tests generated in parallel threads. In
this case, DSpot keeps both test cases.

There are 7 cases with high mutation score for which DSpot does not
improve the number of killed mutants. In 5 of these cases, the original mutation
score is greater than 87% (IDs: 2, 7, 12, 21, 22), and DSpot does not manage
to synthesize improved inputs to cover new mutants and eventually kill them.
In some cases DSpot cannot improve the test class because they rely on an
external resource (a jar file), or use utility methods that are not considered as
test methods by DSpot and hence are not modified by our tool.

Now we consider the tests in the lower part of Table 5. Those tests are
weaker because they have a lower mutation score. When amplifying weak test
classes, DSpot improves the number of killed mutants in 9 out of 16 cases. On
a per test class basis, this does not differ much from the well tested classes.
However, there is a major difference when one considers the increase itself:
the increases in number of killed mutants range from 24% to 428%. Also, we
observe a very strong distinction between test classes that are greatly im-
proved and test classes that are not improved at all (9 test classes are much
improved, 7 test classes cannot be improved at all, the increase is 0%). In the
former case, we find test classes that provide a good seed for amplification. In
the latter case, we have test classes that are designed in a way that prevents
amplification because they use external processes, or depend on administra-
tion permission, shell commands and external data sources; or extensively use
mocks or factories; or simply very small test cases that do not provide a good
potential to DSpot to perform effective amplification.

RQ3: To what extent do improved test classes kill more mutants than
manual test classes?
Answer: In our novel quantitative experiment on automatic test improve-
ment, DSpot significantly improves the capacity of test classes at killing
mutants in 26 out 40 of test classes, even in cases where the original test
class is already very strong. Automatic test improvement works particu-
larly well for weakly tested classes (lower part of Table 5): the mutation
score of three classes is increased by more than 200%.

The most notable point of this experiment is that we have considered tests



Title Suppressed Due to Excessive Length 29

that are already really strong (Table 5), with mutation score in average of
78%, with the surprising case of a test class with 99% mutation score that
DSpot is able to improve.

4.4 Answer to RQ4

What is the contribution of I-Amplification and A-Amplification to
the effectiveness of automated test improvement?

The relevant results are reported in the tenth and eleventh column of Ta-
ble 5. They give the number of killed mutants and the relative increase of the
number of killed mutants when only using A-Amplification.

For instance, for TypeNameTest (first row, id #1), using onlyA-Amplification
kills 599 mutants, which is exactly the same number of the original test class.
In this case, both the absolute and relative increase are obviously zero. On the
contrary, for WrongNamespacesTest (id #27), using only A-Amplification
is very effective, it enables DSpot to kill 249 mutants, which, compared to the
78 originally killed mutants, represents an improvement of 219%.

Now, if we aggregate over all test classes, our results indicate that A-
Amplification only is able to increase the number of mutants killed in 7 / 40
test classes. Increments range from 0.31% to 13%. Recall that when DSpot runs
both I-Amplification and A-Amplification, it increases the number of mutants
killed in 26 / 40 test classes, which shows that it is indeed the combination of
A-Amplification and I-Amplification which is effective.

We note that A-Amplification performs as well as I-Amplification + A-
Amplification in only 2/40 cases (ID:27 and ID:28). In this case, all the im-
provement comes from the addition of new assertions, and this improvement
is dramatic (relative increase of 219% and 235%).

The limited impact of A-Amplification alone has several causes. First, many
assertions in the original test cases are already good and precisely specify the
expected behavior for the test case. Second, it might be due to the limited
observability of the program under test (i.e., there is a limited number of
points where assertions over the program state can be expressed). Third, it
happens when one test case covers global properties across many methods: test
#28 WrongMapperTest specifies global properties, but is not well suited to
observe fine grained behavior with additional assertions. This latter case is
common among the weak test classes of the lower part of Table 5.

RQ4: What is the contribution of I-Amplification and
A-Amplification to the effectiveness of test amplification?
Answer: The conjunct run of I-Amplification and A-Amplification is the
best strategy for DSpot to improve manually-written test classes. This
experiment has shown that A-Amplification is ineffective, in particular
on tests that are already strong.



30 Benjamin Danglot et al.

To the best of our knowledge, this experiment is the first to evaluate the rel-
ative contribution of I-Amplification and A-Amplification to the effectiveness
of automatic test improvement.

5 Threats to Validity

RQ1 The major threat to RQ1 is that there is a potential bias in the accep-
tance of the proposed pull requests. For instance, if we propose pull requests
to colleagues, they are more likely to merge them. However, this is not the
case here. In this evaluation, the pull requests are submitted by the first au-
thor, who is unknown to all considered projects. The developers who study
the DSpot pull requests are independent from our group and social network.
Since the first author is unknown for the pull request reviewer, this is not a
specific bias towards acceptance or rejection of the pull request.

RQ2 The technique used to select focused candidates is based on the
proportion of mutant killed and the absolute number of modification done
by the amplification. However, it may happen that some improvements that
are not focused per our definition would still be considered as valuable by
developers. Having such false negative is a potential threat to validity.

RQ3 A threat to RQ3 relates to external validity: if the considered projects
and tests are written by amateurs, our findings would not hold for serious soft-
ware projects. However, we only consider real-world applications, maintained
by professional and esteemed open-source developers. This means we tried to
automatically improve tests that are arguably among the best of the open-
source world, aiming at as strong construct validity as possible.

RQ4. The main threat to RQ4 relates to internal validity: since our results
are of computational nature, a bug in our implementation or experimental
scripts may threaten our findings. We have put all our code publicly-available
for other researchers to reproduce our experiment and spot the bugs, if any.

Oracle. DSpot generates new assertions based on the current behavior
of the program. If the program contains a bug, the resulting amplified test
methods would enforce this bug. This is an inherent threat, inherited from
[27], which is unavoidable when no additional oracle is available, but only the
current version of the program. To that extent, the best usage of DSpot is to
improve the test suite of a supposedly almost correct version of the program.

6 Related Work

This work on test amplification contributes to the field of genetic improvement
(GI) [21]. The key novelty is to consider a test suite as the object to be im-
proved, while previous GI works improve the application code. (Yet, they use
the test suite as a fitness function while assessing the degree of improvement.)



Title Suppressed Due to Excessive Length 31

The work of Arcuri and Yao [3] and Wilkerson et al. [26] are good examples of
such work that use the test suite as fitness, while improving the program for
automatic bug fixing. Both work follow a similar approach: evolve the input
program into new versions that pass the regression test suite and that also
pass the bug revealing test case (that fails on the original program). In this
paper, we do not evolve the application code but the test code.

Evosuite is a state of the art tool to generate test cases for Java pro-
gram [12]. Evosuite and DSpot have different goals. Evosuite generates new
tests, while DSpot improves existing developer-written tests. The interaction
between developers and synthesized tests is key here: in 2016, an empirical
study demonstrated that developers who are asked to add oracles in test cases
generated by Evosuite, produce test suites that are not better than manually
written test suites at detecting bugs [14]. On the contrary, DSpot is designed
to improve manually written test suites to detect more bugs, and the rele-
vance study of RQ1 demonstrates that the outcome of DSpot is considered as
valuable by developers in order to improve existing test suites.

Our work is related to previous work that aim at automatically generating
test cases to improve the mutation score of a test suite. Liu et al. [17] aim at
generating small test cases, by targeting a path that covers multiple mutants
to create test inputs. They evaluate their approach on five small projects.
Fraser and Arcuri [13] propose a search-based approach to generate test suites
that maximize the mutation score. However their work is different from ours
since they generate new test cases from scratch, while DSpot always starts
from developper-written tests. Baudry et al. [5] improve the mutation score of
test suites using a bacteriological algorithm. They run experiments on a small
dataset and confirm that their approach is able to increase the mutation score
of tests. However, the scope of the study is limited to small programs, and
they do not consider the synthesis of assertions.

Other works aim at increasing fault detection capacities of test suites.
Zhang et al. [33], propose the Isomorphic Regression Testing system and its
implementation in ISON. It considers two versions of a program P and P’(for
instance P’ is the updated version of P, on which we want to detect any
regression). First, ISON identifies isomorphims, that is to say, code fragments
that have the same behavior. Then, they run the test suite on P and P’ to
identify which of the branches are uncovered in the isomorphic part, and they
collect the output. In order to cover all branches, they compute a branch
condition to execute the uncovered code. They compare ISON to Evosuite,
and conclude that Evosuite achieves a better branch coverage, while ISON is
able to detect faults that Evosuite does not.

Harder et al. [18] start from an existing test suite. They evaluate the qual-
ity of this initial test suite with respect to operational abstractions, i.e., an
abstract description of the behavior covered by the test suite. Their work is
about selecting new valuable tests, while ours is about synthesizing new valu-
able tests.

Then, they generate novel test cases and keep only the ones that change the
operational abstraction. The new test cases are generated by mining invariants



32 Benjamin Danglot et al.

using Daikon. They evaluate their approach on 8 C programs, and show that
it generates test cases with good fault-detection capabilities.

Milani et al. [19] propose an approach which combines the advantages
of manually written tests and automatic test generation. They exploit the
knowledge of existing tests and then combine it with the power of automated
crawling. It has been shown that the approach can effectively improve the
fault detection rate of the original test suite. Test amplification, as considered
in this work, is different, as it aims at enhancing the fault detection power of
manually written test suites.

Yoo et al. [31] propose Test Data Regeneration(TDR), which is a kind of
test amplification. They use hill climbing on existing test data (set of input)
that meets a test objective (e.g. cover all branch of a function). The algorithm
is based on neighborhood and a fitness functions as the classical hill climbing
algorithm. The goal is to create new test data inputs, that have the same
behavior as the original one (e.g. cover same branches). The key novelties of
our work with respect to the work of Yoo et al. [31] are as follow: they mutate
only literals in existing test cases, while DSpot’s I-Amplification also amplifies
method calls and can synthesize new objects when needed, A-Amplification
makes the synthesis of assertions an integral part of our test suite improvement
process and we evaluate the relevance of the synthesized test cases by proposing
them to the developers.

Xie [27] proposes a technique to add assertions into existing test methods.
His approach is similar to what we propose with A-Amplification. However,
this work does not consider the synthesis of new test inputs (I-Amplification)
and hence cannot cover new execution paths. This is the novelty of DSpot and
our experiments showed that this is an essential mechanism to improve the
test suite.

We now discuss a group of papers together. Pezzè et al. [22] synthesize in-
tegration test cases from unit test cases. The idea is to combine unit test cases,
which test simple functionalities on specific objects, to create new integration
test cases supported by the fact that unit test cases are early developed, and
integration test cases require more effort to do so. Röβler et al. [23] aim to
isolate failure causes. They propose BugEx, a system that starts from a single
failing test as input and generates test cases. It extracts the differences in path
execution between failing and passing tests. They evaluate BugEx on 7 failures
and show that it is able to lead to the failure root causes in 6 cases. Yu et
al. [32] augment test suites to enhance fault localization. They use test input
transformations to generate new test cases in existing test suites. They trans-
form iteratively some existing failing tests to derive new test cases potentially
useful to localize the specific encountered fault, similarly at I-Amplification.
Their tool is designed to target GUI applications. To reproduce a crash oc-
curred in production, Xuan et al. [30] propose to transform existing test cases.
The approach first selects relevant test cases based on the stack trace in the
crash, followed by the elimination of assertions in selected test cases, and fi-
nally uses a set of predefined transformations to produce new test cases that
can help to reproduce the crash. None of those works have evaluated whether



Title Suppressed Due to Excessive Length 33

the technique scales on object-oriented applications of the size considered here,
and whether the synthesized tests are considered valuable by senior developers.

It can be noted that several test generation techniques start from a seed
and evolve it to produce a good test suite. This is the case for techniques such
as concolic test generation [15], search-based test generation [11], or random
test generation [16]. The main difference between all these works and DSpot
lies in the nature of the seed: previous work use input values in the form of
numerical or String values, vectors or files, and do not consider any form of
oracle. On the contrary, we consider as a seed a real test case. It means the
seed is a complete program, which creates objects, manipulates the state of
these objects, calls methods on these objects and asserts properties on their
behavior. This is the contribution of DSpot: using real and complex object-
oriented tests as seed.

Almasi et al. [2] investigate the efficiency and effectiveness of automated
test generation on a production ready application named LifeCalc. They use
25 real faults from LifeCalc to evaluate two state-of-the-art tools, Evosuite
and Randoop, by asking feedback from the developers about the generated
test methods. The result are as follows: overall the tools found 19 over 25 real
faults; The developers state that the assertions and the readability of generated
test methods must be improved. The developers also suggest that such tools
should be implemented in continuous integration. The reason of the 7 faults
that remain undetected is that they either require complex test data input
or specific assertions. Our experiment is larger in scope, we evaluate DSpot
on 10 notable open-source software from GitHub, by proposing amplified test
methods in pull requests.

Allamanis et al. [1] devised a technique to rename elements in code and
evaluate their approach through five pull requests where four of them have been
accepted. Their work and ours both rely on independent evaluation through
pull-requests. One important difference is that, in the description of the pull
request, they say that the improvements are generated by a tool, while in our
case, we did not say anything about the research project underlying our pull
requests.

7 Conclusion

We have presented DSpot, a novel approach to automatically improve existing
developer-written test classes. We have shown that DSpot is able to strengthen
real unit test classes in Java from 10 real-world projects. Our experiment with
real developers indicates that they are ready to merge test cases improved by
DSpot into their test suite. The road ahead for automatic synthesis of test
case improvements is exciting.

First, there is a need to study how to generate meaningful natural language
explanations of the suggested test improvements: generation of well named
tests, generation of text accompanying the pull request, we dream of using
natural-language deep-learning for this task.



34 Benjamin Danglot et al.

Second, we aim at automating even more the process of integrating the
amplification result in a ready-to-use pull request. This requires two major
steps: first, one needs to identify which parts of the amplified test methods
are “valuable”. Second, we need to choose between modifying an existing test
method or create a new one that is derived from an existing one, even if the
new method is by construction an extension of an existing one. Such a decision
procedure must be made based on the intention of the existing test methods
and the potentially new intention of the amplified test. If we find an existing
test method that carries the same intention, i.e. it tests the same portion of
code as the amplification, one would preferably add changes there rather than
creating a new test methods. This challenging vision of mining and comparing
test purposes is the main area of our future work.

Third, and finally, we envision to integrate DSpot in a continuous inte-
gration service (CI) where test classes would be amplified on-the-fly for each
commit. This would greatly improve the direct industrial applicability of this
software engineering research.

References

1. M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Learning natural coding conventions.
In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2014, pages 281–293, New York, NY, USA, 2014. ACM.

2. M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds. An industrial
evaluation of unit test generation: Finding real faults in a financial application. In
2017 IEEE/ACM 39th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), pages 263–272, May 2017.

3. A. Arcuri and X. Yao. A novel co-evolutionary approach to automatic software bug fix-
ing. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Com-
putational Intelligence). IEEE Congress on, pages 162–168. IEEE, 2008.

4. B. Baudry, S. Allier, M. Rodriguez-Cancio, and M. Monperrus. DSpot: Test Amplifica-
tion for Automatic Assessment of Computational Diversity. ArXiv paper 1503.05807,
2015.

5. B. Baudry, F. Fleurey, J.-M. Jézéquel, and L. Yves. From genetic to bacteriological
algorithms for mutation-based testing. Software, Testing, Verification & Reliability
journal (STVR), 15(2):73–96, June 2005.

6. K. Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.
7. M. Beller, G. Gousios, and A. Zaidman. Travistorrent: Synthesizing travis ci and github

for full-stack research on continuous integration. In Proceedings of the 14th working
conference on mining software repositories, 2017.

8. B. Danglot, O. Vera-Perez, Z. Yu, M. Monperrus, and B. Baudry. The emerging field
of test amplification: A survey. arXiv preprint arXiv:1705.10692, 2017.

9. R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for
the practicing programmer. Computer, 11(4):34–41, 1978.

10. B. Flyvbjerg. Five misunderstandings about case-study research. Qualitative inquiry,
12(2):219–245, 2006.

11. G. Fraser and A. Arcuri. The seed is strong: Seeding strategies in search-based software
testing. In Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth
International Conference on, pages 121–130. IEEE, 2012.

12. G. Fraser and A. Arcuri. Whole test suite generation. IEEE Transactions on Software
Engineering, 39(2):276–291, 2013.

13. G. Fraser and A. Arcuri. Achieving scalable mutation-based generation of whole test
suites. Empirical Software Engineering, 20(3):783–812, 2014.



Title Suppressed Due to Excessive Length 35

14. G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg. Does automated unit test
generation really help software testers? a controlled empirical study. ACM Transactions
on Software Engineering and Methodology (TOSEM), 24(4):23, 2015.

15. P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random testing. In
ACM Sigplan Notices, volume 40, pages 213–223. ACM, 2005.

16. A. Groce, G. Holzmann, and R. Joshi. Randomized differential testing as a prelude
to formal verification. In Proceedings of the 29th international conference on Software
Engineering, pages 621–631. IEEE Computer Society, 2007.

17. M. h. Liu, Y. f. Gao, J. h. Shan, J. h. Liu, L. Zhang, and J. s. Sun. An approach to
test data generation for killing multiple mutants. In 2006 22nd IEEE International
Conference on Software Maintenance, pages 113–122, Sept 2006.

18. M. Harder, J. Mellen, and M. D. Ernst. Improving test suites via operational abstraction.
In Proc. of the Int. Conf. on Software Engineering (ICSE), pages 60–71, 2003.

19. A. Milani Fard, M. Mirzaaghaei, and A. Mesbah. Leveraging existing tests in auto-
mated test generation for web applications. In Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering, pages 67–78. ACM, 2014.

20. R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier. Spoon: A library
for implementing analyses and transformations of java source code. Software: Practice
and Experience, 46:1155–1179, 2015.

21. J. Petke, S. Haraldsson, M. Harman, D. White, J. Woodward, et al. Genetic improve-
ment of software: a comprehensive survey. IEEE Transactions on Evolutionary Com-
putation, 2017.

22. M. Pezz, K. Rubinov, and J. Wuttke. Generating effective integration test cases from
unit ones. In Proceedings of the 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation, ICST ’13, pages 11–20, Washington, DC, USA,
2013. IEEE Computer Society.

23. J. Röβler, G. Fraser, A. Zeller, and A. Orso. Isolating failure causes through test case
generation. In Proceedings of the 2012 International Symposium on Software Testing
and Analysis, pages 309–319. ACM, 2012.

24. J. Roche. Adopting devops practices in quality assurance. Commun. ACM, 56, 2013.
25. P. Tonella. Evolutionary testing of classes. In Proceedings of the 2004 ACM SIGSOFT

International Symposium on Software Testing and Analysis, ISSTA ’04, pages 119–128,
New York, NY, USA, 2004. ACM.

26. J. L. Wilkerson and D. Tauritz. Coevolutionary automated software correction. In
Proceedings of the 12th annual conference on Genetic and evolutionary computation,
pages 1391–1392. ACM, 2010.

27. T. Xie. Augmenting Automatically Generated Unit-test Suites with Regression Or-
acle Checking. In Proceedings of the 20th European Conference on Object-Oriented
Programming, pages 380–403, 2006.

28. T. Xie. Augmenting automatically generated unit-test suites with regression oracle
checking. In D. Thomas, editor, ECOOP 2006 – Object-Oriented Programming, pages
380–403, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

29. J. Xuan and M. Monperrus. Test case purification for improving fault localization. In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2014, pages 52–63, New York, NY, USA, 2014. ACM.

30. J. Xuan, X. Xie, and M. Monperrus. Crash Reproduction via Test Case Mutation: Let
Existing Test Cases Help. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, pages 910–913, New York, NY, USA, 2015.
ACM.

31. S. Yoo and M. Harman. Test data regeneration: Generating new test data from existing
test data. Softw. Test. Verif. Reliab., 22(3):171–201, May 2012.

32. Z. Yu, C. Bai, and K.-Y. Cai. Mutation-oriented Test Data Augmentation for GUI
Software Fault Localization. Inf. Softw. Technol., 55(12):2076–2098, Dec. 2013.

33. J. Zhang, Y. Lou, L. Zhang, D. Hao, L. Zhang, and H. Mei. Isomorphic regression
testing: Executing uncovered branches without test augmentation. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, pages 883–894, New York, NY, USA, 2016. ACM.


	Introduction
	Automatic Test Improvement
	Experimental Protocol
	Experimental Results
	Threats to Validity
	Related Work
	Conclusion

