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Abstract

The Purkinje network is the specialized conduction system in the heart. It

ensures the physiological spread of the electrical wave in the ventricles. In this

work, in an insulated heart framework, we model the free running Purkinje

system, using the monodomain equation. The intra-myocardium part of the

Purkinje fiber is coupled to the ventricular tissue using the bidomain equation.

The coupling is performed through the extracellular potential. We discretize

the problem in time using a semi-implicit scheme. Then, we write a variational

formulation of the semi discrete problem in a non standard weighted Sobolev

functional spaces. We prove the existence and uniqueness of the solution of

the Purkinje/myocardium semi-discretized problem. We discretize in space by

the finite element P1 − Lagrange and conduct some numerical tests showing

the anterograde and retrograde propagation of the electrical wave between the

tissue and the Purkinje fibers.
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1. Introduction

Heartbeats are generated and controlled by the cardiac conduction system.

Each heartbeat is triggered automatically by the natural pacemaker of the heart

called the sinus node. The electrical signal generated in the sinus node extends

to the atria and causes their contraction. This allows to propel blood from atria

into the ventricles. The electrical pulse is then conducted to the atrioventricular

node (AV node) in the middle of the heart. Then, the electrical signal propagates

through a rapid conduction system (His/Purkinje network) and activates the

ventricles, which in turn contract and propel the blood either to the lungs or

to the rest of the body. The rapid conduction system is an ”electrical” network

consisting of cardiac cells that have specific properties for conductivity and

excitability. If the activity of this system is interrupted due to cardiac injury

or other pathology, the heart rate is disrupted. In this case, blood flow to

the brain and other parts of the body may be weakened. As it plays a very

important role in electrical activity, it is natural that it also has a role in some

pathological cases. It is the case of the Wolff-Parkinson-white syndrome [1],

the left and the right bundle branch block [2, 3], the ventricular fibrillation

and drug-induced torsades de pointes [4, 5]. When the His/Purkinje System

is present, it is generally modeled with the monodomain model [6, 7, 8, 9, 10],

which does not take into account the extracellular parts of cardiac cells. The

propagation of the electric wave is described by a non-linear reaction diffusion

equations coupled to an ordinary differential equation modeling the ionic activity

in cardiac cells. For the modeling of the action potential, two approaches exist,

the physiological model [11, 12, 13, 14, 15, 16] and the phenomenological model

[17, 18, 19, 20, 21]. The literature about the His-Purkinje/myocardium coupling

is not abundant. In [22], this coupling is represented at the discrete level for

the bidomain equation. A mathematical analysis of this representation could

not be performed since the coupling conditions are not given in the continuous

level. In [10], authors provide a representation of the coupling conditions at the

continuous level, the effect of the Purkinje on the myocardium is represented by
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Figure 2: Purkinje system embedded in the heart geometry. The red line shows the
coupled part. The black line shows the insulated part.Figure 1: Schematic representation of the specialized conduction system. The red line shows

the coupled part. The black line shows the insulated part.

a source term. Whereas, the counter effect is based on a robin-like boundary

condition on the terminals of the Purkinje network. The stability of this problem

discretized in time and space is the subject of [23].

In [24], the coupling of the Purkinje and the myocardium is performed us-

ing the bidomain model for both Purkinje and myocardium. In this paper,

we consider the coupling between the Purkinje system and the myocardium

with a monodomain/bidomain model and the coupling is carried out by the

extracellular potential. We model the extra-myocardium Purkinje fiber, also

called free running Purkinje system, using the monodomain equations. The

intra-myocardium Purkinje fiber is coupled to the ventricular tissue using the

bidomain equations. We write the associated mathematical model under the

form of reaction diffusion coupling problem and ordinary differential equations.

We discretize the obtained model in time by a semi-implicit Euler scheme. We

then prove the existence and uniqueness of the solution at each time step. We

make use of weighted Sobolev spaces as in [24, 25]. Then, we discretize in space

using the finite element method in a bidimensional framework. We perform

some numerical tests in order to assess the anterograde and retrograde propa-
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gation of the electrical wave. The outline of the paper is as follow: The model

is described in section 2. In section 3, we prove the existence and uniqueness of

solution for the time semi-descritized problem. In section 4, we conduct some

numerical simulations for the 1D/2D coupled problem.

2. Monodomain/bidomain model for the Purkinje/myocardium cou-

pling in the heart

2.1. Geometry

It is known that the conduction system is made of a set of insulating branches

and coupled branches. The insulating branches do not allow an action potential

propagation to the surrounding myocardial tissue. They are given by the black

lines in the Figure 1. The coupled branches of the Purkinje fibers are given by

the red line. We consider a model that describes the propagation of the electrical

wave in both Purkinje and myocardium domains. We use a monodomain model

in the extra-myocardium Purkinje branches and in the intra-myocardium insu-

lated branches Λisl. We use a bidomain model in the intra-myocardium coupled

Purkinje branches Λcpl. We suppose that the myocardium occupies a three-

dimensional domain Ω and that Purkinje fiber occupies a mono-dimensional

part Λ. Without loss of generality, we restrict our study on a segment con-

sisting of both intra- and extra-myocardium fibers as shown in Figure 2.1. We

assume that Λ = Λisl ∪ Λcpl = {x ∈ R3 x = x(s) , s ∈ [0, L]}, where

x : [0, L] −→ R3 is a smooth parametrization of Λ. We suppose that the

intra-myocardium of Purkinje is Λcpl = {x ∈ Ω, x = x(s), s ∈ [s1, L]} and con-

sequently Λisl = x([0, s1]), s1 being a fixed point in ]0, L[. As in the 1D − 3D

coupling there is a concern to model the influence of the 1D body, it is appro-

priate to give some thickness to the fiber operating in Ω. This thickness will

play the role of the extracellular environment in our model and makes it more

realistic.

We assume that the fiber radius R is a positive constant in time and space.

Then we introduce as in [24], the volume occupied by the intra-myocardium
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Figure 3: Schematic representation of a Purkinje branch containing both intra and extra
myocardium segments.

Figure 2: Schematic representation of a Purkinje branch containing both intra and extra

myocardium segments.

branch of Purkinje as the set of points in the following cylinder:

ΩR = {x ∈ R3 : x = x0(s, r, θ), (s, r, θ) ∈ (s1, L)× [0, R)× [0, 2π)}, (1)

We assume that There exists a positive constant R0 such that for 0 < R < R0

we have ΩR ⊂ Ω. In what follows, we consider that R < R0.

Since Λcpl is compact, the projection from ΩR to Λcpl exists and the basic

assumption on the fiber geometry is that the projection from ΩR to Λcpl is

unique:

∀x ∈ ΩR : ∃!z0 ∈ Λcpl : dist(x,Λcpl) = ||x− z0||. (2)

As a consequence we have

dist(x0(s, r, θ),Λcpl) = r ∀(s, r, θ) ∈ [s1, L]× [0, R)× [0, 2π). (3)

We will note d(x) := dist(x,Λcpl) for each x ∈ Ω. The averaging operator on

the cross section of a fiber of radius R, perpendicular to the line Λcpl, is denoted

by a bar:

u(s) :=
1

πR2

∫ 2π

0

∫ R

0

u(s, r, θ)rdrdθ. (4)

2.2. Mathematical model

In [24], the system of equations in ΩR is reduced to one dimensional model in

two stages. First the three dimensional description of the intracellular current
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is reduced to one dimension dependent on the curvilinear abscissa. Secondly,

an asymptotic expansion for small radius reduces the fiber to one dimension

body. Combining the monodomain model used in [10] and the bidomain model

introduced in [24], the basic model we advocate writes:

Seek Vp, V, φe, W, Wp such that

Ap(Cp∂tVp + Iion,p(Vp,Wp)) = ∂
∂s (σ

∂Vp
∂s ) + ∂

∂s (σ ∂φe∂s )δΛcpl
+ Iapp,p on Λ×]0, T [,

A(C∂tV + Iion(V,W )) = div(σi∇(V + φe)) + Iapp in Ω×]0, T [,

−πR2Ap(Cp∂tVp + Iion,p(Vp,Wp))δΛcpl
−A(C∂tV + Iion(V,W ))

= div(σe∇φe) in Ω×]0, T [,

∂tWp + gp(Vp,Wp) = 0 on Λ×]0, T [,

∂tW + g(V,W ) = 0 in Ω×]0, T [,

(5)

with the following boundary conditions:

∂Vp
∂s (0) = 0,

∂Vp
∂s (L) + ∂φe

∂s (L) = 0 on ]0, T [,

∂φe
∂s (s1) =

(
λ

1+λ

∂V extp

∂s − ∂V intp

∂s

)
(s1) on ]0, T [,

(σi∇V ) · n = 0 on ∂Ω×]0, T [,

(σe∇φe) · n = 0 on ∂Ω×]0, T [,

(6)

and initial given conditions

Vp(., 0), V (., 0), φe(., 0), W (., 0), Wp(., 0). (7)

Above A (resp. Ap) defines the surface of membrane per unit volume in the

myocardium (resp. Purkinje), C (resp. Cp) represents the capacity per unit

of surface in the myocardium (resp. Purkinje), R is the radius fiber for the

Purkinje, σi is the intracellular conductivity in the myocardium, σe is the ex-

tracellular conductivity in the myocardium, V is the transmembrane voltage in

the myocardium, Vp is the transmembrane voltage in the Purkinje fiber, φe is the

average extracellular potential in the Purkinje defined by 4, φe the extracellular

potential in the myocardium, Iion(resp. Iion,p) is the total membrane current

per unit of surface in the myocardium (resp. Purkinje) and W (resp. Wp) is the

cell state variables in the myocardium (resp. Purkinje) and σ = ασpi with α = 1
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in Λcpl, α = λ
1+λ in Λisl, σ

p
i being the intracellular conductivity of the Purkinje

fiber, λ is a positive constant. In this study, the dynamics of W,Wp, Iion,p and

Iion are described by the phenomenological two-variables model introduced by

Mitchell and Schaeffer [19]. V extp = Vp1Λisl
, V intp = Vp1Λcpl

and n stands for the

outward unit normal on ∂Ω. The definition of Iion, Iion,p, g and gp are given as

follows:

Iion(V,W ) =
W

τin
V 2(V − 1) +

V

τout
, Iion,p(Vp,Wp) =

Wp

τin
V 2
p (Vp − 1) +

Vp
τout

(8)

g(V,W ) =


W − 1

τopen
if V ≤ Vgate

W

τclose
if V > Vgate

gp(Vp,Wp) =


Wp − 1

τopen
if Vp ≤ Vgate

Wp

τclose
if Vp > Vgate

(9)

where the values of the parameters τin, τout, τopen, τclose, Vgate are provided in

table 1 [19]. We note that σi, σe are independent of time.

3. Mathematical analysis of the coupled problem

3.1. Functional spaces

In the system 5, a measure term appears in the fourth equation and an av-

eraging operator appears in the second equation which significantly complicate

the theoretical and numerical analysis . In particular, the measure term δΛcpl
is

known not to be in the dual space of H1(Λcpl), and therefore standard existence

and uniqueness results based on this space do not hold for this problem. We

will use the functionnal framework proposed in [25]. We suppose that Ω is a

connected smooth open domain and for α ∈ (−1, 1), we denote by L2
α(Ω) the

space of measurable functions u such that∫
Ω

u(x)2d2α(x)dx <∞.

where d is the distance defined by 2. This means that u ∈ L2
α(Ω) if and only if

dαu belongs to L2(Ω). Equipped with the scalar product

(u, v)L2
α(Ω) =

∫
Ω

u(x)v(x)d2α(x)dx,
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L2
α(Ω) is a Hilbert space. We define the weighted Sobolev space H1

α(Ω) by:

H1
α(Ω) = {u ∈ L2

α(Ω) : ∇u ∈ (L2
α(Ω))3},

provided with it’s scalar product

(u, v)H1
α(Ω) = (u, v)L2

α(Ω) + (∇u,∇v)(L2
α(Ω))3 .

We recall from [26] that for α ∈ (−1, 1), the density of smooth functions, Rellich-

Kondriatev theorem and Poincaré inequalities hold true in H1
α.

Remark 1. As Ω is bounded, we have the following injections for α ∈ (0, 1).

1. H1
−α(Ω) is continuously embedded in L2(Ω), since for u ∈ H1

−α(Ω) we

have ∫
Ω

u2dx =

∫
Ω

u2d−2αd2αdx ≤ (diam(Ω))2α||u||2L2
−α(Ω). (10)

2. H1
−α(Ω) is continuously embedded in H1

α(Ω), since for u ∈ H1
−α(Ω) we

have

||u||2L2
α(Ω) =

∫
Ω

u2d2αdx =

∫
Ω

u2d−2αd4αdx ≤ (diam(Ω))4α||u||2L2
−α(Ω).

(11)

Remark 2. We define an auxiliary distance d̃ from d by :

d̃(x) = min{d,R} =

 d in ΩR,

R elsewhere,
(12)

d̃ is a Lipschitz function and it is equivalent to the distance d in the sense( R

diam(Ω)

)
d ≤ d̃ ≤ d on Ω. (13)

For any subset A ⊂ Ω, we define an auxiliary norm by

||f ||L̃2
α(A) :=

∫
A

|f |2d̃2αdx. (14)

Of course ||f ||L̃2
α(ΩR) = ||f ||L2

α(ΩR) and ||.||L̃2
α(Ω), ||.||L2

α(Ω) are equivalent:

Rα

diam(Ω)α
||f ||L2

α(Ω) ≤ ||f ||L̃2
α(Ω) ≤ ||f ||L2

α(Ω). (15)
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Finally, the extracellular potential φe in the myocardium having a null average

in Ω, we introduce for α ∈]0, 1[ the subsets

V1 = {u ∈ H1
α(Ω) :

∫
Ω

u(x)dx = 0} (16)

V2 = {u ∈ H1
−α(Ω) :

∫
Ω

u(x)dx = 0}. (17)

As it is classical for the weighted Sobolev spaces, we have the following lemma.

Lemma 1. The spaces V1, V2 are two Hilbert spaces when endowed with the

norms of H1
α(Ω), H1

−α(Ω) respectively. Moreover we have:

||v||H1
α(Ω) ≤ Cp||∇v||L2

α(Ω), ∀v ∈ V1 (18)

and

||v||H1
−α(Ω) ≤ Cp||∇v||L2

−α(Ω) ∀v ∈ V2 (19)

where cp is the Poincaré constant which depends only on the connected domain

Ω.

Proof. From 10 we have

|
∫

Ω

u(x)dx| ≤ (mes Ω)
1
2 ||u||L2(Ω) ≤ (mes Ω)

4α+1
2 ||u||L2

−α(Ω).

So the function ϕ defined on H1
−α(Ω) by ϕ(u) =

∫
Ω
u(x)dx is continuous and

V2 = ϕ−1({0}) is closed in H1
−α(Ω). For V1, we decompose the integral and

have in one hand

|
∫

Ω\ΩR
u(x)dx| = |

∫
Ω\ΩR

u(x)dαd−αdx| ≤ R−α(mes Ω)
1
2 ||u||L2

α(Ω).

In another hand, we have

|
∫

ΩR
u(x)dx| = |

∫ 2π

0

∫ L

s1

∫ R

0

u(x0(r, s, θ))rα+ 1
2 r−α+ 1

2 drdsdθ|

≤
∫ 2π

0

∫ L

s1

(

∫ R

0

u2r2α+1dr)
1
2 (

∫ R

0

r−2α+1dr)
1
2 dsdθ (20)
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=
R−α+1

√
2− 2α

∫ 2π

0

∫ L

s1

(

∫ R

0

u2r2α+1dr)
1
2 dsdθ

≤ R−α+1

√
π(L− s1)

1− α
||u||L2

α(ΩR).

Which concludes the proof of the first part. The proof of the Poincaré’s

inequalities is the classical one based on the Rellich theorem [27].

3.2. Weak formulation

Multiplying each one of the equations 5 by a test function, applying the

Green formula and using the boundary conditions 6, we obtain the following

variational formulation for our problem 5:

Find, for each t ∈]0, T [, (Vp, V, φe,Wp,W ) ∈ H1(Λ) × H1
α(Ω) × V1 × L2(Λ) ×

L2(Ω), such that

∂tWp + gp(Vp,Wp) = 0 on Λ,

∂tW + g(V,W ) = 0 in Ω,

Ap
(
Cp

∫
Λ

∂tVpω +

∫
Λ

Iion,p(Vp,Wp)ω
)
−
∫

Λ

Iapp,pω

+

∫
Λ

σ
∂Vp
∂s

∂ω

∂s
+

∫
Λcpl

σ
∂φe
∂s

∂ω

∂s
= 0 ∀ω ∈ H1(Λ),

A
(
C

∫
Ω

∂tV ψ +

∫
Ω

Iion(V,W )ψ
)
−
∫

Ω

Iappψ

+

∫
Ω

σi∇V · ∇ψ +

∫
Ω

σi∇φe · ∇ψ = 0 ∀ψ ∈ H1
−α(Ω),

−kp
(
Cp

∫
Λcpl

∂tVpξ +

∫
Λcpl

Iion,p(Vp,Wp)ξ
)

+

∫
Ω

(σe + σi)∇φe · ∇ξ

+

∫
Ω

σi∇V · ∇ξ −
∫

Ω

Iappξ = 0 ∀ξ ∈ V2,

(21)

Vp, V, φe, W, Wp given at t = 0 , kp = πR2Ap

We discretize the system 21 in time using a semi implicit scheme that linearizes

our problem. At each time step, we have to solve, the following semi-discrete

system: Find (V n+1
p , V n+1, φn+1

e ,Wn+1
p ,Wn+1) ∈ H1(Λ)×H1

α(Ω)×V1×L2(Λ)×
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L2(Ω), such that

Wn+1 = Wn −∆tg(V n,Wn+1) in Ω,

Wn+1
p = Wn

p −∆tgp(V
n
p ,W

n+1
p ) in Λ,

Ap(Cp

∫
Λ

(V n+1
p − V np )ω + ∆t

∫
Λ

Iion,p(V
n
p ,W

n+1
p )ω)−∆t

∫
Λ

In+1
app,pω

+∆t(

∫
Λ

σ
∂V n+1

p

∂s

∂ω

∂s
+

∫
Λcpl

σ
∂φn+1

e

∂s

∂ω

∂s
) = 0 ∀ω ∈ H1(Λ),

A(C

∫
Ω

(V n+1 − V n)ψ + ∆t

∫
Ω

Iion(V n,Wn+1)ψ)−∆t

∫
Ω

In+1
app ψ

+∆t

∫
Ω

σi∇V n+1 · ∇ψ + ∆t

∫
Ω

σi∇φn+1
e · ∇ψ = 0 ∀ψ ∈ H1

−α(Ω),

−kp(Cp
∫

Λcpl

(V n+1
p − V np )ξ + ∆t

∫
Λcpl

Iion,p(V
n
p ,W

n+1
p )ξ) + ∆t

∫
Ω

σi∇V n+1 · ∇ξ

+∆t

∫
Ω

(σe + σi)∇φn+1
e · ∇ξ −∆t

∫
Ω

In+1
app ξ = 0 ∀ξ ∈ V2,

(22)

V 0
p , V

0, φ0
e, W

0, W 0
p given.

Remark 3. The two first equations of 22 define explicitly Wn+1 and Wn+1
p , so

that these two unknowns appear in the second member in the rest of equations.

The problem 22 writes :

find (V n+1
p , V n+1, φn+1

e ) ∈ H1(Λ)×H1
α(Ω)× V1, such that:

a((V n+1
p , V n+1, φn+1

e ), (ω, ψ, ξ)) = L(ω, ψ, ξ) ∀(ω, ψ, ξ) ∈ H1(Λ)×H1
−α(Ω)×V2,

(23)

where

a((V n+1
p , V n+1, φn+1

e ), (ω, ψ, ξ)) = Cp(AP

∫
Λ

V n+1
p ω − kp

∫
Λcpl

V n+1
p ξ) (24)

+∆t

∫
Λ

σ
∂V n+1

p

∂s

∂ω

∂s
+AC

∫
Ω

V n+1ψ+∆t

∫
Ω

(σe+σi)∇φn+1
e ·∇ξ+∆t

∫
Ω

σi∇V n+1·∇ξ

+∆t

∫
Ω

σi∇V n+1 · ∇ψ + ∆t

∫
Ω

σi∇φn+1
e · ∇ψ + ∆t

∫
Λcpl

σ
∂φn+1

e

∂s

∂ω

∂s
,

L(ω, ψ, ξ) = ApCp(

∫
Λ

V np ω−πR2

∫
Λcpl

V np ξ)−∆tAp

∫
Λ

Iion,p(V
n
p ,W

n+1
p )ω (25)
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+∆tkp

∫
Λcpl

Iion,p(V
n
p ,W

n+1
p )ξ +AC

∫
Ω

V nψ −∆tA

∫
Ω

Iion(V n,Wn+1)ψ

+∆t

∫
Ω

In+1
app ξ + ∆t

∫
Ω

In+1
app ψ + ∆t

∫
Λ

In+1
app,pω.

In the next section, we show that a solution exists and is unique at each time-

step for the time- discrete equations 23.

3.3. Existence and uniqueness of solution

The basic tools for the proof of our existence are the Nec̀as theorem [28] and

the trace theorem proved in [25] recalled below.

Theorem 2. (Nec̀as) Let G1 and G2 be two Hilbert spaces, F ∈ G′2 be a

bounded linear functional on G2 and a(., .) be a bilinear form on G1×G2 such

that

|a(u, v)| ≤ C1||u||G1 ||v||G2 ∀(u, v) ∈ G1 ×G2, (26)

sup
u∈G1

a(u, v) > 0 ∀v ∈ G2, v 6= 0, (27)

sup
||v||G2

≤1

a(u, v) ≥ C2||u||G1 ∀u ∈ G1, (28)

where C1 and C2 are positive constants. Then there is a unique u ∈ G1 such

that

a(u, v) = F (v) ∀v ∈ G2,

which depends linearly and continuously on F:

||u||G1 ≤
1

C2
||F ||G′2 .

Theorem 3. Let 0 < α < 1. There exists a unique linear continuous map

γΛcpl
: H1
−α(Ω)→ L2(Λcpl)
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such that γΛcpl
φ = φ|Λcpl

for each smooth function φ ∈ C∞(Ω). In particular,

there exists a positive number CΛcpl
= CΛcpl

(α) such that

||φ||L2(Λcpl) ≤ CΛcpl
||φ||H1

−α(Ω) ∀φ ∈ H1
−α(Ω)

We will apply the theorem 2 in different functional frames. We decompose the

bilinear and linear forms defined in 24-25 in four parts and we set

A1(V n+1
p , ω) = ApCp

∫
Λ

V n+1
p ω + ∆t

∫
Λ

σ∇V n+1
p · ∇ω, (29)

A2(V n+1, ψ) = AC

∫
Ω

V n+1ψ + ∆t

∫
Ω

σi∇V n+1 · ∇ψ, (30)

A3(φn+1
e , ξ) = ∆t

∫
Ω

(σe + σi)∇φn+1
e · ∇ξ, (31)

Acoup(V n+1
p , V n+1, φn+1

e ;ω, ψ, ξ) = ∆t

∫
Λcpl

σ∇φn+1
e · ∇ω (32)

−kpCp
∫

Λcpl

V n+1
p ξ + ∆t

∫
Ω

σi∇φn+1
e · ∇ψ + ∆t

∫
Ω

σi∇V n+1 · ∇ξ,

B1(ω) :=< B1, ω >L2(Λ)= ApCp

∫
Λ

V np ω−∆tAp

∫
Λ

Iion,p(V
n
p ,W

n+1
p )ω+∆t

∫
Λ

Iapp,pω,

(33)

B2(ψ) :=< B2, ψ >L2(Ω)= AC

∫
Ω

V nψ−∆tA

∫
Ω

Iion(V n,Wn+1)ψ+∆t

∫
Ω

In+1
app ψ,

(34)

B3(ξ) :=< B3, ξ >L2(Ω)= −kpCp
∫

Λcpl

V np ξ+∆tkp

∫
Λcpl

Iion,p(V
n
p ,W

n+1
p )ξ+∆t

∫
Ω

In+1
app ξ

(35)

Removing the indices n, noting u = (Vp, V, φe),v = (ω, ψ, ξ) and using the

notations 29-35, we have:

a(u,v) = A1(Vp, ω) +A2(V, ψ) +A3(φe, ξ) +Acoup(Vp, V, φe;ω, ψ, ξ) (36)
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L(v) = B1(ω) +B2(ψ) +B3(ξ). (37)

It’s clear that A1 is continuous and coercive on H1(Λ) ×H1(Λ). To treat the

terms with A2 and A3, we recall from [25] the following technical lemma.

Lemma 4. Let α∗ ∈ (0, 1) and u ∈ H1
α(Ω) be given, with 0 < α < α∗. Consider

the θ-Fourier expansions in local coordinates given by

u(s, r, θ) =
∑
k∈Z

Ak0(r, s)eikθ in ΩR, (38)

Furthermore, we define

Ψ(x) = Ψ(x;u) =

 Ψ(r, y;u) =
∫ R
r
t2α−1A0(t, y)dt in ΩR,

0 elsewhere,
(39)

where y can be either the s or the φ local variable, depending on the subdomain

of ΩR x belongs to. There are positive constants C1, C2, C3, dependent only on

α∗, such that the following estimates hold for each α ∈ (0, α∗]:

||u−A0||L2
α−1(ΩR) ≤ C1||∇u||L2

α(Ω), (40)

||Ψ||L2
−α(Ω) ≤ C2||u||L2

α(Ω), (41)

||d2α−1u∇d+∇Ψ||L2
−α(ΩR) ≤ C3||∇u||L2

α(ΩR). (42)

Following [25], we have the following lemma that will serve to treat the coupling

term 32.

Lemma 5. Let α ∈ (−1, 1); the linear mapping K : u → u from H1
α(Ω) to

L2(Λcpl) is bounded and ||K|| ≤ R−α√
π
.

Proposition 1. Let σi ∈ L∞(Ω) and assume that there exists a positive con-

stant σi,min such that σi ≥ σi,min in Ω. Let B be a continuous linear operator
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on H1
−α(Ω). For α < min

(
α∗, min(m1,∆tm3)

2 max(C2,C3)

)
, there exists a unique V ∈ H1

α(Ω)

satisfying

A2(V, ψ) = B(ψ), ∀ψ ∈ H1
−α(Ω) (43)

where A2 is defined by 30. Moreover there is a positive number C1 such that

||V ||H1
α(Ω) ≤ C1||B||. (44)

Proof. The form A2 is continuous on H1
α(Ω)×H1

−α(Ω), since we have

|A2(V, ψ)| ≤ |AC
∫

Ω

V ψdx|+ |∆t
∫

Ω

σi∇V · ∇ψdx|

≤ m1|
∫

Ω

V dαd−αψdx|+m2|
∫

Ω

dα∇V · d−α∇ψdx|

≤ m1||V ||L2
α
||ψ||L2

−α
+m2||∇V ||L2

α(Ω)||∇ψ||L2
−α(Ω)

≤ max(m1,m2)||V ||H1
α(Ω)||ψ||H1

−α(Ω),

where m1 = AC, m2 = ∆t||σi||L∞(Ω). For positivity, let ψ ∈ H1
−α(Ω), ψ 6= 0.

As for α ≥ 0, H1
−α(Ω) ⊂ H1

α(Ω), we have

sup
V ∈H1

α(Ω)

A2(V, ψ) ≥ A2(ψ,ψ) ≥ min(m1,∆tm3)(||ψ||2L2(Ω) + ||∇ψ||2L2(Ω)) > 0,

(45)

where m3 = σi,min is the lower bound for the conductive term σi. Looking now

for the inf sup condition 28. Let α∗ ∈ (0, 1), α ∈ (0, α∗] and let V ∈ H1
α(Ω).

The main idea is to take the test function as following

ψ(x) = d̃(x)2αV (x) + 2αΨ(x), (46)

where d̃ is defined in 12 and Ψ = Ψ(x, V ) is the auxiliary function introduced

in lemma 4. Thanks to 13, 41 and the Cauchy Schwarz inequality, we have for

each α ∈ (0, α∗]:

||ψ||L2
−α(Ω) ≤ ||V ||L2

α(Ω) + 2||Ψ||L2
−α(Ω) ≤ m4||V ||L2

α(Ω), (47)
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where m4 = 1 + 2C2(α∗). Moreover, since

∇ψ = d̃2α∇V + 2α(∇Ψ + d̃2α−1V∇d̃),

observing that d̃ = d on ΩR, Ψ = 0, ∇Ψ = ∇d̃ = 0 on Ω\ΩR, and using 42 we

obtain

||∇ψ||L2
−α(Ω) ≤ ||∇V ||L2

α(Ω) + 2||∇Ψ + d2α−1V∇d||L2
−α(ΩR) ≤ m5||∇V ||L2

α(Ω),

where m5 = 1+2C3(α∗), C2 and C3 are the constants in estimates 41, 42, hence

||ψ||H1
−α(Ω) ≤ C4||V ||H1

α(Ω), (48)

where C4 =
√

(m2
4 +m2

5).

On another hand, we have

A2(V, ψ) ≥ min(m1,∆tm3)

[∫
Ω

V 2d̃2αdx+

∫
Ω

|∇V |2d̃2αdx

]
+ 2α

∫
ΩR

VΨdx

+2α

∫
ΩR
∇V · (∇Ψ + d̃2α−1V∇d̃)dx.

Using the Cauchy Schwarz inequality, we obtain

A2(V, ψ) ≥ min(m1,∆tm3)
[
||V ||2

L̃2
α(Ω)

+ ||∇V ||2
L̃2
α(Ω)

]
−2α||∇V ||L̃2

α(ΩR)||∇Ψ + d̃2α−1V∇d̃||L̃2
−α(ΩR) − 2α||V ||L̃2

α(ΩR)||Ψ||L̃2
−α(ΩR).

(49)

Then, using the the inequalities in Lemma 4, we have

A2(V, ψ) ≥ min(m1,∆tm3)
[
||V ||2

L̃2
α(Ω)

+ ||∇V ||2
L̃2
α(Ω)

]
− 2α

(
C3||∇V ||2L̃2

α(ΩR)
+ C2||V ||2L̃2

α(ΩR)

)
.

≥ (min(m1,∆tm3)− 2αmax(C2, C3))
[
||V ||2

L̃2
α(Ω)

+ ||∇V ||2
L̃2
α(Ω)

]
= (min(m1,∆tm3)− 2αmax(C2, C3)) ||V ||2

H̃1
α(Ω)

.

(50)

Using the equivalence between norms 15, we have

A2(V, ψ) ≥ (min(m1,∆tm3)− 2α max(C2, C3)) R2α

diam(Ω)2α ||V ||2H1
α(Ω).

(51)

The third condition (28) in the Nec̀as theorem holds if

(min(m1,∆tm3)− 2α max(C2, C3)) > 0.

16



This is true if

α < min

(
α∗,

min(m1,∆tm3)

2 max(C2, C3)

)
.

The three conditions of the Nec̀as theorem are now satisfied, then there exist a

unique V ∈ H1
α(Ω) solution of (43).

Let’s denote by M1 = (min(m1,∆tm3)− 2α max(C2, C3)) R2α

diam(Ω)2α , using the

linearity of the operator B and the inequality (48), we have

||V ||H1
α(Ω) ≤

C4

M1
||B||. (52)

Proposition 2. Let σe ∈ L∞(Ω), σi ∈ L∞(Ω) and assume that there exist a

positive constants σe,min and σi,min such that σe ≥ σe,min and σi ≥ σi,min in

Ω. Let B be a continuous linear operator on V2. Then, there is a constant

δ2 ∈ (0, 1) such that for each α ∈ (0, δ2), there exists a unique φe ∈ V1 satisfying

A3(φe, ξ) = B(ξ), ∀ξ ∈ V2 (53)

where A3 is defined by 31. Moreover there is a positive number C2 such that

||φe||V1 ≤ C2||B|| (54)

Proof. The continuity of A3 on V1 × V2 is trivial since, if we note m̄ = ||σe +

σi||L∞(Ω), we have

A3(φe, ξ) = |∆t
∫

Ω

(σe + σi)∇φn+1
e · ∇ξ| ≤ Tm||∇φe||L2

α(Ω)||∇ξ||L2
−α(Ω)

≤ Tm||φe||V1 ||ξ||V2 .

For positivity, we notice that V2 ⊂ V1 and then for ξ 6= 0

sup
φe∈V1

A3(φe, ξ) ≥ A3(ξ, ξ) ≥ ∆t(σe,min + σi,min)||∇ξ||2L2(Ω) > 0.

For the inf sup condition, we take again the test function given by 46 but

modified so that it has zero mean. We take for a given φe ∈ V1 as in 46

ξ = d̃2αφe + 2αΨ,
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and

ξ̃ = ξ − 1

mes(Ω)

∫
Ω

ξ(x)dx. (55)

We have from 48: ∇ξ = ∇ξ̃ ∈ L2
−α(Ω) and similarly to the proof of lemma 1,

ξ̃ ∈ L2
−α(Ω). So ξ̃ ∈ V2 and by the Poincaré inequality 19 we have

||ξ̃||L2
−α(Ω) ≤ Cp||∇ξ||L2

−α(Ω). (56)

Through 46, 47, 48 and 56 we have, for any α ∈]0, α∗[, α∗ fixed in ]0, 1[:

||ξ̃||H1
−α(Ω) ≤ C||φe||H1

α(Ω) (57)

where C depends only on the Poincaré constant Cp and on α∗. Using now ξ̃ as

test function, we get

A3(φe, ξ̃) = ∆t

∫
Ω

(σe + σi)∇φe · ∇ξ̃

= ∆t

∫
Ω

(σe + σi)|∇φe|2d̃2αdx+ 2α

∫
ΩR

(σe + σi)∇φe · (∇Ψ + d̃2α−1φe∇d̃)dx

≥ ∆tm||∇φe||2L̃2
α(Ω)
− 2α∆tmC3||∇φe||2L̃2

α(ΩR)

≥ ∆t(m− 2αmC3)||∇φe||2L̃2
α(Ω)

. (58)

≥ ∆t(m− 2αmC3)
R2α

2diam(Ω)2α
(||∇φe||2L2

α(Ω) + C−2
p ||φe||2L2

α(Ω))

≥ ∆t(m− 2αmC3)
R2α

2diam(Ω)2α
min(1, C−2

p )||φe||2V1
,

where m = σe,min + σi,min is the lower bound for the conductive term σe + σi.

Defining for α∗ fixed in ]0, 1[ the following α-independent quantity

δ2 = min(α∗, m

2mC3
)

we have for 0 < α < δ2

A3(φe, ξ) ≥M2||φe||2H1
α(Ω), (59)

where

M2 = ∆t(m− 2αmC3)
R2α

2diam(Ω)2α
min(1, C−2

p ).
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From 57 and 59 we get the inf sup condition of the Nec̀as theorem. This com-

pleted the proof of the theorem with

||φe||V1 ≤
C4

M2
|B||V2 , (60)

Now, we come to the main theorem, we introduce the Hilbert spaces

E = H1(Λ)×H1
α(Ω)× V1,

F = H1(Λ)×H1
−α(Ω)× V2.

Theorem 6. We assume that for each t ∈ [0, T ], Iapp and Iapp,p are respectively

in L2(Ω) and L2(Λ). We suppose that σi and σe are in L∞(Ω) and there exist

two positive constants σi,min and σe,min such that σi ≥ σi,min and σe ≥ σe,min
in Ω. Also assume that the previous data in time are well posed. Then there is

δ ∈ (0, 1) , such that if α ∈ (0, δ), there exists an unique u ∈ E such that

a(u, v) = L(v) ∀v ∈ F.

Where a and L are defined respectively by 24 and 25. Moreover, there is a

number C such that:

||u||E ≤ C||L||F ′ .

Proof. 1. Continuity. The bilinear terms Ak, k = 1, 2, 3 are respectively

continuous on H1(Λ) × H1(Λ), H1
α(Ω) × H1

−α(Ω) and V1 × V2. To see

that the remaining coupling term is continuous on E×F, we remark that
∂φe
∂s

= (
∂φe
∂s

), and make use of lemma 5 to obtain

|∆t
∫

Λcpl

σ
∂φe
∂s
· ∂ω
∂s
| ≤ ∆t||σ||L∞(Λcpl)||φe||H1

α(Ω)||ω||H1(Λ), (61)

≤ R−α√
π

∆t||σ||L∞(Λ)||φe||H1
α(Ω)||ω||H1(Λ).
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We have also using the theorem 3

|kpCp
∫

Λcpl

Vpξ| ≤ kpCp||Vp||L2(Λ)||γΛcpl
ξ||L2(Λcpl), (62)

≤ kpCp||Vp||H1(Λ)CΛcpl
(α)||ξ||H1

−α(Ω),

and

|∆t
∫

Ω

σi∇V · ∇ξ| ≤ ∆t||σi||L∞(Ω)||V ||H1
α(Ω)||ξ||H1

−α(Ω). (63)

Finally, we have

|∆t
∫

Ω

σi∇φe · ∇ψ| ≤ ∆t||σi||L∞(Ω)||φe||H1
α(Ω)||ψ||H1

−α(Ω). (64)

So by grouping 61, 63, 62 and 64, we obtain

Acoup(Vp, V, φe;ω, ψ, ξ) ≤ max
(
∆t||σi||L∞(Ω), kpCpCΛcpl

, (65)

R−α√
π

∆t||σ||L∞(Λcpl)

)
||u||E ||v||F

and Acoup is continuous on E × F.

2. Non degeneracy. Let v = (ω, ψ, ξ) ∈ F. Thanks to the proposition 1-2

and the obvious continuity and coercivity of A1 on H1(Λ), we can choose

u = (Vp, V, φe) ∈ E such that Vp, V, φe are respectively solution of

A1(Vp, v) = (ω, v)H1(Λ) ∀v ∈ H1(Λ) (66)

A2(V, v) = (ψ, v)H1
−α(Ω) ∀v ∈ H1

−α(Ω), (67)

A3(φe, v) = (ξ, v)H1
−α(Ω) ∀v ∈ V2. (68)

So, we have

A(u,v) = A1(Vp, ω) +A2(V, ψ) +A3(φe, ξ) (69)

= ||ω||2H1(Λ) + ||ψ||2H1
−α(Ω) + ||ξ||2V2

,

and

||Vp||H1(Λ) ≤ β2||ω||H1(Λ), (70)
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||V ||H1
α(Ω) ≤ C1||ψ||H1

−α(Ω), (71)

||φe||H1
α(Ω) ≤ C2||ξ||V2

. (72)

Then we have

Acoup(Vp, V, φe;ω, ψ, ξ) ≤
(R−α√

π
∆t||σ||L∞(Λcpl)C2+kpCpCΛcpl

β2

)
||ξ||H1

−α(Ω)||ω||H1(Λ)

+∆t||σi||L∞(Ω)

(
C2 + C1

)
||ξ||H1

−α(Ω)||ψ||H1
−α(Ω)

so

a(u,v) ≥ (1− θ)||v||2F,

where

θ = max
(R−α√

π
∆t||σ||L∞(Λcpl)C2 + kpCpCΛcpl

β2,∆t||σi||L∞(Ω)

(
C2 + C1

))
.

Knowing that ||σ||L∞(Λcpl) and ||σi||L∞(Ω) are generally small [24] and by

choosing ∆t and R sufficiently small so that θ < 1, we conclude that the

bilinear form a is non-degenerate.

3. The inf-sup condition. Now let u = (Vp, V, φe) ∈ E and consider

v = (Vp, ψ, ψ̃) ∈ F where ψ and ψ̃ are defined respectively by 39 and 55.

There exist two constant m4,m5, both independent of α, such that

||v||F ≤ max(1, C4)||u||E, A(u,v) ≥ min(M1,M2, β2)||u||2E,

so, we have

a(u,v) ≥ (min(M1,M2, β2)− θmax(1, C4))||u||2E.

As we have taken the initial data such as the linear form defined by 25

is continuous on F, Nec̀as theorem applies with α ∈ (0,min(δ1, δ2)), σi ≥

σi,min, σe ≥ σe,min and

C =
max(1, C4)

min(M1,M2, β2)− θmax(1, C4)
.
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Remark 4. In the theorem 6, we add the hypothesis saying that the previous

data in time is well posed in order to ensure the continuity of the linear term

L. This continuity is assured if:

1. Iapp and Iapp,p are respectively in L2(Ω) and L2(Λ) for each t ∈ [0, T ],

2. Iion,p(V
n
p ,W

n+1
p ) ∈ L2(Λ),

3. Iion(V n,Wn+1) ∈ L2(Ω).

The second condition is assured if (V 0
p , W 0

p ) ∈ H1(Λ)×L2(Λ) and using Sobolev

injection H1(Λ) ⊂ C0(Λ). The third condition is assured if (V 0
p , V

0, φ0
e) ∈

H1(Λ) ×H2
α(Ω) ×H2

α(Ω). The proof of this could be performed by induction.

Indeed, if we suppose that up to the order n we have (V np , V
n, φne ) ∈ H1(Λ) ×

H2
α(Ω)×H2

α(Ω), then the solution (V n+1
p , V n+1, φn+1

e ) exists and is in H1(Λ)×

H2
α(Ω) × V1. To show that (V n+1

p , V n+1, φn+1
e ) ∈ H1(Λ) ×H2

α(Ω) ×H2
α(Ω), it

is enough to come back to equations 5 discretized in time.

4. Numerical approximation

We perform numerical tests in a two-dimensional framework. The my-

ocardium domain is represented by a square. We assume that Ω (resp. Λ)

is covered by a regular partition τ (resp. τp) of simplexes (resp. edges) of max-

imal diameter h (resp. hp), with N (resp. Np) nodes, noted x1 to xN (resp.

xp,1 to xp,Np). The fiber domain Λcpl is discretized by extracting edges from

the two-dimensional mesh of Ω. It is then a collection Ih of edges Ik of triangles

in τ , Λcpl =
⋃
Ik∈Ih

Ik. Consider the space P 1
h (resp. P 1

hp
) of continuous linear

finite elements on τ (resp. τp) and the usual basis functions Φh1 , ...,Φ
h
N (resp.

Φ
hp
1 , ...,Φ

hp
Np

) attached to the nodes x1, ..., xN (resp. xp,1, ..., xp,Np). The hat

functions associated to the nodes of Λcpl are assumed to be the restriction of the

two-dimensional basis functions onto Λcpl. Following [24], a function, denoted

by rΛcpl
: k −→ l, k ∈ {Np −m + 1, ..., Np} and l ∈ {1, ..., N}, is defined that

maps each one-dimensional node index to the corresponding two-dimensional
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one:

∀k ∈ {Np −m+ 1, ..., Np} : xrΛcpl
(k) = xm,k and ΦhrΛcpl

(k) = Φ
hp
k on Λcpl.

Using rΛcpl
, we define the extension matrix, RΛcpl

∈ RN×m, such that

(RΛcpl
)kl =

 1 if l = rΛcpl
(k),

0 otherwise.
(73)

In other hand, we define another function denoted by r̂Λcpl
: k −→ j, k ∈

{Np −m+ 1, ..., Np} and j ∈ {1, ..., Np}, that maps each one-dimensional node

in Λcpl index to the corresponding one-dimensional one in Λ:

∀k ∈ {Np −m+ 1, ..., Np} : xr̂Λcpl
(k) = xj,k and Φ

hp
rΛcpl

(k) = Φ
hp
k on Λcpl

Using r̂Λcpl
(k) we define the extension matrix, R̂Λcpl

∈ RNp×m, such that

(R̂Λcpl
)kl =

 1 if l = r̂Λcpl
(k),

0 otherwise.
(74)

After such discretization, the system 23 becomes a linear system of equations

that can be expressed in matrix form. Let V kp = (V 1,k
p,hp

, ..., V
Np,k
p,hp

), V =

(V 1,k
h , ..., V N,kh ) and φe = (φ1,k

e,h, ..., φ
N,k
e,h ) be the coefficients of the approximate

solution at the time step k. Then, in matrix form, the finite element problem

reads, for each time step, as
∆tKp + CpApMp 0 ∆tR̂Λcpl

Kp

0 ∆tKi +ACM ∆tKi

−kpCpRΛcpl
M̂pR̂

T
Λcpl

∆tKi ∆t(Ke +Ki)



V n+1
p

V n+1

φn+1
e



=


CpApMp 0 0

0 ACM 0

−kpCpRΛcpl
M̂pR̂

T
Λcpl

0 0



V np

V n

φne

 (75)

+


∆tMp(I

n+1
app,p −ApIion,p(V np ,Wn+1

p ))

∆tM(In+1
app −AIion(V n,Wn+1))

∆tMIn+1
app + ∆tApRΛcpl

M̂pIion,p(V
n
p ,W

n+1
p )R̂TΛcpl


23



where the block of the matrix are given by

(Kp)kl =

∫
Λ

σ
∂Φ

hp
k

∂s

∂Φ
hp
l

∂s
ds k, l = 0, ..., Np, (76)

(Kp)kl =

∫
Λcpl

σ
∂Φ

hp
k

∂s

∂Φ
hp
l

∂s
ds k = 0, ...,m; l = 0, ..., N, (77)

(Mp)kl =

∫
Λ

Φ
hp
k Φ

hp
l ds k, l = 0, ..., Np, (78)

(̂Mp)kl =

∫
Λcpl

Φ
hp
k Φ

hp
l ds k, l = 0, ...,m, (79)

(M)kl =

∫
Ω

ΦhkΦhl dΩ k, l = 0, ..., N, (80)

(Ki)kl =

∫
Ω

σi∇Φhk · ∇Φhl dΩ k, l = 0, ..., N, (81)

(Ke)kl =

∫
Ω

σe∇Φhk · ∇Φhl dΩ k, l = 0, ..., N. (82)

The block matrices in (75) consist of stiffness and mass matrices calculated

on the two-dimensional and one-dimensional meshes, and a matrix (Kp) that

contains the averaging operator (4). In our tests, Ω is the square (1 cm x 1 cm)

and Λ is a 1 cm segment. We use a uniform time and space discretization with

∆t = 10−1 ms and h = 2 × 10−2 cm. We add a segment in the top right of

the myocardium, the coupling is performed using the same conditions as for the

first segment Λ . We stimulate the first segment at its left free extremity.

In Figure 4, we present the results. After 3ms we see the propagation in

the Purkinje fiber (panel (a) ). In panel (b), we see how the fiber activates the

myocardium in the down left coupling region. The electrical wave propagates

through the myocardium (panels (c,d)). When the electrical wave arrives at the

top right corner, it activates the second segment of the Purkinje (panel (e)). In

Figure 4, we show the plateau phase in panel (a) and the repolarization in panels

(b), (c), (d) and (e). In Figure 4, we see the propagation of the extracellular

potential in the myocardium at both depolarization and repolarization phase.
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(a) 3 ms (b) 10 ms

(c) 15 ms (d) 22 ms

(e) 30 ms

Figure 4: Snapshots of the depolarization phase of the electrical wave showing the antero-
grade and retrograde circulation of the electrical wave between Purkinje and myocardium.

Figure 3: Snapshots of the depolarization phase of the electrical wave showing the anterograde

and retrograde circulation of the electrical wave between Purkinje and myocardium.
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(a) 260 ms (b) 350 ms

(c) 370 ms (d) 380 ms

(e) 400 ms

Figure 5: Snapshots of the electrical potential at the plateau phase (panel (a)) and at the
repolarization phase (panels (b,c,d,e)).

Figure 4: Snapshots of the electrical potential at the plateau phase (panel (a)) and at the

repolarization phase (panels (b,c,d,e)).
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(a) 0 ms (b) 9 ms

(c) 11 ms (d) 19 ms

(e) 60 ms (f) 350 ms

(g) 380 ms

Figure 6: Snapshots of the extracellular potential at the di↵erent phase: depolarization
and repolarization.

Figure 5: Snapshots of the extracellular potential at the different phase: depolarization and

repolarization.
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5. Conclusion

In this paper, we have shown the existence and uniqueness of a solution for a

monodomain/bidomain coupling problem that models the Purkinje/myocardium

conduction system. We realized numerical tests in a two-dimensional framework.

The calculation should be extended to the more realistic three-dimensional

framework and the physiological ionic model.
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