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Abstract

Our purpose is to assess different methods for choosing
the regularization parameter combined with the Method of
Fundamental Solutions (MFS) for solving the electrocar-
diography imaging (ECGi) inverse problem but also to as-
sess their sensitivity to the nature of recorded signals. Re-
sults are provided using LV, RV and bi-ventricular pacing
experiments performed in an ex-vivo pig heart. In the ex-
periment, some electrodes are too close to the pericardium
so that they seem to be measuring monophasic action po-
tential signals (MAPs) rather then extracellular epicardial
potential. The electrodes suspected to measure MAPs are
identified by thresholding the epicardial potential in the
plateau phase. This leads to compare the computed epi-
cardial potential to measurement results with and without
considering these electrodes measurements. Removing the
MAPs electrodes improves the quality of the RE and CC
by at least 5% . Results show that the Generalized Cross
Validation (GCV) approach provides the best results in the
three pacing cases.

1. Introduction

The electrocardiographic imaging (ECGi) is a non-
invasive technique providing the electrical potential on the
epicardial surface from measures realized on the thoracic
surface using a set of electrodes. It’s based on a math-
ematical model which describes the heart-torso electrical
activity. This is called an inverse problem and is known to
be ill-posed resulting from different factors such as the un-
certainty of the mathematical model. In fact, modeling the
electrical activity by a laplacian equation and considering
the heart-torso domain as homogeneous generate model-
ing errors. In addition, experimental protocols yields mea-
surement errors and geometries’ innaccuracy especially in
determining the heart position [1,2]. These conditions can
generate large and even discontinuous errors in the inverse

solution. Regularization procedures are then used to stabi-
lize the solution and ensure its uniqueness and its depen-
dence on the data. To date, many regularization approaches
are suggested. In this work, we depicted the zero-order
Tikhonov regularization, presumed to be the most sim-
ple and appropriate non-a-priori regularization method to
solve the inverse problem of electrocardiography [3]. One
of the issues of the regularization methods is the choice
of the regularization parameter. Actually, few works have
compared the different developed approaches [4–6]. In
this study, we compare different regularization parameter
choice approaches combined with the Method of Funda-
mental Solutions using an experimental set of data con-
taining monophasic action potential-like signals presumed
to be ischemic ones in order to assess their effects on the
reconstruction process.

2. Methods

The regularization approach most commonly used to
solve the ECGI inverse problem is the Tikhonov regular-
ization defined by the following objective function:

min
x

{
‖Ax− b‖2 + λ2‖Lx‖2

}
, (1)

where A is the transfer matrix defined by MFS, b is the
vector illustrating the Dirichlet and Neumann boundary
conditions and x is a vector of weighting coefficients used
to compute the epicardial potential in any point of the torso
domain. The regularization operator L can be the identity
matrix for zero-order Tikhonov or a gradient operator for
first or second order regularization. The λ is the regular-
ization parameter and ‖.‖ is the L2-norm. Here, L is the
identity matrix.

To day, the use of the Singular Value Decomposition
(SVD) of A is the best way to assess the different regu-
larization parameter choice methods. Following [7], we



decompose A as follows :

A = UΣV T =

n∑
i=1

uiσiv
T
i , (2)

where U is a m × n orthonormal matrix containing the
left singular vectors of A,V is a n × n orthonormal ma-
trix containing the right singular vectors of A and Σ is a
n × n diagonal matrix with the singular values of A on
its diagonal. Note that ui, vi and σi are respectively, the
columns of U, V and the singular values of A arranged in a
decreasing order. The solution of the regularized problem
is expressed, using the SVD, by:

x = A
∗
b = (ATA+ λ2I)−1AT b =

n∑
i=1

σ2
i

σ2
i + λ2

uTi b

σi
vi.

(3)
As shown in [8], the two terms of (1) can be written as :

ρ(λ) = ‖Ax− b‖2 =

n∑
i=1

λ4µ2
i

(λ2 + σ2
i )2

+ ‖r⊥‖2 (4)

and

η(λ) = ‖x‖2 =

n∑
i=1

σ2
i µ

2
i

(λ2 + σ2
i )2

, (5)

where ‖r⊥‖2 = ‖AxLSS − b‖2 is the residual of the least
squares solution xLSS and µi = uTi b.

2.1. Determination of the Regularization
Parameter

2.1.1. U-Curve

The U-Curve is a plot of the sum of the inverse of η(λ)
and the inverse of the corresponding residual ρ(λ) in terms
of λ on a log-log scale:

Ucurve(λ) =
1

ρ(λ)
+

1

η(λ)
(6)

The U-Curve method was first proposed by [9]. It has been
shown that Ucurve(λ) reaches a local minimum λu , the
optimum value of λ, in the interval

[
δ
2/3
n , δ

2/3
1

]
, where δ1

and δn are respectively the biggest and the smallest singu-
lar values.

2.1.2. ADPC

ADPC is a regularization parameter choice method
based on the Discrete Picard Condition (DPC) [10]. The
idea is to look for the last index i before the DPC is
no longer satisfied [11]. This means before σi becomes
smaller than |uTi bt| in a log-log scale where t is time. For

the sake of simplification, log(|uTi bt|) is fitted by a poly-
nomial pt(i, log(|uTi bt|)) of degree 5 to 7. Then, for each
pt, we seek for αt = σj such that log(σi) ≥ pt, for
all i < j. The ADPC regularization parameter is then
λ = median(αt).

2.1.3. CRESO

According to the Composite REsidual and Smoothing
Operator (CRESO) method [12], the optimal λ corre-
sponds to the first local maximum of the derivative of the
difference between the constraint term and the residual
term with respect to λ2.

C(λ) =
d

d(λ2)
(λ2η(λ)− ρ(λ)) (7)

In terms of SVD, this can be written as [8]:

C(λ) =

n∑
i=1

σ2
i µ

2
i (σ

2
i − 3λ2)

(σ2
i + λ2)3

(8)

2.1.4. GCV

The idea behind The Generalized-Cross Validation
(GCV) [13] is that the optimum of the regularization pa-
rameter provides the best prediction of a measurement as
a function of the others. It provides the optimal value of λ
by minimizing the function :

G(λ) =
ρ(λ)

[Trace(I −AA∗)]2
(9)

In terms of SVD, G(λ) is expressed by :

G(λ) =

∑n
i=1

λ4µ2
i

(σ2
i + λ2)2

+ ‖r⊥‖2(
m−

∑n
i=1

σ2
i

σ2
i + λ2

)2 (10)

2.1.5. RGCV

In [14], the RGCV estimate is defined by the minimizer
of the following function:

R(λ) = [γ + (1− γ)ξ(λ)]G(λ), (11)

where G(λ) is given by (9) and ξ(λ) is defined as:

ξ(λ) = Trace
[
(AA

∗
)2
]

=

n∑
i=1

σ4
i

(λ2 + σ2
i )

2 (12)

Here, γ is called a robustness parameter, γ ∈ [0, 1].
The RGCV method is based on the average influence
1
m

∑m
i=1 ‖Axλ−Ax

[i]
λ ‖2, where ‖Axλ−Ax[i]λ ‖2 is a mea-

sure of the influence of the ith data point on the regularized
solution.



2.2. Ex vivo experimental data and metrics

Experimental data were obtained using an ex-vivo pig
heart perfused in Langendorff mode suspended into a
human-shaped torso tank paced on the left and right ven-
tricular surface. Epicardial ventricular electrograms were
recorded using a 108-electrode sock, from which 93 were
used, simultaneously with torso potentials from 128 elec-
trodes embedded in the tank surface as it appears in Figure
1. The tank mesh contains 1234 nodes and the epicardium
649 nodes. More details about the ex-vivo experimental
protocol can be found in Bear et al [15].

Figure 1. A : The heart-human shaped torso tank model
used for the experiments, B : The segmented pig heart cov-
ered by the sock used for potential records, C : Measured
Epicardial potential map at a sample time of the plateau
phase. The surrounded zones are ischemic regions, D :
Measured ischemic electrograms.

Preprocessing of the experimental data revealed the ex-
istence of a few localized sites of ischemia produced due
to electrode pressure on the epicardium represented in Fig-
ure 1C. This produced monophasic action potential-like
signals (MAPs). These electrodes are identified when the
potential is greater than a fixed threshold equal to 50% of
the maximum signal magnitude in the plateau phase, 250

ms after pacing as it’s illustrated in Figure 1D. This choice
is based on observations of the QT interval in order to elim-
inate the ischemic signals. This leads us to run two sets of
comparisons, with all the working electrodes (WE) and af-
ter removing the above threshold electrodes (TE). Accord-
ing to the ex-vivo experimental protocol, the sock doesn’t
cover the whole surface of the epicardium. So, a linear
interpolation was applied to the ex-vivo recordings with
and without thresholding to obtain respectively potential
recordings (TE) and (WE) for all the mesh nodes.
To assess the performance of the different methods, we use
the standard metrics : the relative error (RE) and the cor-
relation coefficient (CC).

3. Results

Table 1 presents the mean RE and CC of the recon-
structed epicardial potentials using the different regulariza-
tion parameter choice methods combined with MFS for the
3 experiences : RV, LV and BiV. Also, we compare, in this
table, the results obtained using the non-thresholded sig-
nals versus those computed with the thresholded signals.
Results show that thresholding improves the RE from 0.92
to 0.80 for RV, from 0.78 to 0.72 for LV and from 0.99 to
0.72 for BiV, using GCV. CC values are also improved.
Regarding the regularization parameter choice methods,
we observe that GCV outperforms the other methods.

Simulation
RVP LVP BiVP

Method Data set RE CC RE CC RE CC

CRESO WE 0.93 0.32 0.84 0.61 1.00 0.40
TE 0.82 0.57 0.81 0.66 0.81 0.66

GCV WE 0.92 0.31 0.78 0.67 0.99 0.34
TE 0.80 0.60 0.72 0.72 0.72 0.72

RGCV WE 0.93 0.32 0.86 0.61 1.00 0.40
TE 0.85 0.54 0.84 0.66 0.84 0.66

UCurve WE 0.94 0.33 0.98 0.6 1.02 0.40
TE 0.96 0.53 0.97 0.65 0.97 0.65

ADPC WE 0.92 0.31 0.82 0.62 0.98 0.38
TE 0.82 0.56 0.78 0.67 0.78 0.67

Table 1. Means of RE and CC of the reconstructed epi-
cardial potentials using MFS combined with the different
regularization parameter choice methods for thresholded
data sets and non-thresholded ones.

Figure 2 shows a measured monophasic action
potential-like signal and the corresponding thresholded
one with the reconstructed version by MFS-GCV. We ob-
serve that the thresholding affects the results essentially
during the plateau phase where it reduces the gap between
the reconstructed and the measured amplitudes.

4. discussion and conclusion

In this paper, we assessed 5 methods for choosing the
regularization parameter for a zero-order Tikhonov regu-



Figure 2. Measured(WE), thresholded(TE) and recon-
structed electrograms of the RV (A), LV (B) and BiV (C)
in an ischemic-like point using MFS-GCV.

larization combined with MFS : CRESO, GCV, RGCV,
UCurve and ADPC. Results show that all the methods
work well combined with MFS. However, GCV outper-
forms all the other methods in terms of RE and CC for the
three cases : RV, LV and BiV.
Regarding the thresholding applied to the reference poten-
tial measures, results seem to be better using the thresh-
olded epicardial potentials. Nevertheless, we can’t decide
on the impact of the monophasic action potential-like sig-
nals on the quality of the results unless we have experi-
ments providing non ischemic potentials.
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